
1

Algorithmen und Datenstrukturen

Wintersemester 2020/21

24. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Der Handlungsreisende

2

Der Handlungsreisende

2

Der Handlungsreisende

3

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

3

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

c ≡ dEukl.Beispiel.

3

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

c ≡ dEukl.Beispiel.

3

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

c ≡ dEukl.Beispiel.

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K).

3

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

:=
∑

e∈K c(e).

c ≡ dEukl.Beispiel.

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K).

3

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

:=
∑

e∈K c(e).

c ≡ dEukl.Beispiel.

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K).

(Ein HK besucht jeden Knoten genau 1×.)

3

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

:=
∑

e∈K c(e).

c ≡ dEukl.Beispiel.

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K).

(Ein HK besucht jeden Knoten genau 1×.)

3

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

:=
∑

e∈K c(e).

c ≡ dEukl.Beispiel.

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K).

(Ein HK besucht jeden Knoten genau 1×.)

Problem.

3

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

:=
∑

e∈K c(e).

c ≡ dEukl.Beispiel.

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K).

(Ein HK besucht jeden Knoten genau 1×.)

Problem.

• TSP ist NP-schwer

3

Das Problem

Definition. Traveling Salesperson Problem (TSP)

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

:=
∑

e∈K c(e).

c ≡ dEukl.Beispiel.

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K).

(Ein HK besucht jeden Knoten genau 1×.)

Problem.

• TSP ist NP-schwer

• und schwer zu
approximieren.

4

Etwas Geschichte

4

Etwas Geschichte

Der Handlungsreisende – wie er
sein soll und was er zu thun hat,
um Aufträge zu erhalten und eines
glücklichen Erfolgs in seinen
Geschäften gewiss zu sein.
Von einem alten Commis-Voyageur

[1832]

4

Etwas Geschichte

Der Handlungsreisende – wie er
sein soll und was er zu thun hat,
um Aufträge zu erhalten und eines
glücklichen Erfolgs in seinen
Geschäften gewiss zu sein.
Von einem alten Commis-Voyageur

[1832]

Rekord I:
optimale 120-Städte-Tour
[Groetschel, 1977]

4

Etwas Geschichte

Der Handlungsreisende – wie er
sein soll und was er zu thun hat,
um Aufträge zu erhalten und eines
glücklichen Erfolgs in seinen
Geschäften gewiss zu sein.
Von einem alten Commis-Voyageur

[1832]

Rekord I:
optimale 120-Städte-Tour
[Groetschel, 1977]

Rekord II:
optimale 15.112-Städte-Tour
[Applegate, Bixby, Chvátal, Cook
2001]

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

– Mach das Problem leichter!

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

die die Dreiecksungleichung erfüllen,
,

– Mach das Problem leichter!

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,
,

– Mach das Problem leichter!

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

– Mach das Problem leichter!

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Geg. gewichteter
vollst. Graph G .

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Geg. gewichteter
vollst. Graph G .

Berechne min. Spannbaum MSB.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Geg. gewichteter
vollst. Graph G .

Berechne min. Spannbaum MSB.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

5

Was tun?

Problem: Traveling Salesperson Problem

Gegeben: unger. vollständiger Graph G = (V , E)
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,

Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v

6

Analyse

Satz. Es gibt eine 2-Approximation für ∆-TSP.

Beweis.

Berechne MSB von G .

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

1. Algorithmus

6

Analyse

2. Analyse

Satz. Es gibt eine 2-Approximation für ∆-TSP.

Beweis.

Berechne MSB von G .

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

1. Algorithmus

6

Analyse

2. Analyse

c(ALG) ≤

Satz. Es gibt eine 2-Approximation für ∆-TSP.

Beweis.

Berechne MSB von G .

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

1. Algorithmus

6

Analyse

2. Analyse

c(ALG) ≤

Satz. Es gibt eine 2-Approximation für ∆-TSP.

Beweis.

Berechne MSB von G .

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

1. Algorithmus

Dreiecksungleichung

6

Analyse

2. Analyse

c(ALG) ≤ c(Kreis)

Satz. Es gibt eine 2-Approximation für ∆-TSP.

Beweis.

Berechne MSB von G .

