
Inconspicuous Hacking
Handout

Tim Gerlach Max Mündlein

1 Input Format
line 1: n m, where n is the number of contestants and m
is the number of judges
line i: Votes of judge i, where positive numbers a are
votes for contestant a, and negative numbers −a are
votes against contestant a
Ranges: 2 ≤ n ≤ 1000, 1 ≤ m ≤ 2000, a ∈ {1, . . . , n}

The input always consists of exactly one test case.

2 Output Format
The literal string yes, or the literal string no

3 Model
For each contestant c, let xc be a variable which is true
if and only if contestant c advances. The vote of a judge
for a contestant a can then be expressed as the literal
xa, and against an contestant a as the literal xa. Each
judge has exactly two votes (v, w), where v and w are
each literals. The Problem then reduces to the question
whether the following expression is satisfiable:∧

(v,w)∈ Judges
(v ∨ w)

Which is equivalent to the implication form∧
(v,w)∈ Judges

(v =⇒ w) ∧ (w =⇒ v)

4 Solution
Construct an implication graph from the input: For each
contestant c, create two nodes (for xc and xc). For each
judge, insert two edges according to the implications of
the judge’s votes.

Run Tarjan’s algorithm to find the strongly connected
components.
Finally, check whether for any i both xi and xi lie in the
same scc.

Function Tarjan(G = (V,E))
index ← 0
S ← new stack
for v ∈ V do

v.lowlink ← ∞
v.index ← ∞

for v ∈ V do
if v.index =∞ then

TarjanDFS(v, S, G)

Function TarjanDFS(v, S, G = (V,E))
v.index ← index
v.lowlink ← index
S.push(v)
index ← index + 1
for each (v, w) ∈ E do

if w.index =∞ then
TarjanDFS(w, S, G)
v.lowlink ← min(v.lowlink,
w.lowlink)

else if w is on the stack then
v.lowlink ← min(v.lowlink, w.index)

if v.lowlink = v.index then
start new scc
repeat

w ← S.pop()
add w to scc

until w = v
end scc

5 Implementation

• Map −n, . . . ,−1, 1, . . . , n to 0, . . . , 2n to store
nodes in array

• Efficient “is on stack” check: store flag for each
node

• Find a good format for SCC information (flag or
set)


