Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen und Datenstrukturen

Wintersemester 2020/21
24. Vorlesung

Der Handlungsreisende

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

Der Handlungsreisende

SPECIAL COLLECTORS EDITION
DUSTIN JOHN
HOFFMAN MALKOVICH

Arthur Miller's

GOLDEN GLOBE WINNER
BEST ACTOR
DUSTIN HOFFMAN

Der Handlungsreisende

SPECIAL COLLECTORS EDITION
DUSTIN JOHN
HOFFMAN MALKOVICH

MAINFRANKEN
THEATER
WURZBURG

Arthur Miller's

GOLDEN GLOBE WINNER
BEST ACTOR
DUSTIN HOFFMAN

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollstandiger Graph G = (V/, E)
mit Kantenkosten c: E — R>g

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollstandiger Graph G = (V/, E)
mit Kantenkosten c: E — R>g

Beispiel. C = dEuk,

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollstandiger Graph G = (V/, E)
mit Kantenkosten c: E — R>g

Beispiel. C = dEuk,

Das Problem

Definition.

Beispiel.

Traveling Salesperson Problem (TSP)

Gegeben: unger. vollstandiger Graph G = (V/, E)
mit Kantenkosten c: E — R>g

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten ¢(K).

Das Problem

Definition.

Beispiel.

Traveling Salesperson Problem (TSP)

Gegeben: unger. vollstandiger Graph G = (V/, E)
mit Kantenkosten c: E — R>g

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K):= > ..k cle).

Das Problem

Definition.

Beispiel.

Traveling Salesperson Problem (TSP)

Gegeben: unger. vollstandiger Graph G = (V/, E)
mit Kantenkosten c: E — R>g

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K):= > ..k cle).

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollstandiger Graph G = (V/, E)
mit Kantenkosten c: E — R>g

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K):= > ..k cle).

Beispiel. C = dEuk,

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollstandiger Graph G = (V/, E)
mit Kantenkosten c: E — R>g

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K):= > ..k cle).

Beispiel. C = dEuk,

Problem.

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollstandiger Graph G = (V/, E)
mit Kantenkosten c: E — R>g

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K):= > ..k cle).

Beispiel. C = dEuk,

Problem.
e [SP ist NP-schwer

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollstandiger Graph G = (V/, E)
mit Kantenkosten c: E — R>g

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K):= > ..k cle).

Beispiel. C = dEuk,

Problem.

e [SP ist NP-schwer

e und schwer zu /o o
approximieren. -

Etwas Geschichte

Etwas Geschichte

Der Handlungsreisende — wie er
sein soll und was er zu thun hat,
um Auftrage zu erhalten und eines
gliicklichen Erfolgs in seinen
Geschaften gewiss zu sein.

Von einem alten Commis-Voyageur
[1832]

Etwas Geschichte

Der Handlungsreisende — wie er
sein soll und was er zu thun hat,
um Auftrage zu erhalten und eines
gliicklichen Erfolgs in seinen
Geschaften gewiss zu sein.

Von einem alten Commis-Voyageur
[1832]

Rekord I:
optimale 120-Stadte-Tour
|Groetschel, 1977]

Etwas Geschichte

Der Handlungsreisende — wie er
sein soll und was er zu thun hat,
um Auftrage zu erhalten und eines
gliicklichen Erfolgs in seinen
Geschaften gewiss zu sein.

Von einem alten Commis-Voyageur
[1832]

Rekord I:
optimale 120-Stadte-Tour
|Groetschel, 1977]

Rekord Il:

optimale 15.112-Stadte-Tour
[Applegate, Bixby, Chvatal, Cook
2001]

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollstandiger Graph G = (V, E)
mit Kantenkosten c: E — R>g

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Was tun? — Mach das Problem leichter!

Problem: Traveling Salesperson Problem

Gegeben: unger. vollstandiger Graph G = (V, E)
mit Kantenkosten c: E — R>g

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Was tun? — Mach das Problem leichter!