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

1. Algorithmus

=

Dreiecksungleichung

6

Analyse

2. Analyse

c(ALG) ≤ c(Kreis)

Satz. Es gibt eine 2-Approximation für ∆-TSP.

Beweis.

Berechne MSB von G .

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

1. Algorithmus

= 2 · c(MSB) ≤
Dreiecksungleichung

6

Analyse

2. Analyse

c(ALG) ≤ c(Kreis) 2 · OPT

Satz. Es gibt eine 2-Approximation für ∆-TSP.

Beweis.

Berechne MSB von G .

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

1. Algorithmus

= 2 · c(MSB) ≤
Dreiecksungleichung

6

Analyse

2. Analyse

c(ALG) ≤ c(Kreis) 2 · OPT

Satz. Es gibt eine 2-Approximation für ∆-TSP.

Beweis.

Berechne MSB von G .

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

1. Algorithmus

= 2 · c(MSB) ≤
Dreiecksungleichung

6

Analyse

Optimale TSP-Tour minus eine Kante ist
(i.A. nicht minimaler) Spannbaum!!

2. Analyse

c(ALG) ≤ c(Kreis) 2 · OPT

Satz. Es gibt eine 2-Approximation für ∆-TSP.

Beweis.

Berechne MSB von G .

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

1. Algorithmus

= 2 · c(MSB) ≤
Dreiecksungleichung

6

Analyse

Optimale TSP-Tour minus eine Kante ist
(i.A. nicht minimaler) Spannbaum!!

2. Analyse

c(ALG) ≤ c(Kreis)

Die
”
Kunst“ der unteren Schranke:

2 · OPT

Satz. Es gibt eine 2-Approximation für ∆-TSP.

Beweis.

Berechne MSB von G .

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

1. Algorithmus

=

c(min. Spannbaum) ≤ c(TSP-Tour)

2 · c(MSB) ≤
Dreiecksungleichung

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

Laufzeit:

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

Laufzeit: Anzahl Permutationen von n Objekten:

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

Laufzeit: Anzahl Permutationen von n Objekten: n!

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

Laufzeit: Anzahl Permutationen von n Objekten: n!
Hält man den 1. Knoten fest, so bleiben

”
nur“ (n − 1)! Permutationen.

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Berechnung einer Tourlänge c(σ):

Hält man den 1. Knoten fest, so bleiben
”
nur“ (n − 1)! Permutationen.

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Berechnung einer Tourlänge c(σ): O(n) Zeit.

Hält man den 1. Knoten fest, so bleiben
”
nur“ (n − 1)! Permutationen.

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Berechnung einer Tourlänge c(σ): O(n) Zeit.

Hält man den 1. Knoten fest, so bleiben
”
nur“ (n − 1)! Permutationen.

Berechnung der nächsten Permutation:

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Berechnung einer Tourlänge c(σ): O(n) Zeit.

Hält man den 1. Knoten fest, so bleiben
”
nur“ (n − 1)! Permutationen.

Berechnung der nächsten Permutation: ???

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Berechnung einer Tourlänge c(σ): O(n) Zeit.

Hält man den 1. Knoten fest, so bleiben
”
nur“ (n − 1)! Permutationen.

Berechnung der nächsten Permutation: ???

Ang. ??? = O(n), dann ist die Laufzeit

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Berechnung einer Tourlänge c(σ): O(n) Zeit.

Hält man den 1. Knoten fest, so bleiben
”
nur“ (n − 1)! Permutationen.

Berechnung der nächsten Permutation: ???

Ang. ??? = O(n), dann ist die Laufzeit O(n!).

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Berechnung einer Tourlänge c(σ): O(n) Zeit.

Hält man den 1. Knoten fest, so bleiben
”
nur“ (n − 1)! Permutationen.

Berechnung der nächsten Permutation: ???

Ang. ??? = O(n), dann ist die Laufzeit O(n!).

Speicher:

7

Exakte Berechnung: Brute Force

Algorithmus: • Für jede Permutation σ von 〈1, 2, . . . , n〉:
Berechne die Kosten der Tour durch die
Knoten v1, . . . , vn in dieser Reihenfolge:

c(σ) =
∑n−1

i=1 c(vσ(i)vσ(i+1))+c(vσ(n)vσ(1))

• Gib die kürzeste Tour zurück.

