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Gegeben: unger. vollständiger Graph G = (V , E )
mit Kantenkosten c : E → R≥0

:=
∑

e∈K c(e).

c ≡ dEukl.Beispiel.

Gesucht: Hamiltonkreis K in G mit minimalen
Kosten c(K ).

(Ein HK besucht jeden Knoten genau 1×.)

Problem.

• TSP ist NP-schwer



3

Das Problem

Definition. Traveling Salesperson Problem (TSP)
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[Applegate, Bixby, Chvátal, Cook
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Gegeben: unger. vollständiger Graph G = (V , E )
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

die die Dreiecksungleichung erfüllen,
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,

– Mach das Problem leichter!

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v



5

Was tun?

Problem: Traveling Salesperson Problem
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Satz. Es gibt eine 2-Approximation für ∆-TSP.

,

Beweis.

– Mach das Problem leichter!

Berechne min. Spannbaum MSB.

Verdopple MSB ⇒ ergibt Kreis!

Durchlaufe den Kreis.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v



5

Was tun?

Problem: Traveling Salesperson Problem
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Gegeben: unger. vollständiger Graph G = (V , E )
mit Kantenkosten c : E → R≥0

Gesucht: Hamiltonkreis in G mit minimalen Kosten.

Metrisches (∆-TSP)

die die Dreiecksungleichung erfüllen,
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Füge
”
Abkürzungen“ ein.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v



5

Was tun?

Problem: Traveling Salesperson Problem
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Überspringe besuchte Knoten.

Füge
”
Abkürzungen“ ein.

Algorithmus:

d.h. ∀u, v , w ∈ V : c(u, w) ≤ c(u, v) + c(v , w).

u

w

v



5

Was tun?

Problem: Traveling Salesperson Problem
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Überspringe besuchte Knoten.

Füge
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• Sonst bestimme größten Index j mit σ(i) < σ(j).

〈1, 4, 3, 6, 5, 2〉
i j

• Vertausche σ(i) und σ(j).

〈1, 4, 5, 6, 3, 2〉
i j

• Kehre die Teilfolge 〈σ(i + 1),σ(i + 2), . . . ,σ(n)〉 um.

〈1, 4, 5, 2, 3, 6〉
i

Beispiel:

n n



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nn



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn =



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

=



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2

⇒ n! ∈



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2

⇒ n! ∈ 2Θ(n log n)



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2

⇒ n! ∈ 2Θ(n log n)

Genauer: Stirlingformel [James Stirling, 1692–1770]



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2

⇒ n! ∈ 2Θ(n log n)

Genauer: Stirlingformel [James Stirling, 1692–1770]

n! ∼
√

2πn
(n

e

)n

.

Für n→∞ gilt



9

Wie groß ist n! ?

n! = 1 · 2 · . . . · n ≤≤ n · n · . . . · n = nnn/2 · n/2 · . . . · n/2︸ ︷︷ ︸
n/2 mal

⇒ n! ≤ nn = 2
(

log2 n
)n

= 2n log2 n≤2n/2 log2 n/2

⇒ n! ∈ 2Θ(n log n)

Genauer: Stirlingformel [James Stirling, 1692–1770]

n! ∼
√

2πn
(n

e

)n

.

Noch genauer:√
2π
√

n
(n

e

)n

≤ n! ≤ e
√

n
(n

e

)n

Für n→∞ gilt



10

Exakter TSP-Algorithmus: Schneller per DP!

Wir beginnen alle Rundtouren im Knoten v1.



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

W viv1



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

W viv1



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

T [W , vi ] =

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

W viv1



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi )T [W , vi ] =

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

W viv1



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi )

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi ] =

T [W , vi ] =

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

W viv1 vj

\{vi}



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi )

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi ] =

T [W , vi ] =

minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

Letzter Knoten vor vi

W viv1 vj

\{vi}



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi )

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi ] =

T [W , vi ] =

T [W \ {vi}, vj ]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

Letzter Knoten vor vi

W viv1 vj

\{vi}



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi )

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi ] =

T [W , vi ] =

+T [W \ {vi}, vj ]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

Letzter Knoten vor vi

W viv1 vj

\{vi}



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi )

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi ] =

T [W , vi ] =

c(vj , vi )+T [W \ {vi}, vj ]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

Letzter Knoten vor vi

W viv1 vj

\{vi}



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi )

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi ] =

T [W , vi ] =

c(vj , vi )+T [W \ {vi}, vj ]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

⇒ OPT =

Letzter Knoten vor vi

v1
vk



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi )

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi ] =

T [W , vi ] =

c(vj , vi )+T [W \ {vi}, vj ]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

⇒ mink 6=1OPT =
Index des letzten Knotens vor v1

Letzter Knoten vor vi

v1
vk



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi )

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi ] =

T [W , vi ] =

c(vj , vi )+T [W \ {vi}, vj ]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

⇒ mink 6=1 T [{v2, v3, . . . , vn}, vk ]OPT =
Index des letzten Knotens vor v1

Letzter Knoten vor vi

v1
vk

{v2, v3, . . . , vn}



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi )

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi ] =

T [W , vi ] =

c(vj , vi )+T [W \ {vi}, vj ]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

⇒ mink 6=1 T [{v2, v3, . . . , vn}, vk ] +OPT =
Index des letzten Knotens vor v1

Letzter Knoten vor vi

v1
vk

{v2, v3, . . . , vn}



10

Exakter TSP-Algorithmus: Schneller per DP!