Problem: Traveling Salesperson Problem

Gegeben: unger. vollstandiger Graph G = (V, E)
mit Kantenkosten c: E — R>g

u 74
.ﬂ die die Dreiecksungleichung erfiillen,

w
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)

Gegeben: unger. vollstandiger Graph G = (V, E)
mit Kantenkosten c: E — R>g

u 74
.i die die Dreiecksungleichung erfiillen,

w
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)

Gegeben: unger. vollstandiger Graph G = (V, E)
mit Kantenkosten c: E — R>g

u 74
.ﬂ die die Dreiecksungleichung erfiillen,

w
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)

Gegeben: unger. vollstandiger Graph G = (V, E)
mit Kantenkosten c: E — R>g

u 74
.ﬂ die die Dreiecksungleichung erfiillen,

w
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Beweis. . °

Geg. gewichteter
vollst. Graph G.)

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)

Gegeben: unger. vollstandiger Graph G = (V, E)
mit Kantenkosten c: E — R>g

u 74
.ﬂ die die Dreiecksungleichung erfiillen,

w
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.
Bewelis. ® o Algorithmus:
o Berechne min. Spannbaum MSB.
¢ °
Geg. gewichteter
vollst. Graph G.)

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)

Gegeben: unger. vollstandiger Graph G = (V, E)
mit Kantenkosten c: E — R>g

u 74
.ﬂ die die Dreiecksungleichung erfiillen,

w
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.

Geg. gewichteter
vollst. Graph G.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)

Gegeben: unger. vollstandiger Graph G = (V, E)
mit Kantenkosten c: E — R>g

u "4
.ﬁ die die Dreiecksungleichung erfiillen,

w
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)

Gegeben: unger. vollstandiger Graph G = (V, E)
mit Kantenkosten c: E — R>g

u 74
.ﬂ die die Dreiecksungleichung erfiillen,

w
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)
U v mit Kantenkosten c: E — R>g
.ﬂ die die Dreiecksungleichung erfiillen,
w
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)
U v mit Kantenkosten c: E — R>g
.ﬂ die die Dreiecksungleichung erfiillen,
w
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)
U v mit Kantenkosten c: E — R>g
.ﬂ die die Dreiecksungleichung erfiillen,
w
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)
U v mit Kantenkosten c: E — R>g
.i die die Dreiecksungleichung erfiillen,
%
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)

u v mit Kantenkosten c: E — R>g
.i die die Dreiecksungleichung erfiillen,
W
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)

u v mit Kantenkosten c: E — R>g
.ﬂ die die Dreiecksungleichung erfiillen,
W
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)

u v mit Kantenkosten c: E — R>g
.ﬂ die die Dreiecksungleichung erfiillen,
W
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen” ein.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)

u v mit Kantenkosten c: E — R>g
.i die die Dreiecksungleichung erfiillen,
W
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen” ein.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)
U v mit Kantenkosten c: E — R>g
.ﬂ die die Dreiecksungleichung erfiillen,
w
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen” ein.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)
U v mit Kantenkosten c: E — R>g
.i die die Dreiecksungleichung erfiillen,
%
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen” ein.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)
U v mit Kantenkosten c: E — R>g
.i die die Dreiecksungleichung erfiillen,
%
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen” ein.

Was tun? — Mach das Problem leichter!

Problem: Metrisches Traveling Salesperson Problem (A-TSP)
Gegeben: unger. vollstandiger Graph G = (V, E)
U v mit Kantenkosten c: E — R>g
.i die die Dreiecksungleichung erfiillen,
%
Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. Algorithmus:

Berechne min. Spannbaum MSB.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen” ein.

Analyse

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. 1. Algorithmus

Berechne MSB von G.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen™ ein.

Analyse

Satz. Es gibt eine 2-Approximation fiir A-TSP.

1. Algorithmus

Berechne MSB von G.
Verdopple MSB = ergibt Kreis!

Bewelrs.

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen™ ein.

2. Analyse

Analyse

Satz. Es gibt eine 2-Approximation fiir A-TSP.

1. Algorithmus

Berechne MSB von G.
Verdopple MSB = ergibt Kreis!

Bewelrs.

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen™ ein.

2. Analyse
c(ALG) <

Analyse

Satz. Es gibt eine 2-Approximation fiir A-TSP.

1. Algorithmus

Berechne MSB von G.
Verdopple MSB = ergibt Kreis!

Bewelrs.

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen™ ein.

2. Analyse
c(ALG) <

Dreiecksungleichung

Analyse

Satz. Es gibt eine 2-Approximation fiir A-TSP.

1. Algorithmus

Berechne MSB von G.
Verdopple MSB = ergibt Kreis!

Bewelrs.

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen™ ein.

