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Entwurfstechniken

• Teile und Herrsche

• Inkrementell

neu:

• Dynamisches Programmieren

meint hier das Arbeiten mit einer Tabelle,
nicht das Schreiben eines Computerprogramms.

• Randomisiert

• Rekursiv
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Vergleich

Teile und Herrsche Dynamisches Programmieren

• zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

• zerlegt Instanz in
überlappende Teilinstanzen

d.h. Teilinstanzen haben z.T.
dieselben Teilteilinstanzen.

• top-down • meist bottom-up

Lösungen von Teilinstanzen
werden zwischengespeichert,
nicht neu berechnet.

,

• meist für
Optimierungsprobleme

• eher für Entscheidungs-
oder Berechnungsprobleme
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Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

4. Optimale Lösung aus berechneter Information konstruieren
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Ein Beispiel

Zerlegungsproblem

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn

für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
können wir unseren Ertrag maximieren?
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Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn

für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

• Berechne für i = 1, . . . , n den Preis pro Meter qi = pi/i .

• Zerlege Stab in möglichst viele Stücke der Länge i mit qi max.

• Streiche alle Stablängen ≥ i aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Ein ADSler schlägt folgenden Greedy-Algorithmus vor:

Liefert dieser Greedy-Algorithmus immer das Optimum?

Ja? Beweisen! Nein? Gegenbeispiel!
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Rohe Gewalt

Frage: Wie viele Möglichkeiten gibt es
einen Stab der Länge n zu zerlegen?

Können n − 1 mal entscheiden: schneiden oder nicht.

n

Antw.:

Also können wir es uns nicht leisten
alle Zerlegungen durchzugehen und
für jede ihren Ertrag zu berechnen.

⇒ 2n−1 verschiedene Zerlegungen

?) Genauer: die gesuchte Anzahl ist die Anzahl p(n) der Partitionen der Zahl n, die angibt, auf wie viele Arten man n

als Summe von natürlichen Zahlen schreiben kann. Es gilt p(n) ≈ eπ
√

2n/3
/
(4n
√

3) ∈ Θ∗
(
(13,00195...)

√
n
)
.

?
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Beob. Ein Schnitt zerlegt das Problem in unabh. Teilprobleme.

Def.

1. Struktur einer optimalen Lösung charakterisieren

Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

2. Wert einer optimalen Lösung rekursiv definieren

Also probieren wir einfach alle möglichen Schnitte aus:

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Phänomen
der optimalen
Teilstruktur !



9

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i
Verbiete weitere Schnitte
im linken Teilstück!

= pi

en =

, wobei e0 := 0.

Also gilt:

Wert einer opt. Lösung ist Summe aus einer Zahl
der Eingabe und einem Wert einer opt. Teillösung.

Vorteil:

2. Wert einer optimalen Lösung rekursiv definieren

= max
1≤i≤n

{pi + en−i}
max{ }p1 + en−1, p2 + en−2, . . . , pn−1 + e1pn,
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3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[ ] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i ] + StangenZerlegung(p, n − i)}
return q

Laufzeit: Sei A(n) die Gesamtzahl
von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n)

⇒ A(0) = 1

und A(n) = 1 +
n∑

i=1

A(n − i) = 1 +
n−1∑
j=0

A(j) = 2n

Beweis?!
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3. Wert einer optimalen Lösung berechnen: mit Tabelle

if e[n] > −∞ then return e[n]
q = −∞
for i = 1 to n do

q = max{q, p[i ] + HauptStangenZerlegung(p, n − i , e)}
e[n] = q; return q

Zeit-Speicher-Tausch (engl. time-memory trade-off )

HauptStangenZerlegung(int[ ] p, int n, int[ ] e)

MemoStangenZerlegung(int[ ] p, int n = p.length)
e = new int[0..n]
e[0] = 0
for i = 1 to n do

e[i ] = −∞
return HauptStangenZerlegung(p, n, e)

Laufzeit? – Wie letzte Folie? – Asymptotisch schneller?
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3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[ ] p, int n) 4

3

2

1

0

Die Anzahl der Kanten im Graphen ist proportional zur
Laufzeit des DP (Anz. Additionen).

Beob.

e = new int[0..n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i ] + e[ j − i ] }
e[ j ] = q

return q

Neu: kein
rekursiver
Aufruf!

BottUpSZerl() und MemoSZerl() laufen in O
( )

Zeit.Satz. n2

Kante (j , i) bedeutet:
Teilinstanz j benützt Wert einer
opt. Lösung von Teilinstanz i .

Graph der
Teilinstanzen
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4. Optimale Lösung aus berechneter Info. konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i ] + e[ j − i ] then
q = p[i ] + e[ j − i ]
`[ j ] = i

e[ j ] = q

ErweiterteBottomUpZerlegung(int[ ] p, int[ ] e, int[ ] `, int n)

q = max{q, p[i ] + e[ j−i ]}


// merke Länge des 1. Teilstücks

GibZerlegungAus(int[ ] p, int n)GibZerlegungAus(int[ ] p, int n)
` = new int[0..n]; e = new int[0..n]
ErweiterteBottomUpZerlegung(p, e, `, n)
while n > 0 do

print `[n]; n = n − `[n]
// gib wiederholt Länge des 1. Teilstücks aus

`[7]=3 `[4]=2 `[2]
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Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

ungewichteter gerichteter Graph G = (V , E ) mit
s, t ∈ V , s 6= t und t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:
d.h. eine Folge 〈s = v0, v1, . . . , vk = t〉 mit
v0v1, . . . , vk−1vk ∈ E , vi 6= vj (für i 6= j) und k maximal.

Fahrplan

,

s

tu

v 〈s, u, t〉 ist ein längster einfacher s-t-Weg.

〈s, u〉 ist kein längster einfacher s-u-Weg;

Aber:

〈s,v ,t,u〉 ist ein längster einfacher s-u-Weg!

?) Es ist NP-schwer für (G , s, t, k) zu entscheiden, ob G einen einfachen s-t-Weg der Länge k enthält. (Vgl. Hamilton-Weg!)

?
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Längste Wege in azyklischen Graphen

gewichteter gerichteter kreisfreier Graph G =(V, E ; w)
mit s, t ∈ V , s 6= t und t von s erreichbar.

Gegeben:

ein längster s-t-Weg.Gesucht:

Beob2 Dieses Problem hat optimale Teilstruktur, denn:

Ein längster s-t-Weg π gehe durch u, d.h.
π = s −→ u −→ t.

Dann gilt:
πsu ist längster s-u-Weg; πut ist längster u-t-Weg –

sonst wäre π kein längster s-t-Weg.

πsu πut

Beob1 In kreisfreien Graphen sind alle Wege einfach.

Außerdem gilt V (πsu) ∩ V (πut) = {u};
sonst gäbe es einen Kreis!
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Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

X

– G topologisch sortieren

– d-Werte initialisieren: ds = 0 und dv = −∞ für alle v 6= s

– for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Übrigens: Kürzeste Wege in kreisfreien Graphen kann man genauso
berechnen (mit min statt max und +∞ statt −∞).

so!

dv = max
u : uv∈E

du + w(u, v) // Länge eines längsten s-v -Wegs

Genauso kann man auch das SMS-Problem lösen (· statt +).
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Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit
dynamischem Programmieren gelöst:

• Ketten von Matrixmultiplikationen

• Längste gemeinsame Teilfolge (in Zeichenketten)

Lesen Sie Kapitel 15.2–5 !!!

• Optimale binäre Suchbäume
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