
1

Algorithmen und Datenstrukturen

Wintersemester 2020/21

22. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Dynamisches Programmieren

2

Entwurfstechniken

• Teile und Herrsche

• Inkrementell

neu:

• Dynamisches Programmieren

meint hier das Arbeiten mit einer Tabelle,
nicht das Schreiben eines Computerprogramms.

• Randomisiert

• Rekursiv

3

Vergleich

Teile und Herrsche Dynamisches Programmieren

• zerlegt Instanz rekursiv in
disjunkte Teilinstanzen

• zerlegt Instanz in
überlappende Teilinstanzen

d.h. Teilinstanzen haben z.T.
dieselben Teilteilinstanzen.

• top-down • meist bottom-up

Lösungen von Teilinstanzen
werden zwischengespeichert,
nicht neu berechnet.

,

• meist für
Optimierungsprobleme

• eher für Entscheidungs-
oder Berechnungsprobleme

4

Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

4. Optimale Lösung aus berechneter Information konstruieren

5

Ein Beispiel

Zerlegungsproblem

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn

für Stäbe der Längen 1, 2, . . . , n.

Durch welche Zerlegung unseres Stabs
können wir unseren Ertrag maximieren?

2
5

1
1
1
1

3
8

4
9

Länge i
Preis pi [in e]

10e

9e

7e

7e

4e

9e

9e 7e

6

Ein erster Versuch

Wir haben einen Stab der Länge n und
kennen die Preise p1, p2, . . . , pn

für Stäbe der Längen 1, 2, . . . , n.

Welche Stabzerlegung maximiert den Ertrag?

• Berechne für i = 1, . . . , n den Preis pro Meter qi = pi/i .

• Zerlege Stab in möglichst viele Stücke der Länge i mit qi max.

• Streiche alle Stablängen ≥ i aus der Tabelle und wiederhole den
Prozess mit dem Stabrest (falls > 0).

Ein ADSler schlägt folgenden Greedy-Algorithmus vor:

Liefert dieser Greedy-Algorithmus immer das Optimum?

Ja? Beweisen! Nein? Gegenbeispiel!

4
9

1 2 3

2 2
3

Länge i [in m]
Preis pi [in e]

1 2 1
2

Beispiel: n = 4

Quotient [e/m]
81 5

2 1
4

7

Rohe Gewalt

Frage: Wie viele Möglichkeiten gibt es
einen Stab der Länge n zu zerlegen?

Können n − 1 mal entscheiden: schneiden oder nicht.

n

Antw.:

Also können wir es uns nicht leisten
alle Zerlegungen durchzugehen und
für jede ihren Ertrag zu berechnen.

⇒ 2n−1 verschiedene Zerlegungen

?) Genauer: die gesuchte Anzahl ist die Anzahl p(n) der Partitionen der Zahl n, die angibt, auf wie viele Arten man n

als Summe von natürlichen Zahlen schreiben kann. Es gilt p(n) ≈ eπ
√

2n/3
/
(4n
√

3) ∈ Θ∗
(
(13,00195...)

√
n
)
.

?

8

Beob. Ein Schnitt zerlegt das Problem in unabh. Teilprobleme.

Def.

1. Struktur einer optimalen Lösung charakterisieren

Für i = 1, . . . , n
sei ei der maximale Ertrag für einen Stab der Länge i .

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i

Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt.

2. Wert einer optimalen Lösung rekursiv definieren

Also probieren wir einfach alle möglichen Schnitte aus:

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Phänomen
der optimalen
Teilstruktur !

9

en = max{ }e1 + en−1, e2 + en−2, . . . , en−1 + e1pn,

Kleine Verbesserung:

︸ ︷︷ ︸ ︸ ︷︷ ︸
Ertrag ei Ertrag en−i

i n − i
Verbiete weitere Schnitte
im linken Teilstück!

= pi

en =

, wobei e0 := 0.

Also gilt:

Wert einer opt. Lösung ist Summe aus einer Zahl
der Eingabe und einem Wert einer opt. Teillösung.

Vorteil:

2. Wert einer optimalen Lösung rekursiv definieren

= max
1≤i≤n

{pi + en−i}
max{ }p1 + en−1, p2 + en−2, . . . , pn−1 + e1pn,

10

3. Wert einer optimalen Lösung berechnen: top-down

en = max
1≤i≤n

{pi + en−i} , wobei e0 := 0.Wir wissen:

StangenZerlegung(int[] p, int n = p.length)

if n == 0 then return 0
q = −∞
for i = 1 to n do

q = max{q, p[i] + StangenZerlegung(p, n − i)}
return q

Laufzeit: Sei A(n) die Gesamtzahl
von Aufrufen von StangenZerlegung(p, ·)
beim Ausführen von StangenZerlegung(p, n)

⇒ A(0) = 1

und A(n) = 1 +
n∑

i=1

A(n − i) = 1 +
n−1∑
j=0

A(j) = 2n

Beweis?!

