Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT e hesEin I ' | | I | fl
WURZBURG INFORMATIK |

Algorithmen und Datenstrukturen

Wintersemester 2020/21
22. Vorlesung

Dynamisches Programmieren

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

Entwurfstechniken

® |Inkrementell
® Rekursiv
® Teile und Herrsche

® Randomisiert

|

® Dynamisches Programmieren

Vergleich L oL

Teile und Herrsche

® zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

® top-down

® cher fir Entscheidungs-
oder Berechnungsprobleme

Dynamisches Programmieren

® zerlegt Instanz in
liberlappende Teilinstanzen,

d.h. Teilinstanzen haben z.T.
dieselben Teilteilinstanzen.
Losungen von Teilinstanzen
werden zwischengespeichert,
nicht neu berechnet.

® meist bottom-up

® meist fur
Optimierungsprobleme

Fahrplan

1.
2.

Struktur einer optimalen Losung charakterisieren
Wert einer optimalen Losung rekursiv definieren
Wert einer optimalen Lésung berechnen (meist bottom-up)

Optimale Lésung aus berechneter Information konstruieren

Ein Beispiel

ZLerlegungsproblem

Wir haben einen Stab der Lange n und
kennen die Preise py1, po, ..
fiir Stabe der Langen 1,2

Durch welche Zerlegung unseres Stabs
konnen wir unseren Ertrag maximieren?

9€

90€

10€

9€

€

€

€

4€

-;pn

L'ainge I

o

N

Preis p; [in €]

o0

O

Ein erster Versuch

Wir haben einen Stab der Lange n und Beispiel: n = 4

kennen die Preise p1, p2, ..., pn Lange i [inm]|1|2|3|4
fiir Stibe der Lingen 1,2,...,n. Preis p; [in €]/ 1|5 |8 |9
Quotient [€/m] 1 23|22 |23

Welche Stabzerlegung maximiert den Ertrag?

Ein ADSler schlagt folgenden Greedy-Algorithmus vor:

® Berechne fiiri =1, ..., n den Preis pro Meter q; = p;/i.
® Zerlege Stab in moglichst viele Stiicke der Lange i/ mit g; max.

® Streiche alle Stablangen > / aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Liefert dieser Greedy-Algorithmus immer das Optimum?

&~
Ja? Beweisen! Nein? Gegenbeispiel!

Rohe Gewalt

Frage: Wie viele Moglichkeiten gibt es
einen Stab der Lange n zu zerlegen?

H------n------ﬂ

Antw.: Konnen n — 1 mal entscheiden: schneiden oder nicht.
i@ verschiedene Zerlegungen

Also konnen wir es uns nicht leisten
alle Zerlegungen durchzugehen und
fiir jede ithren Ertrag zu berechnen.

1. Struktur einer optimalen Losung charakterisieren

Def. Fir/i=1,...,n
sei e¢; der maximale Ertrag fiir einen Stab der Lange i.

l«—— | n—,| —»

Phanomen
der optimalen

R/—/ —/—/ Teilstruktur!

Ertrag ¢; Ertrag e,_;

Beob. Ein Schnitt zerlegt das Problem in unabh. Teilprobleme.
2. Wert einer optimalen Losung rekursiv definieren

Wissen nicht, welcher Schnitt in einer opt. Losung vorkommt.
Also probieren wir einfach alle moglichen Schnitte aus:

€n = max{ Pn, €11+ €n—1, € + €h_2, ..., en—1+61}

2. Wert einer optimalen Losung rekursiv definieren

€n = max{ Pn, €11+ €n—1, € T+ €h_2, ..., en—1+61}

Kleine Verbesserung:

N I n—i| ——
Verbiete weitere Schnitte -
Im linken Teilstiick!
N e |\ e’
Ertrag ¢; = p; Ertrag e,_;
Also gilt:
en= max{ pn, p1+en—1, P2+en—2, ..., Pr—1te€ }
— maxi{p; +e,_;}, wobel g :=0.
1§i§n{pl + n I} 0
Vorteil: Wert einer opt. Losung ist Summe aus einer Zahl

der Eingabe und einem Wert einer opt. Teillosung.