2. Analyse
c(ALG) < c(Kreis) =

Dreiecksungleichung

Analyse

Satz. Es gibt eine 2-Approximation fiir A-TSP.

Bewelis. 1. Algorithmus

Berechne MSB von G.
Verdopple MSB = ergibt Kreis!

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen™ ein.

2. Analyse
c(ALG) < c(Kreis) = 2-¢(MSB)

Dreiecksungleichung

VAN

Analyse

Satz. Es gibt eine 2-Approximation fiir A-TSP.

1. Algorithmus

Berechne MSB von G.
Verdopple MSB = ergibt Kreis!

Bewelrs.

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen™ ein.

2. Analyse
c(ALG) < c(Kreis) = 2-¢(MSB)

Dreiecksungleichung

).

VAN

Analyse

Satz. Es gibt eine 2-Approximation fiir A-TSP.

1. Algorithmus

Berechne MSB von G.
Verdopple MSB = ergibt Kreis!

Bewelrs.

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen™ ein.

2. Analyse
c(ALG) < c(Kreis) = 2-¢(MSB) < 2-0OPT

Dreiecksungleichung

Analyse

Satz. Es gibt eine 2-Approximation fiir A-TSP.

1. Algorithmus

Berechne MSB von G.
Verdopple MSB = ergibt Kreis!

Bewelrs.

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen™ ein.
2. Analyse
c(ALG) < c(Kreis) = 2-¢(MSB) < 2-0OPT

Dreiecksungleichung Optimale TSP-Tour minus eine Kante ist
(i.A. nicht minimaler) Spannbaum!!

Analyse

Satz. Es gibt eine 2-Approximation fiir A-TSP.

1. Algorithmus

Berechne MSB von G.
Verdopple MSB = ergibt Kreis!

Bewelrs.

Durchlaufe den Kreis.

Uberspringe besuchte Knoten.

Fiige ,,Abkiirzungen™ ein.
2. Analyse
c(ALG) < c(Kreis) = 2-¢(MSB) < 2-0OPT

Dreiecksungleichung Optimale TSP-Tour minus eine Kante ist
(i.A. nicht minimaler) Spannbaum!!

Die ,,Kunst" der unteren Schranke: c(min. Spannbaum) < ¢(TSP-Tour)

Exakte Berechnung: Brute Force

Algorithmus: e Fiir jede Permutation o von (1,2,...,n):

Exakte Berechnung: Brute Force

Algorithmus: e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vy, ..., v, in dieser Reihenfolge:

Exakte Berechnung: Brute Force

Algorithmus: e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vy, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Exakte Berechnung: Brute Force

Algorithmus: e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vy, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Laufzeit:

Exakte Berechnung: Brute Force

Algorithmus: e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vy, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Laufzeit: Anzahl Permutationen von n Objekten:

Exakte Berechnung: Brute Force

Algorithmus: e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vy, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vq, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Anzahl Permutationen von n Objekten: n!

Halt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vq, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Anzahl Permutationen von n Objekten: n!

Halt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourlange c(o):

Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vq, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Anzahl Permutationen von n Objekten: n!

Halt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.

Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vq, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Anzahl Permutationen von n Objekten: n!

Halt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.

Berechnung der nachsten Permutation:

Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vq, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Anzahl Permutationen von n Objekten: n!

Halt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.

Berechnung der nachsten Permutation: 777

Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vq, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Anzahl Permutationen von n Objekten: n!

Halt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.
Berechnung der nachsten Permutation: 777

Ang. 777 = O(n), dann ist die Laufzeit

Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vq, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Anzahl Permutationen von n Objekten: n!

Halt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.
Berechnung der nachsten Permutation: 777

Ang. 777 = O(n), dann ist die Laufzeit O(n!).

Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

Speicher:

e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vq, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Anzahl Permutationen von n Objekten: n!

Halt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.
Berechnung der nachsten Permutation: 777

Ang. 777 = O(n), dann ist die Laufzeit O(n!).

Exakte Berechnung: Brute Force

Algorithmus:

Laufzeit:

Speicher:

e Fiir jede Permutation o von (1,2,...,n):

Berechne die Kosten der Tour durch die
Knoten vq, ..., v, in dieser Reihenfolge:

e Gib die kiirzeste Tour zurtick.

Anzahl Permutationen von n Objekten: n!

Halt man den 1. Knoten fest, so bleiben ,,nur” (n — 1)! Permutationen.

