
1

Algorithmen und Datenstrukturen

Wintersemester 2020/21

23. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Greedy- und Approximationsalgorithmen

2

Operations Research

Optimierung für Wirtschaftsabläufe:

• Standortplanung

• Ablaufplanung

• Flottenmanagement

• . . .

Statistik, Algorithmen, Wahrscheinlichkeitstheorie, Spieltheorie,
Graphentheorie, mathematische Programmierung, Simulation. . .

Werkzeuge:

• Pack- und Zuschnittprobleme

3

Ein einfaches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von Aktivitäten,
wobei für i = 1, . . . , n gilt ai = [si , ei).

0 11 50 11 5 10 15

Die Aktivitäten in A′ ⊂ A sind paarweise
kompatibel, wenn für jedes Paar ai , aj ∈ A′ gilt,
dass ai und aj kompatibel sind.

ai und aj sind kompatibel, wenn ai ∩ aj = ∅.

Gesucht: eine größtmögliche Menge paarweise kompatibler
Aktivitäten.

Grund: Aktivitäten (à 1e), die gleiche Ressource benutzen

4

Ein kleiner technischer Trick

0 50 5 10 15

Wir nummerieren (für den Rest der Vorlesung) die Aktivitäten
so, dass für die Endtermine gilt e1 ≤ e2 ≤ · · · ≤ en.

a1
a2

a3

an−1
an

1

5

Charakterisierung optimaler Lösungen

Idee: Sei L opt. Lösung für A. – Welche Aktivität hat
gute Chancen die erste (

”
linkeste“) in L zu sein?

Intuition: Die Aktivität a1 mit frühester Endzeit – weil a1 die
gemeinsame Ressource am wenigsten einschränkt.

Sei Ak = {ai ∈ A : si ≥ ek} die Menge der
Aktivitäten, die nach Ablauf von ak beginnen.

Sei Lk eine optimale Lösung von Ak .

Falls Intuition korrekt, dann ist {a1} ∪ L1 optimal.

Satz. Sei Ak 6= ∅.
Sei am Aktivität mit frühester Endzeit in Ak .

⇒ es gibt eine opt. Lösung von Ak , die am enthält.

Beweis. Austauschargument!

optimale
Teilstruktur!

ak

Ak

6

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e0 = −∞ // ⇒ A0 = A
// Aktivitäten nach Endzeiten sortieren, falls nötig
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e, m)

a1

an

a0

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e, m)

6

Greedy – rekursiv

GreedyRecursive(int[] s, int[] e)
e0 = −∞ // ⇒ A0 = A
// Aktivitäten nach Endzeiten sortieren, falls nötig
return GreedyRecursiveMain(s, e, 0)

GreedyRecursiveMain(int[] s, int[] e, int k)

m = k + 1; n = s.length
// Finde Aktivität am mit kleinster Endzeit in Ak

while m ≤ n and s[m] < e[k] do
m = m + 1

if m > n then return ∅
else return {am}∪ GreedyRecursiveMain(s, e, m)

Laufzeit? Wie oft wird m inkrementiert?
Insgesamt, über alle rekursiven Aufrufe, n Mal.

D.h. GreedyRecursive läuft (ohne Sortieren) in Θ(n) Zeit.

// best. Lsg. für Ak

return {am}∪ GreedyRecursiveMain(s, e, m)

7

Greedy – iterativ

GreedyIterative(int[] s, int[] e)
n = s.length
if n = 0 then return ∅
L = {a1}
k = 1 // höchster Index in L
for m = 2 to n do

if s[m] ≥ e[k] then
L = L ∪ {am}
k = m

return L

Bemerkung: GreedyIterative berechnet dieselbe optimale
Lösung wie GreedyRecursive – die

”
linkeste“.

Laufzeit? GreedyIterative läuft ebenfalls in Θ(n) Zeit.

8

Die Greedy-Strategie

1. Teste, ob das Problem optimale Teilstruktur aufweist.

2. Entwickle eine rekursive Lösung

3. Zeige, dass bei einer Greedy-Entscheidung
nur ein Teilproblem bleibt

4. Beweise, dass die Greedy-Wahl
”
sicher“ ist (vgl. Kruskal!)

5. Entwickle einen rekursiven Greedy-Algorithmus

6. Konvertiere den rekursiven in einen iterativen Algorithmus

9

Food for Thought

Welches allgemeinere Ablaufproblem kann der
Greedy-Algorithmus (GA) nicht lösen?

1.

2. Problem größte unabhängige Menge (guM) in Graphen:

– Was hat guM mit unserem Ablaufplanungsproblem zu tun?

– Welche Graphen kommen bei der Ablaufplanung nicht vor?

Finde eine größte Teilmenge U
der Knoten, so dass keine zwei
Knoten in U benachbart sind.

Wenn jede Aktivität a∈A ihren eigenen Ertrag w(a) erbringt:

Finde L ⊆ A mit L kompatibel und w(L) :=
∑

a∈L w(a) max.

– Kann man guM mit Dynam. Progr. (DP) oder GA lösen?

10

Ein ähnliches Problem der Ablaufplanung

Gegeben: Menge A = {a1, . . . , an} von halboffenen Intervallen,
mit ai = [si , ei) für i = 1, . . . , n.