Laufzeit: Anzahl Permutationen von n Objekten: n!

Berechnung einer Tourlänge c(σ): O(n) Zeit.

Hält man den 1. Knoten fest, so bleiben
”
nur“ (n − 1)! Permutationen.

Berechnung der nächsten Permutation: ???

Ang. ??? = O(n), dann ist die Laufzeit O(n!).

Speicher: O(n) für: bisher beste, aktuelle & nächste Permutation.

8

Wie iteriert man durch alle Permutationen?

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

• Bestimme größten Index i ∈ {1, . . . , n− 1} mit σ(i)<σ(i + 1).

〈1, 4, 3, 6, 5, 2〉

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

• Bestimme größten Index i ∈ {1, . . . , n− 1} mit σ(i)<σ(i + 1).

〈1, 4, 3, 6, 5, 2〉
i

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

• Bestimme größten Index i ∈ {1, . . . , n− 1} mit σ(i)<σ(i + 1).

• Falls nicht existiert, fertig (σ = letzte Permutation).

〈1, 4, 3, 6, 5, 2〉
i

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

• Bestimme größten Index i ∈ {1, . . . , n− 1} mit σ(i)<σ(i + 1).

• Falls nicht existiert, fertig (σ = letzte Permutation).

• Sonst bestimme größten Index j mit σ(i) < σ(j).

〈1, 4, 3, 6, 5, 2〉
i

Beispiel:

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

• Bestimme größten Index i ∈ {1, . . . , n− 1} mit σ(i)<σ(i + 1).

• Falls nicht existiert, fertig (σ = letzte Permutation).

• Sonst bestimme größten Index j mit σ(i) < σ(j).

〈1, 4, 3, 6, 5, 2〉
i j

Beispiel:

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

• Bestimme größten Index i ∈ {1, . . . , n− 1} mit σ(i)<σ(i + 1).

• Falls nicht existiert, fertig (σ = letzte Permutation).

• Sonst bestimme größten Index j mit σ(i) < σ(j).

〈1, 4, 3, 6, 5, 2〉
i j

• Vertausche σ(i) und σ(j).

Beispiel:

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

• Bestimme größten Index i ∈ {1, . . . , n− 1} mit σ(i)<σ(i + 1).

• Falls nicht existiert, fertig (σ = letzte Permutation).

• Sonst bestimme größten Index j mit σ(i) < σ(j).

〈1, 4, 3, 6, 5, 2〉
i j

• Vertausche σ(i) und σ(j).

Beispiel:

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

• Bestimme größten Index i ∈ {1, . . . , n− 1} mit σ(i)<σ(i + 1).

• Falls nicht existiert, fertig (σ = letzte Permutation).

• Sonst bestimme größten Index j mit σ(i) < σ(j).

〈1, 4, 3, 6, 5, 2〉
i j

• Vertausche σ(i) und σ(j).

〈1, 4, 5, 6, 3, 2〉
i j

Beispiel:

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

• Bestimme größten Index i ∈ {1, . . . , n− 1} mit σ(i)<σ(i + 1).

• Falls nicht existiert, fertig (σ = letzte Permutation).

• Sonst bestimme größten Index j mit σ(i) < σ(j).

〈1, 4, 3, 6, 5, 2〉
i j

• Vertausche σ(i) und σ(j).

〈1, 4, 5, 6, 3, 2〉
i j

• Kehre die Teilfolge 〈σ(i + 1),σ(i + 2), . . . ,σ(n)〉 um.

Beispiel:

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

• Bestimme größten Index i ∈ {1, . . . , n− 1} mit σ(i)<σ(i + 1).

• Falls nicht existiert, fertig (σ = letzte Permutation).

• Sonst bestimme größten Index j mit σ(i) < σ(j).

〈1, 4, 3, 6, 5, 2〉
i j

• Vertausche σ(i) und σ(j).

〈1, 4, 5, 6, 3, 2〉
i j

• Kehre die Teilfolge 〈σ(i + 1),σ(i + 2), . . . ,σ(n)〉 um.

Beispiel:

n

8

Wie iteriert man durch alle Permutationen?