Berechnung einer Tourldnge c(o): O(n) Zeit.
Berechnung der nachsten Permutation: 777

Ang. 777 = O(n), dann ist die Laufzeit O(n!).

O(n) fiir: bisher beste, aktuelle & nachste Permutation.

Wie iteriert man durch alle Permutationen?

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

e Bestimme groBten Index i mit o(i)<o(i+1).

(1,4,3,6,5,2)

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

e Bestimme groBten Index i mit o(i)<o(i+1).

(1,4,3,6,5,2)

/

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:

e Bestimme groBten Index i mit o(i)<o(i+1).

e Falls nicht existiert, fertig (¢ = letzte Permutation).

(1,4,3,6,5,2)

/

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:
e Bestimme groBten Index i mit o(i)<o(i+1).
e Falls nicht existiert, fertig (¢ = letzte Permutation).

e Sonst bestimme groBten Index j mit o(i) < o(j). Beispiel:
(1,4,3,6,5,2)

/

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:
e Bestimme groBten Index i mit o(i)<o(i+1).
e Falls nicht existiert, fertig (¢ = letzte Permutation).

e Sonst bestimme groBten Index j mit o(i) < o(j). Beispiel:

(1,4,3,6,5,2)
I

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:
e Bestimme groBten Index i mit o(i)<o(i+1).
e Falls nicht existiert, fertig (¢ = letzte Permutation).

e Sonst bestimme groBten Index j mit o(i) < o(j). Beispiel:
(1,4,3,6,5,2)
I
e Vertausche (/) und o(j).

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:
e Bestimme groBten Index i mit o(i)<o(i+1).
e Falls nicht existiert, fertig (¢ = letzte Permutation).

e Sonst bestimme groBten Index j mit o(i) < o(j). Beispiel:
(1,4,3,6,5,2) —»
I
e Vertausche (/) und o(j).

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:
e Bestimme groBten Index i mit o(i)<o(i+1).
e Falls nicht existiert, fertig (¢ = letzte Permutation).

e Sonst bestimme groBten Index j mit o(i) < o(j). Beispiel:
(1,4,3,6,5,2) —» (1,45, 6,8 2)
I I

e Vertausche o(/) und o(j).

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:
e Bestimme groBten Index i mit o(i)<o(i+1).
e Falls nicht existiert, fertig (¢ = letzte Permutation).

e Sonst bestimme groBten Index j mit o(i) < o(j). Beispiel:

(1,4,3,6,5,2) —» (1,45, 6,8 2)
I I
e Vertausche o(/) und o(j).

e Kehre die Teilfolge (o(i +1),0(i +2),...,0(n)) um.

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:
e Bestimme groBten Index i mit o(i)<o(i+1).
e Falls nicht existiert, fertig (¢ = letzte Permutation).

e Sonst bestimme groBten Index j mit o(i) < o(j). Beispiel:

(1,4,3,6,5,2) —» (1,45 6,8 2) —»
I I Jn
e Vertausche o(/) und o(j).

e Kehre die Teilfolge (o(i +1),0(i +2),...,0(n)) um.

Wie iteriert man durch alle Permutationen?

/.B. in lexikografischer Ordnung:
(1,2,3,4,5,6), (1,2,3,4,6,5),(1,2,3,5,4,6),...,(6,5,4,3,2,1).

Fiir gegebene Permutation o, finde Nachfolger in O(n) Zeit:
e Bestimme groBten Index i mit o(i)<o(i+1).
e Falls nicht existiert, fertig (¢ = letzte Permutation).

e Sonst bestimme groBten Index j mit o(i) < o(j). Beispiel:
/

(1,4,3,6,5,2) —» (1,4,8,6,3,2) —» (1,4,5,2,3,6)
I I/ n I n

e Vertausche o(/) und o(j).

e Kehre die Teilfolge (o(i +1),0(i +2),...,0(n)) um.

Wie groB3 ist nl 7

nl=1.-2-...-n

Wie groB3 ist nl 7

< nl=1-2-...-n <

Wie groB3 ist n! 7?

< nl=1-2-....-n< n-n-...-

Wie groB3 ist n! 7?

<

nl=1.-2-...-n

<

Wie groB3 ist n! 7?

n/2-n/2-...-n/2 <

nl=1.-2-...-n

<

Wie groB3 ist n! 7?

n/2-n/2-...-n/2 <

n/2 mal

nl =1

0.

