Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen und Datenstrukturen

Wintersemester 2020/21
23. Vorlesung

Greedy- und Approximationsalgorithmen

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

Operations Research

Optimierung fiir Wirtschaftsablaufe:
e Standortplanung

e Ablaufplanung

e Flottenmanagement

e Pack- und Zuschnittprobleme

Werkzeuge:

Statistik, Algorithmen, Wahrscheinlichkeitstheorie, Spieltheorie,
Graphentheorie, mathematische Programmierung, Simulation. . .

Ein einfaches Problem der Ablaufplanung

Gegeben:

Gesucht:

Grund:

Menge A = {a1,...,a,} von Aktivititen,
wobei fir i = 1,...,n gilt a; = [s;,).

a; und a; sind kompatibel, wenn a; N a; = 0.

Die Aktivitdten in A" C A sind paarweise
kompatibel, wenn fiir jedes Paar a;, a; € A’ gilt,
dass a; und a; kompatibel sind.

eine groBtmogliche Menge paarweise kompatibler
Aktivitaten.

Aktivitdten (a 1€), die gleiche Ressource benutzen

Ein kleiner technischer Trick

Wir nummerieren die Aktivitaten
so, dass fiir die Endtermine gilt ¢; < e < --- < g,.

@ O
@ O
@ O
@ O @ O
o—-O © O @ O
® O &m0 @ o)
® O di
o—0O a
® O dj
—-0
@ O
@ O
@ O
® O
@
o Odn—1

o ap

Charakterisierung optimaler Losungen

ldee:

Intuition:

akm

Ak_)

Satz.

optimale
Teilstruktur!

Bewels.

Sei L opt. Losung fiir A. — Welche Aktivitat hat
gute Chancen die erste (, linkeste") in L zu sein?

Die Aktivitat a; mit frihester Endzeit — weil a; die
gemeinsame Ressource am wenigsten einschrankt.

Sei Ay ={a; € A:s; > ex} die Menge der

3/ Aktivitaten, die nach Ablauf von a, beginnen.

Sei Ly eine optimale Losung von A.
Falls Intuition korrekt, dann ist {a; } U Ly optimal.

Sei Ak 7é @
Sei a,, Aktivitat mit frihester Endzeit in Ag.

= es gibt eine opt. Losung von A, die a,, enthalt.

Austauschargument!

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
€ = —O&O

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m=k-+1;, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

do a1

Greedy — rekursiv

GreedyRecursive(int[] s, int[] e)
€ = —O&O

return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)
m=k-+1, n=s.length

while m < n and s[m] < e[k] do
| m=m-+1
if m > n then return ()
else return {a,,} U GreedyRecursiveMain(s, e, m)

Laufzeit? Wie oft wird m linkrementiert?
Insgesamt, iiber alle rekursiven Aufrufe, n Mal.

D.h. GreedyRecursive lduft (ohne Sortieren) in ©(n) Zeit.

Greedy — iterativ

Greedylterative(int[] s, int[] e)
n = s.length
if n = 0 then return ()
[= {31}
k=1
for m=2to ndo

if s{m] > e[k| then
L=LU{an}
i K=m
return L
Laufzeit? Greedylterative lauft ebenfalls in ©(n) Zeit.

Bemerkung: Greedylterative berechnet dieselbe optimale
Losung wie GreedyRecursive — die , linkeste”.

Die Greedy-Strategie
1. Teste, ob das Problem optimale Teilstruktur aufweist.
2. Entwickle eine rekursive Losung

3. Zeige, dass bei einer Greedy-Entscheidung
nur ein Teilproblem bleibt

4. Beweise, dass die Greedy-Wahl , sicher” ist (vgl. Kruskal!)
5. Entwickle einen rekursiven Greedy-Algorithmus

6. Konvertiere den rekursiven in einen iterativen Algorithmus

Food for Thought

1. Welches allgemeinere Ablaufproblem kann der
Greedy-Algorithmus (GA) nicht I6sen?

Wenn jede Aktivitdt a € A ihren eigenen Ertrag w(a) erbringt:
Finde L € A mit L kompatibel und w(L) := > .., w(a) max.

2. Problem gréBte unabhingige Menge (guM) in Graphen:

— Was hat guM mit unserem Ablaufplanungsproblem zu tun?
— Welche Graphen kommen bei der Ablaufplanung nicht vor?
— Kann man guM mit Dynam. Progr. (DP) oder GA 16sen?

Ein ahnliches Problem der Ablaufplanung

Gegeben:

Gesucht:

Grund:

Menge A ={as,..., a,} von halboffenen Intervallen,
mit a; = [s;,) fliri=1,...,n.