T [W , vi ] := optimale (kürzeste) Länge eines v1-vi -Wegs
durch alle Knoten in W .

Wir beginnen alle Rundtouren im Knoten v1.

Für eine Knotenmenge W ⊆ V \ {v1} mit vi ∈W definiere:

Dann gilt für W = {vi}, i > 1:

c(v1, vi )

Und für W mit |W | ≥ 2, vi ∈W :

T [W , vi ] =

T [W , vi ] =

c(vj , vi )+T [W \ {vi}, vj ]minvj∈W\{vi}

Schritt 2 für DP: Definiere Wert einer opt. Lösung rekursiv!

⇒ mink 6=1 T [{v2, v3, . . . , vn}, vk ] + c(vk , v1)OPT =
Index des letzten Knotens vor v1

Letzter Knoten vor vi

v1
vk

{v2, v3, . . . , vn}



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)
for i = 2 to n do

T [{vi}, vi ] = c(v1, vi )



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)
for i = 2 to n do

T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)
for i = 2 to n do

T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)
for i = 2 to n do

T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)
for i = 2 to n do

T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )

return



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk ] + c(vk , v1)

for i = 2 to n do
T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )

return



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk ] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi ]:

for i = 2 to n do
T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )

return



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk ] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi ]: O(n) Zeit

for i = 2 to n do
T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )

return



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk ] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi ]: O(n) Zeit

Wie viele Paare (W , vi ) mit vi ∈W gibt’s?

for i = 2 to n do
T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )

return



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk ] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi ]: O(n) Zeit

Wie viele Paare (W , vi ) mit vi ∈W gibt’s? ≤ 2n−1 · n

for i = 2 to n do
T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )

return



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk ] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi ]: O(n) Zeit

Wie viele Paare (W , vi ) mit vi ∈W gibt’s? ≤ 2n−1 · n
⇒ Gesamtlaufzeit ∈ O

( )

for i = 2 to n do
T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )

return



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk ] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi ]: O(n) Zeit

Wie viele Paare (W , vi ) mit vi ∈W gibt’s? ≤ 2n−1 · n
⇒ Gesamtlaufzeit ∈ O

( )
n2 · 2n

for i = 2 to n do
T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )

return



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk ] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi ]: O(n) Zeit

Wie viele Paare (W , vi ) mit vi ∈W gibt’s? ≤ 2n−1 · n
⇒ Gesamtlaufzeit ∈ O

( )
n2 · 2n Speicher:

for i = 2 to n do
T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )

return



11

Der Algorithmus von Bellman, Held & Karp

Schritt 3 für DP: Berechne Wert einer opt. Lsg. (hier: bot.-up)!

BellmanHeldKarp
(
Knotenmenge V , Abstände c : V ×V → R≥0

)

mink 6=1 T [{v2, v3, . . . , vn}, vk ] + c(vk , v1)

Laufzeit: Berechnung von T [W , vi ]: O(n) Zeit

Wie viele Paare (W , vi ) mit vi ∈W gibt’s? ≤ 2n−1 · n
⇒ Gesamtlaufzeit ∈ O

( )
n2 · 2n Speicher: O

(
n · 2n

)

for i = 2 to n do
T [{vi}, vi ] = c(v1, vi )

for j = 2 to n − 1 do
foreach W ⊆ {v2, . . . , vn} mit |W | = j do

foreach vi ∈W do
T [W,vi ] = minvj∈W\{vi}T [W \{vi},vj ]+c(vj ,vi )

return



12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit

Speicher

Richard M. Karp Richard E. Bellman



12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n)

Speicher

Richard M. Karp Richard E. Bellman



12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher

Richard M. Karp Richard E. Bellman



12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O

(
n · 2n

)

Richard M. Karp Richard E. Bellman



12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman



12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman



12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.



12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

Das bezeichnet man als Laufzeit-Speicherplatz-Trade-Off.



12

Vergleich

Brute Force Bellman-Held-Karp

Laufzeit 2Θ(n log n) O
(
n2 · 2n

)
Speicher O(n) O

(
n · 2n

)

Richard M. Karp Richard E. Bellman

Der Bellman-Held-Karp-Algorithmus verringert also die
Laufzeit zu Kosten des Speicherplatzverbrauchs.

?
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