VAN

Wie groB3 ist n! 7?

n/2-n/2-...-n/2 <

n/2 mal

Wie groB3 ist n! 7?

n/2-n/2-...-n/2 <

n/2 mal

Wie groB3 ist n! 7?

n/2-n/2-...-n/2 <

n/2 mal

Wie groB3 ist n! 7?

n/2-n/2-...-n/2 <

n/2 mal

Wie groB3 ist n! 7?

n/2-n/2-...-n/2 <

n/2 mal

Wie groB3 ist n! 7?

n/2-n/2-...-n/2 <

n/2 mal

Wie groB3 ist n! 7?

iv/2-n/2-..

.- n/2

n/2 mal

<

VAN

nl=1.2.

VAN
>
>

... N

Wie groB3 ist n! 7?

n/2-n/2-...-n/2 <
n/;mal
— 2n/2|og2 n/2

nl=1.-2-...-n

VAN

Wie groB3 ist n! ?

n/2-n/2-...-n/2 <
n/;mal
— 2n/2|og2 n/2

nl=1.-2-...-n

VAN

Wie groB3 ist n! 7?

nf2-n/2-...-nf2 < n=1-2-...-.n< n-n-...-
n/;mal
— 2n/2|og2n/2 < n!gnn:(zloan)n — onlog, n

- al € 20(nlog

Wie groB3 i1st n! 7

n/2-n/2-...-n/2 <
n/;mal
— on/2log, n/2

nl=1-2-....n< n-n-...-

n! < n" = (2|og2 n)n _ 2n|og2n

nl € 2@(n log n)

Genauer: Stirlingformel

Wie groB3 i1st n! 7

nf2-n/2-...-nf2 < n=1-2-...-.n< n-n-...-
n/;mal

— 2n/2|og2 n/2 < pl<np"= (2Iog2 n)n — onlog, n

- !l € 26(nlog)

Genauer: Stirlingformel

n! ~ \/2mn (Q) .
e

Fiir n — oo gilt

Wie groB3 i1st n! 7

nf2-n/2-...-nf2 < n=1-2-...-.n< n-n-...-
n/;mal

— 2n/2 log, n/?2 < pl<np"= (2Iog2 n)n — onlog, n

- !l € 26(nlog)

Genauer: Stirlingformel

Fiir n — oo gilt oo
nl ~ \2mn (—) .

Noch genauer:

A (2) < < eva(2)’

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:
T|W, v;] := optimale (kiirzeste) Lange eines v;-v;-Wegs

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!

%1

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!
Dann gilt fir W = {v;}, i > 1.
T[W, V,'] —

%1

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!
Dann gilt fir W = {v;}, i > 1.
TIW,vi] = ¢(wv1, V)

%1

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!

Dann gilt fiir W ={v;}, i > 1: ANV S
TIW,vi] = ¢(w, vi) |

Und fiir W mit |W|> 2, v; € W: A
T[W, V,'] —

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!

Dann gilt fiir W ={v;}, i > 1: ANV S
TIW,v] = c(vi, vj) |
Und fiir W mit |W| > 2, v; € W: S

Letzter Knoten vor v

T[W,vi] = minJew (v}

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!

- -

Dann gilt fiir W ={v;}, i > 1: ANV S

TIW,vi] = ¢(wv1, V)

Und fir W mit |W| > 2, v; € W: e

Letzter Knoten vor Vi

TIW, vil = mindew oy TIW {vi},

0

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!

Dann gilt fiir W ={v;}, i > 1: ANV S
TIW,vi] = ¢(w, vi) |

Und fir W mit |W| > 2, v; € W: e

Letzter Knoten vor Vi

TIW, v = mindewipy TIW {vi} vl +

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!