Z.B. in lexikografischer Ordnung:
〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 6, 5〉, 〈1, 2, 3, 5, 4, 6〉, . . . , 〈6, 5, 4, 3, 2, 1〉.

Für gegebene Permutation σ, finde Nachfolger in O(n) Zeit:

• Bestimme größten Index i ∈ {1, . . . , n− 1} mit σ(i)<σ(i + 1).

• Falls nicht existiert, fertig (σ = letzte Permutation).

• Sonst bestimme größten Index j mit σ(i) < σ(j).

〈1, 4, 3, 6, 5, 2〉
i j

• Vertausche σ(i) und σ(j).

〈1, 4, 5, 6, 3, 2〉
i j

• Kehre die Teilfolge 〈σ(i + 1),σ(i + 2), . . . ,σ(n)〉 um.

〈1, 4, 5, 2, 3, 6〉
i

Beispiel:

n n

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nn

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn =

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

=

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2

⇒ n! ∈

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2

⇒ n! ∈ 2Θ(n log n)

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2

⇒ n! ∈ 2Θ(n log n)

Genauer: Stirlingformel [James Stirling, 1692–1770]

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2

⇒ n! ∈ 2Θ(n log n)

Genauer: Stirlingformel [James Stirling, 1692–1770]

n! ∼
√

2πn
(n

e

)n

.

Für n→∞ gilt

9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2

⇒ n! ∈ 2Θ(n log n)

Genauer: Stirlingformel [James Stirling, 1692–1770]

n! ∼
√

2πn
(n

e

)n

.

Noch genauer:√
2π
√

n
(n

e

)n

≤ n! ≤ e
√

n
(n

e

)n

Für n→∞ gilt

10

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v1.

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

W viv1

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

W viv1

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

T [W , vi] =

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

W viv1

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi)T [W , vi] =

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

W viv1

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi)

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi] =

T [W , vi] =

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

W viv1 vj

\{vi}

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi)

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi] =

T [W , vi] =

minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

Letzter Knoten vor vi

W viv1 vj

\{vi}

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi)

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi] =

T [W , vi] =

T [W \ {vi}, vj]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

Letzter Knoten vor vi

W viv1 vj

\{vi}

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi)

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi] =

T [W , vi] =

+T [W \ {vi}, vj]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

Letzter Knoten vor vi

W viv1 vj

\{vi}

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi)

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi] =

T [W , vi] =

c(vj , vi)+T [W \ {vi}, vj]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

Letzter Knoten vor vi

W viv1 vj

\{vi}

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi)

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi] =

T [W , vi] =

c(vj , vi)+T [W \ {vi}, vj]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

⇒ OPT =

Letzter Knoten vor vi

v1
vk

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi)

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi] =

T [W , vi] =

c(vj , vi)+T [W \ {vi}, vj]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

⇒ mink 6=1OPT =
Index des letzten Knotens vor v1

Letzter Knoten vor vi

v1
vk

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi)

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi] =

T [W , vi] =

c(vj , vi)+T [W \ {vi}, vj]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

⇒ mink 6=1 T [{v2, v3, . . . , vn}, vk]OPT =
Index des letzten Knotens vor v1

Letzter Knoten vor vi

v1
vk

{v2, v3, . . . , vn}

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi)

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi] =

T [W , vi] =

c(vj , vi)+T [W \ {vi}, vj]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

⇒ mink 6=1 T [{v2, v3, . . . , vn}, vk] +OPT =
Index des letzten Knotens vor v1

Letzter Knoten vor vi

v1
vk

{v2, v3, . . . , vn}

10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi)

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi] =

T [W , vi] =

c(vj , vi)+T [W \ {vi}, vj]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

⇒ mink 6=1 T [{v2, v3, . . . , vn}, vk] + c(vk , v1)OPT =
Index des letzten Knotens vor v1

Letzter Knoten vor vi

v1
vk

{v2, v3, . . . , vn}

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)
for i = 2 to n do

T [{vi}, vi] = c(v1, vi)

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)
for i = 2 to n do

T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)
for i = 2 to n do

T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)
for i = 2 to n do

T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)
for i = 2 to n do

T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

return

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk] + c(vk , v1)

for i = 2 to n do
T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

return

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi]:

for i = 2 to n do
T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

return

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi]: O(n) Zeit

for i = 2 to n do
T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

return

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi]: O(n) Zeit

Wie viele Paare (W , vi) mit vi ∈W gibt’s?