Gesucht: eine Menge A′ ⊆ A paarweise disjunkter Intervalle,
deren Gesamtlänge `(A′) maximal ist.

Grund: Intervalle =̂ Prozesse, die die gleiche Ressource nutzen;
der Gesamtertrag ist proportional zur Auslastung.

a1
a2

a3

an−1
an

Für die Endpunkte gelte e1 ≤ e2 ≤ · · · ≤ en.

11

Greedy?

1. Versuch: Nimm Aktivität mit frühestem Endtermin,
streiche dazu inkompatible Aktivitäten und iteriere.

2. Versuch:

Gegenbsp.:

Nimm längste Aktivität,
streiche dazu inkompatible Aktivitäten und iteriere.

Gegenbsp.:
1 1

1 + ε

1

Aufgabe: Können Sie den 2. GA in O(n log n)
Zeit implementieren?

Tipp: Gehen Sie so ähnlich wie Kruskal vor!

12

Wie gut/schlecht ist der 2. GA?

Betrachte eine optimale Lösung L ⊆ A.

Sei G = {g1, g2, . . . , gk} ⊆ A die Greedy-Lösung (in dieser Rf.).

Dann gilt A = G1 ∪̇G2 ∪̇ · · · ∪̇Gk

Für i = 1, . . . , k sei Gi = {a ∈ A | a ∩ gi 6= ∅}\(G1 ∪ · · · ∪ Gi−1)

und
Li = L ∩ Gi .

g1 g2

g3

G3

G1
G2

”
⊆“: GA wählt so lange Intervalle aus, bis es keine mehr gibt.

und L = L1 ∪̇ L2 ∪̇ . . . ∪̇ Lk .

L3

L1

L2

”
⊇“: klar, da G1 ⊆ A, G2 ⊆ A, . . . , Gk ⊆ A

13

Wie gut/schlecht ist der 2. GA?

Behauptung: Für i = 1, . . . , k gilt `(Li) < 3`(gi).

Beweis.

⇒ `(L) =

⇒ 2. GA liefert immer mind. 1/3 der maximalen Gesamtlänge.

⇒ `(G) > OPT/3

∑k
i=1 `(Li) < 3

∑k
i=1 `(gi)

Also ist der 2. GA ein Faktor-(1/3)-Approximationsalgorithmus.

1 1

1 + ε

1

gi

Li

(c) Intervalle in Li sind paarweise disjunkt

(a) gi ist nach Wahl ein längstes Intervall in Gi

(b) jedes a ∈ Li schneidet gi

OPT = = 3`(G)

14

Approxi. . . hä?

”
All exact science is dominated by the idea of approximation.“

Bertrand Russell (1872–1970)

Sei Π ein Maximierungsproblem. z.B. Ablaufplanung

Sei γ eine Zahl ≤ 1.

Ein Algorithmus A heißt γ-Approximation, wenn

• A für jede Instanz I von Π eine Lösung A(I)
berechnet, so dass

ζ(A(I))

OPT(I)
≥ γ

Sei ζ die Zielfunktion von Π: Lösung 7→ Q≥0.

• die Laufzeit von A polynomiell in |I | ist.

ζ = `

ζ(optimale Lösung) Größe der Instanz I

O(n log n)

1/3-Approx.
liefert Menge von
Aktivitäten, deren
Gesamtlänge
mindestens 1/3
der maximal mög-
lichen Länge ist.

γ = 1/3

15

Ein exakter Algorithmus. . .

Für i = 1, . . . , n sei Ai = {aj ∈ A | ej ≤ si} die Menge aller
Intervalle in A, die enden, bevor ai beginnt. (Setze An+1 = A.)

Eine optimale Lösung für Ai besteht aus:
– einem letzten Intervall ak und
– einer optimalen Lösung für Ak .

ai

Ai ak

Ak

optimale
Teilstruktur!


Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + `(ak)

16

. . . ein Dynamisches Programm!

Also gilt für den Wert ci einer optimalen Lösung für Ai :

ci = maxak∈Ai ck + `(ak)

Schreiben Sie den Pseudocode!

Erinnern wir uns...
cn+1 ist der Wert der optimalen Lösung für An+1 = A.

Also genügt es c1, . . . , cn+1 zu berechnen.

Laufzeit? O(n2)

Resultate:

• Der 2. Greedy-Alg. findet in O(n log n) Zeit eine Lösung,
die mindestens 1/3 des maximalen Ertrags garantiert.

• Unser DP findet in O(n2) Zeit eine Lösung mit maximalem
Ertrag. Trade-Off zwischen Zeit und Qualität!

, wobei c1 = 0.
TABELLE

BERECHNUNG EINES
TABELLENEINTRAGS

Größe O(n)

}
in je O(n) Zeit

	Titel
	Operations Research
	Ein einfaches Problem der Ablaufplanung
	Charakterisierung optimaler Lösungen
	Greedy -- rekursiv
	Greedy -- iterativ
	Die Greedy-Strategie
	Food for Thought
	Ein ähnliches Problem der Ablaufplanung
	Greedy?
	Wie gut/schlecht ist der 2. GA?
	Approxi... hä?
	Ein exakter Algorithmus\dots
	\dots ein Dynamisches Programm!