Dann gilt fiir W ={v;}, i > 1: ANV S
TIW,vi] = ¢(w, vi) |

Und fir W mit |W| > 2, v; € W: e

Letzter Knoten vor Vi

TIW. vl = mindewvy TIWA {vihovil + c(v v)

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!
Dann gilt fir W = {v;}, i > 1.
TIW,vi] = ¢(wv1, V)

Und fir W mit [W|>2, v € Wi | e

Letzter Knoten vor Vi

TIW. vl = mindewvy TIWA {vihovil + c(v v)

— OPT =

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!
Dann gilt fir W = {v;}, i > 1.
TIW,vi] = ¢(wv1, V)

Und fir W mit [W|>2, v € Wi | e

Letzter Knoten vor Vi

TIW. vl = mindewvy TIWA {vihovil + c(v v)

— OPT = mingx
‘; Index des letzten Knotens vor vq

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!
Dann gilt fir W = {v;}, i > 1.
TIW,vi] = ¢(wv1, V)

Und fir W mit [W|>2, v € Wi | e

Letzter Knoten vor Vi

TIW, vi] = mindewnpvy TIWA (v}] + c(vj, v)

= OPT = min T Va3, ..., Loy
ink21 T[{v2, v3 Vi }» VK]

Index des letzten Knotens vor Vi

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!
Dann gilt fir W = {v;}, i > 1.
TIW,vi] = ¢(wv1, V)

Und fir W mit [W|>2, v € Wi | e

Letzter Knoten vor Vi

TIW, vi] = mindewnpvy TIWA (v}] + c(vj, v)

=3 OPT = min THw va, ... b vie]
ink21 T[{v2, v3 Vi }» VK]

Index des letzten Knotens vor Vi

0

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v;.

Fiir eine Knotenmenge W C V' \ {v;} mit v; € W definiere:

T[W, vj] :== optimale (kiirzeste) Lange eines v;-v;-Wegs
durch alle Knoten in W'

Schritt 2 fiir DP: Definiere Wert einer opt. Lésung rekursiv!
Dann gilt fir W = {v;}, i > 1.
TIW,vi] = ¢(wv1, V)

Und fir W mit [W|>2, v € Wi | e

Letzter Knoten vor Vi

TIW, vi] = mindewnpvy TIWA (v}] + c(vj, v)

= OPT = min THw, va, ..., bove] + (v,
ink21 T[{v2, v3 Vot V] + c(vk, v1)

Index des letzten Knotens vor Vi

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo

L TH{vit vil = c(vi, vi)

11
Der Algorithmus von Bellman, Held & Karp
Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2tondo
| THvit vil = (w1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo
| THvit vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do

_

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to n do
| THvi} vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do
- T[Wvi] = min,cun gy TIW\{vi} vi]+c(v;,vi)

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo
| THvit vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do
| T[Wwvi] = miny, e vy TIW Vit v+ (v, vi)

return

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo
| THvit vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do
| T[Wwvi] = miny, e vy TIW Vit v+ (v, vi)

return mingz1 T[{vo, v3, ..., v}, vi] + c(vk, v1)

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo
| THvit vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do
| T[Wwvi] = miny, e vy TIW Vit v+ (v, vi)

return mingz1 T[{vo, v3, ..., v}, vi] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]:

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo
| THvit vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do
| T[Wwvi] = miny, e vy TIW Vit v+ (v, vi)

return mingz1 T[{vo, v3, ..., v}, vi] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo
| THvit vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do
| T[Wwvi] = miny, e vy TIW Vit v+ (v, vi)

return mingz1 T[{vo, v3, ..., v}, vi] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt's?

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo
| THvit vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do
| T[Wwvi] = miny, e vy TIW Vit v+ (v, vi)

return mingz1 T[{vo, v3, ..., v}, vi] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt's? <2""1.p

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo
| THvit vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do
| T[Wwvi] = miny, e vy TIW Vit v+ (v, vi)

return mingz1 T[{vo, v3, ..., v}, vi] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt's? <2""1.p
= Gesamtlaufzeit € O)

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo
| THvit vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do
| T[Wwvi] = miny, e vy TIW Vit v+ (v, vi)

return mingz1 T[{vo, v3, ..., v}, vi] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt's? <2""1.p
= Gesamtlaufzeit € O(n? - 2")

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo
| THvit vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do
| T[Wwvi] = miny, e vy TIW Vit v+ (v, vi)

return mingz1 T[{vo, v3, ..., v}, vi] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt's? <2""1.p
= Gesamtlaufzeit € O(n”-2") Speicher:

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 fiir DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!
BellmanHeIdKarp(Knotenmenge V, Abstande c: V x V — Rzo)

for i =2 to ndo
| THvit vil = c(v1, vi)
for j=2ton—1do
foreach W C {w,, ..., Vo } mit |W| = do
foreach v; € W do
| T[Wwvi] = miny, e vy TIW Vit v+ (v, vi)

return mingz1 T[{vo, v3, ..., v}, vi] + c(vk, v1)