for i = 2 to n do
T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

return

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi]: O(n) Zeit

Wie viele Paare (W , vi) mit vi ∈W gibt’s? ≤ 2n−1 · n

for i = 2 to n do
T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

return

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi]: O(n) Zeit

Wie viele Paare (W , vi) mit vi ∈W gibt’s? ≤ 2n−1 · n
⇒ Gesamtlaufzeit ∈ O

()

for i = 2 to n do
T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

return

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi]: O(n) Zeit

Wie viele Paare (W , vi) mit vi ∈W gibt’s? ≤ 2n−1 · n
⇒ Gesamtlaufzeit ∈ O

()
n2 · 2n

for i = 2 to n do
T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

return

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi]: O(n) Zeit

Wie viele Paare (W , vi) mit vi ∈W gibt’s? ≤ 2n−1 · n
⇒ Gesamtlaufzeit ∈ O

()
n2 · 2n Speicher:

for i = 2 to n do
T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

return

11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi]: O(n) Zeit

Wie viele Paare (W , vi) mit vi ∈W gibt’s? ≤ 2n−1 · n
⇒ Gesamtlaufzeit ∈ O

()
n2 · 2n Speicher: O

(
n · 2n

)

for i = 2 to n do
T [{vi}, vi] = c(v1, vi)

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi] = minvj∈W\{vi}T [W \{vi},vj]+c(vj ,vi)

return

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit

Speicher

Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n)

Speicher

Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher

Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

Das bezeichnet man als Laufzeit-Speicherplatz-Trade-Off.

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

?

?) Wie wäre es, wenn wir im DP
nicht ganz T [·, ·] speichern?

Das bezeichnet man als Laufzeit-Speicherplatz-Trade-Off.

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

?

?) Wie wäre es, wenn wir im DP
nicht ganz T [·, ·] speichern?

Das bezeichnet man als Laufzeit-Speicherplatz-Trade-Off.

Für T [W , ·] brauchen wir nur alle
T [W ′, ·] mit |W ′| = |W | − 1.

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

?

?) Wie wäre es, wenn wir im DP
nicht ganz T [·, ·] speichern?

Das bezeichnet man als Laufzeit-Speicherplatz-Trade-Off.

Welches j maximiert
(

n
j

)
?

Für T [W , ·] brauchen wir nur alle
T [W ′, ·] mit |W ′| = |W | − 1.

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

?

?) Wie wäre es, wenn wir im DP
nicht ganz T [·, ·] speichern?

Das bezeichnet man als Laufzeit-Speicherplatz-Trade-Off.

Welches j maximiert
(

n
j

)
? j = n

2 .

Für T [W , ·] brauchen wir nur alle
T [W ′, ·] mit |W ′| = |W | − 1.

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

?

?) Wie wäre es, wenn wir im DP
nicht ganz T [·, ·] speichern?

Das bezeichnet man als Laufzeit-Speicherplatz-Trade-Off.

Welches j maximiert
(

n
j

)
? j = n

2 .

Wie groß ist
(

n
n/2

)
?

Für T [W , ·] brauchen wir nur alle
T [W ′, ·] mit |W ′| = |W | − 1.

12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

?

?) Wie wäre es, wenn wir im DP
nicht ganz T [·, ·] speichern?

Das bezeichnet man als Laufzeit-Speicherplatz-Trade-Off.

Welches j maximiert
(

n
j

)
? j = n

2 .

Wie groß ist
(

n
n/2

)
? In Θ(2n/

√
n).

Für T [W , ·] brauchen wir nur alle
T [W ′, ·] mit |W ′| = |W | − 1.

	Titel
	Der Handlungsreisende
	Das Problem
	Etwas Geschichte
	Was tun?
	Analyse
	Exakte Berechnung: Brute Force
	Wie iteriert man durch alle Permutationen?
	Wie groß ist $\color{red} n!$?
	Exakter TSP-Algorithmus: Schneller per DP!
	Der Algorithmus von Bellman, Held \& Karp
	Vergleich