3. Wert einer optimalen Losung berechnen: top-down

Wir wissen: e, = max {p; + e,_;}, wobei g :=0.
1<i<n

StangenZerlegung(int[] p, int n = p.length)
if n == 20 then return 0
g = —0o0
for i =1to ndo

| g =max{q, p|i] + StangenZerlegung(p, n—i)}
return g

Laufzeit: Sei A(n) die Gesamtzahl
von Aufrufen von StangenZerlegung(p, -)
beim Ausfiihren von StangenZerIegung(

n)
— A(O) 1 (Beweis?!

und A(n) = 1+2An—/ — +

10

3. Wert einer optimalen Losung berechnen: mit Tabelle

Zeit-Speicher-Tausch (engl. time-memory trade-off)

HauptStangenZerlegung(int[] p, int n, int[] e)

if e[n] > —oco then return e[n]
g=—
for /=1 to ndo
| g =max{q, p|i] + HauptStangenZerlegung(p,n—i,e)}
e|n] = q; return g

Laufzeit? — Wie letzte Folie? @ — Asymptotisch schneller?

3. Wert einer optimalen Losung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n) ()

e = new int[0..n]
e0] = 0 | ©
- Neu: kein
for j=1to ndo .
B rekursiver @
= —0CC Aufruf!
for i=1toj do ‘
| g =max{q,[p[T+ e[j —]|} L

L e[J] — g \Q

return g Kante (/, /) bedeutet:
Teilinstanz j beniitzt Wert einer Graph der
opt. Losung von Teilinstanz /. Teilinstanzen

Beob. Die Anzahl der Kanten im Graphen ist proportional zur
Laufzeit des DP (Anz. Additionen).

Satz. BottUpSZerl() laufen in O(n?) Zeit.

12

4. Optimale Losung aus berechneter Info. konstruieren

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] £, int n)
el0] =0
for j=1to ndo

g=—o

for i =1toj do

if g < p[i]+ e[j — i] then
L q=plil +elj—1i] g = max{q, p[i] + e[j—il}
BRE
e[jl=q

GibZerlegungAus(int[] p, int n)
¢ = new int[0..n]; e = new int[0..n]
ErweiterteBottomUpZerlegung(p, e, ¢, n)

while n > 0 do
| print £[n]; n=n—{|n]

([7]=3 ¢[4]=2 ¢[2]

14

Langste Wege

Gegeben: ungewichteter gerichteter Graph G = (V/, E) mit
s,t € V,s=#tund t von s erreichbar.

Gesucht: ein langster einfacher s-t-Weg,

6-0 (s, u, t) ist ein langster einfacher s-t-Weg.

. . Aber:
(s, u) ist kein langster einfacher s-u-Weg;

0‘0 (s,v,t,u) ist ein langster einfacher s-u-Wegl!
Fahrplan

1. Struktur einer optimalen Losung charakterisieren %*
2.

3.

15

Langste Wege in azyklischen Graphen

Gegeben: gewichteter gerichteter kreisfreier Graph G=(V, E; w)
mit s,t € V, s #t und t von s erreichbar.

Gesucht: ein langster s-t-Weg.

Beob; In kreisfreien Graphen sind alle Wege einfach.
Beob, Dieses Problem hat optimale Teilstruktur, denn:
Ein langster s-t-Weg m gehe durch u, d.h.

T =5 Uy Uy

Dann gilt:
sy ISt langster s-u-Weg; m,; i1st langster u-t-Weg —
sonst ware m kein langster s-t-Weg.

16

Algorithmus nach Fahrplan

1.

Struktur einer optimalen Losung charakterisieren \/

Wert einer optimalen Losung rekursiv definieren

d, = max_ d,+ w(u,v) //Linge eines lingsten s-v-Wegs
u: uvekE W

so!
Wert einer optimalen Lésung berechnen (hier bottom-up)

— G topologisch sortieren

— d-Werte initialisieren: ds = 0 und d, = —oo fiir alle v # s

— for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Ubrigens: Kiirzeste Wege in kreisfreien Graphen kann man genauso

berechnen (mit min statt max und 400 statt —oo).

Genauso kann man auch das SMS-Problem 16sen (- statt +).

Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit
dynamischem Programmieren gelost:

® Ketten von Matrixmultiplikationen
® | dngste gemeinsame Teilfolge (in Zeichenketten)

® Optimale bindare Suchbaume

Lesen Sie Kapitel 15.2-5 111

17

	Titel
	Entwurfstechniken
	Vergleich
	Fahrplan
	Ein Beispiel
	Ein erster Versuch
	Rohe Gewalt
	1. Struktur einer optimalen Loesung charakterisieren
	2. Wert einer optimalen Loesung rekursiv definieren
	3. Wert einer opt. Lsg. berechnen
	4. Optimale Loesung aus berechneter Info. konstruieren
	Längste Wege
	Längste Wege in azyklischen Graphen
	Algorithmus nach Fahrplan
	Und jetzt?