Laufzeit: Berechnung von T[W, v;]: O(n) Zeit
Wie viele Paare (W, v;) mit v; € W gibt's? <2""1.p
= Gesamtlaufzeit € O(n*-2") Speicher: O(n-2")

Vergleich

Brute Force

12

Bellman-Held-Karp

Laufzeit

Speicher

Richard M. Karp Richard E. Bellman

Vergleich

Brute Force

12

Bellman-Held-Karp

Laufzeit

Speicher

2©(nlog n)

Richard M. Karp Richard E. Bellman

Vergleich

Brute Force

12

Bellman-Held-Karp

Laufzeit

Speicher

2©(nlog n)

O(n2 - 2”)

Richard M. Karp Richard E. Bellman

Vergleich

Brute Force

12

Bellman-Held-Karp

Laufzeit

Speicher

2©(nlog n)

O(n2 - 2”)
O(n : 2”)

Richard M. Karp Richard E. Bellman

Vergleich

Brute Force

12

Bellman-Held-Karp

Laufzeit

Speicher

2@(n log n)
O(n)

O(n2 - 2”)
O(n : 2”)

Richard M. Karp Richard E. Bellman

Vergleich

Brute Force

12

Bellman-Held-Karp

Laufzeit

Speicher

2@(n log n)
O(n)

O(n2 - 2”)
O(n : 2”)

Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit 2©(nlog n) O(n*-2m)
Speicher O(n) O(n-2")

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit 2©(nlog n) O(n*-2m)
Speicher O(n) O(n-2")

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

s |
Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit 2©(nlog n) O(n*-2m)
Speicher O(n) O(n-2m)”*

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

T 3
- ',
— ¥

*) Wie ware es, wenn wir im DP
nicht ganz T[-, | speichern?

Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit 2©(nlog n) O(n*-2m)
Speicher O(n) O(n-2m)”*

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

' e,
DT
L -
i e
o
—
- il

*) Wie ware es, wenn wir im DP
nicht ganz T[-, | speichern?

Fiir T[W, -] brauchen wir nur alle
TIW', -] mit |\W'| = |W|-1.

Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit 2©(nlog n) O(n*-2m)
Speicher O(n) O(n-2m)”*

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

’ e,
T
; 7
-
A
"
=
- il

*) Wie ware es, wenn wir im DP
nicht ganz T[-, | speichern?

Fiir T[W, -] brauchen wir nur alle
TIW', -] mit |\W'| = |W|-1.

Welches j maximiert (7)7

Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit 2©(nlog n) O(n*-2m)
Speicher O(n) O(n-2m)”*

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

’ e,
T
; 7
-
A
"
=
- il

*) Wie ware es, wenn wir im DP
nicht ganz T[-, | speichern?

Fiir T[W, -] brauchen wir nur alle
TIW', -] mit |\W'| = |W|-1.

Welches j maximiert (7)7 j=13.

Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit 2©(nlog n) O(n*-2m)
Speicher O(n) O(n-2m)”*

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

’ e,
T
; 7
-
A
"
=
- il

*) Wie ware es, wenn wir im DP
nicht ganz T[-, | speichern?

Fiir T[W, -] brauchen wir nur alle
TIW', -] mit |\W'| = |W|-1.

Welches j maximiert ()? j=12

Wie grol3 ist (/2) Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp
Laufzeit 2©(nlog n) O(n*-2m)
Speicher O(n) O(n-2m)”*

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

Das bezeichnet man als Laufzeit-Speicherplatz- Trade-Off.

’ r Ll
T B
; 23

AE - : -

o1 e, .

5

Iy - -, Y

a

*) Wie ware es, wenn wir im DP
nicht ganz T[-, | speichern?

Fiir T[W, -] brauchen wir nur alle
TIW', -] mit |\W'| = |W|-1.

Welches j maximiert (7)7 j=13.

Wie groB ist (n%)? In ©(2"/+/n). Richard M. Karp Richard E. Bellman

	Titel
	Der Handlungsreisende
	Das Problem
	Etwas Geschichte
	Was tun?
	Analyse
	Exakte Berechnung: Brute Force
	Wie iteriert man durch alle Permutationen?
	Wie groß ist $\color{red} n!$?
	Exakter TSP-Algorithmus: Schneller per DP!
	Der Algorithmus von Bellman, Held \& Karp
	Vergleich