Fiir die Endpunkte gelte e < e < -+ < gp,.

o0 d]

———O d?
® O d3
e——O
M
® O
e—O
—O
M
® Odn—1

eine Menge A’ C A paarweise disjunkter Intervalle,
deren Gesamtlange ¢(A") maximal ist.

Intervalle = Prozesse, die die gleiche Ressource nutzen;

der Gesamtertrag ist proportional zur Auslastung.

11

Greedy?

1. Versuch: Nimm Aktivitat mit friihestem Endtermin,
streiche dazu inkompatible Aktivitaten und iteriere.

—-oO
O

Gegenbsp.: o

2. Versuch: Nimm langste Aktivitat,
streiche dazu inkompatible Aktivitaten und iteriere.
1 1 1
O

® ON _ Oe
O

Gegenbsp.: A
1+¢

Aufgabe: Konnen Sie den 2. GA in O(nlog n)
Zeit implementieren?

Tipp: Gehen Sie so ahnlich wie Kruskal vor!

12

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Losung L C A.
Sei G ={g1,4,---, gx} C A die Greedy-Losung (in dieser Rf.).
Fari =1, ..., kseiG,-:{aEA]aﬂg;#@}\(Glu---UG;_l)

= —] und
g3 e——o) > L, =LNG;.
G3 o - o L,
® O
® O
. ° o
G \——————F————2 g2 L G,

Dann gl|tA:G1UG2UUGk und L:LlULQUULk

Wie gut/schlecht ist der 2. GA?

13

Behauptung: Fir /=1
1

k gilt K(L,) < 3€(g,)

1

(b) jedes a € L; schneidet g;
(c) Intervalle in L; sind paarweise disjunkt

o oce oe ol;
O
1+e¢ gi
Beweis. (a) g;j ist nach Wahl ein langstes Intervall in G;

= OPT = ¢(L) = S5, 0(L) < 355 4(g) = 3¢(G)

= {(G) > OPT/3

= 2. GA liefert immer mind. 1/3 der maximalen Gesamtlange.

Also ist der 2. GA ein Faktor-(1/3)-Approximationsalgorithmus.

Approxi. .. ha?

14

,All exact science is dominated by the idea of approximation.”

Sei Il ein Maximierungsproblem.

Sei ¢ die Zielfunktion von [1: Losung — Q>o.
Sei v eine Zahl < 1.

Ein Algorithmus A heiBt v-Approximation, wenn

e A fiir jede Instanz [von [] eine Lésung A(/)
berechnet, so dass

G(A())

Ablaufplanung
G =4

v =1/3

1/3-Approx.
liefert Menge von
Aktivitaten, deren
Gesamtlinge
mindestens 1/3
der maximal mog-
lichen Lange ist.

. . =
¢(optimale Lésung) OPT(/) GréBe der Instanz /

e die Laufzeit von A polynomiell in |/] ist.

O(nlog n)

15

Ein exakter Algorithmus. . .

Firi=1,...,nsei Aj={a; € A| ¢ < s;} die Menge aller
Intervalle in A, die enden, bevor a; beginnt. (Setze A1 = A.)

e O)
———oO
® O
Ak e——O
® O
® O
e O
® O
[_ o di

Eine optimale Losung fiir A; besteht aus:
— einem letzten Intervall a, und

— einer optimalen Losung fiir Ay.

optimale
Teilstruktur!

Also gilt fiir den Wert ¢; einer optimalen Losung fiir A;:

Ci = MaXg, cA, ck+€(ak)

16

...ein Dynamisches Programm!

= e o T 7)) BERECHMUNG ENES) i O() Zi

Erinnern wir uns...
Cni1 ist der Wert der optimalen Losung fiir A,;1 = A.

TABELLE
Also genligt es|cy, ..., chr1| zu berechnen, wobei ¢; = 0.
GroBe O(n)
Laufzeit? O(n?) Schreiben Sie den Pseudocode!

Resultate:

e Der 2. Greedy-Alg. findet in O(nlog n) Zeit eine Losung,
die mindestens 1/3 des maximalen Ertrags garantiert.

e Unser DP findet in O(n?) Zeit eine Lésung mit maximalem

Ertrag. Trade-Off zwischen Zeit und Qualitat!

	Titel
	Operations Research
	Ein einfaches Problem der Ablaufplanung
	Charakterisierung optimaler Lösungen
	Greedy -- rekursiv
	Greedy -- iterativ
	Die Greedy-Strategie
	Food for Thought
	Ein ähnliches Problem der Ablaufplanung
	Greedy?
	Wie gut/schlecht ist der 2. GA?
	Approxi... hä?
	Ein exakter Algorithmus\dots
	\dots ein Dynamisches Programm!