11

3. Wert einer optimalen Lösung berechnen: mit Tabelle

if e[n] > −∞ then return e[n]
q = −∞
for i = 1 to n do

q = max{q, p[i] + HauptStangenZerlegung(p, n − i , e)}
e[n] = q; return q

Zeit-Speicher-Tausch (engl. time-memory trade-off)

HauptStangenZerlegung(int[] p, int n, int[] e)

MemoStangenZerlegung(int[] p, int n = p.length)
e = new int[0..n]
e[0] = 0
for i = 1 to n do

e[i] = −∞
return HauptStangenZerlegung(p, n, e)

Laufzeit? – Wie letzte Folie? – Asymptotisch schneller?

12

3. Wert einer optimalen Lösung berechnen: bottom-up

BottomUpStangenZerlegung(int[] p, int n) 4

3

2

1

0

Die Anzahl der Kanten im Graphen ist proportional zur
Laufzeit des DP (Anz. Additionen).

Beob.

e = new int[0..n]
e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

q = max{q, p[i] + e[j − i] }
e[j] = q

return q

Neu: kein
rekursiver
Aufruf!

BottUpSZerl() und MemoSZerl() laufen in O
()

Zeit.Satz. n2

Kante (j , i) bedeutet:
Teilinstanz j benützt Wert einer
opt. Lösung von Teilinstanz i .

Graph der
Teilinstanzen

13

4. Optimale Lösung aus berechneter Info. konstruieren

e[0] = 0
for j = 1 to n do

q = −∞
for i = 1 to j do

if q < p[i] + e[j − i] then
q = p[i] + e[j − i]
`[j] = i

e[j] = q

ErweiterteBottomUpZerlegung(int[] p, int[] e, int[] `, int n)

q = max{q, p[i] + e[j−i]}


// merke Länge des 1. Teilstücks

GibZerlegungAus(int[] p, int n)GibZerlegungAus(int[] p, int n)
` = new int[0..n]; e = new int[0..n]
ErweiterteBottomUpZerlegung(p, e, `, n)
while n > 0 do

print `[n]; n = n − `[n]
// gib wiederholt Länge des 1. Teilstücks aus

`[7]=3 `[4]=2 `[2]

14

Längste Wege

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (meist bottom-up)

ungewichteter gerichteter Graph G = (V , E) mit
s, t ∈ V , s 6= t und t von s erreichbar.

Gegeben:

ein längster einfacher s-t-WegGesucht:
d.h. eine Folge 〈s = v0, v1, . . . , vk = t〉 mit
v0v1, . . . , vk−1vk ∈ E , vi 6= vj (für i 6= j) und k maximal.

Fahrplan

,

s

tu

v 〈s, u, t〉 ist ein längster einfacher s-t-Weg.

〈s, u〉 ist kein längster einfacher s-u-Weg;

Aber:

〈s,v ,t,u〉 ist ein längster einfacher s-u-Weg!

?) Es ist NP-schwer für (G , s, t, k) zu entscheiden, ob G einen einfachen s-t-Weg der Länge k enthält. (Vgl. Hamilton-Weg!)

?

15

Längste Wege in azyklischen Graphen

gewichteter gerichteter kreisfreier Graph G =(V, E ; w)
mit s, t ∈ V , s 6= t und t von s erreichbar.

Gegeben:

ein längster s-t-Weg.Gesucht:

Beob2 Dieses Problem hat optimale Teilstruktur, denn:

Ein längster s-t-Weg π gehe durch u, d.h.
π = s −→ u −→ t.

Dann gilt:
πsu ist längster s-u-Weg; πut ist längster u-t-Weg –

sonst wäre π kein längster s-t-Weg.

πsu πut

Beob1 In kreisfreien Graphen sind alle Wege einfach.

Außerdem gilt V (πsu) ∩ V (πut) = {u};
sonst gäbe es einen Kreis!

16

Algorithmus nach Fahrplan

1. Struktur einer optimalen Lösung charakterisieren

2. Wert einer optimalen Lösung rekursiv definieren

3. Wert einer optimalen Lösung berechnen (hier bottom-up)

X

– G topologisch sortieren

– d-Werte initialisieren: ds = 0 und dv = −∞ für alle v 6= s

– for-Schleife durch Knoten v.l.n.r. d-Werte berechnen

Übrigens: Kürzeste Wege in kreisfreien Graphen kann man genauso
berechnen (mit min statt max und +∞ statt −∞).

so!

dv = max
u : uv∈E

du + w(u, v) // Länge eines längsten s-v -Wegs

Genauso kann man auch das SMS-Problem lösen (· statt +).

17

Und jetzt?

Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit
dynamischem Programmieren gelöst:

• Ketten von Matrixmultiplikationen

• Längste gemeinsame Teilfolge (in Zeichenketten)

Lesen Sie Kapitel 15.2–5 !!!

• Optimale binäre Suchbäume

	Titel
	Entwurfstechniken
	Vergleich
	Fahrplan
	Ein Beispiel
	Ein erster Versuch
	Rohe Gewalt
	1. Struktur einer optimalen Loesung charakterisieren
	2. Wert einer optimalen Loesung rekursiv definieren
	3. Wert einer opt. Lsg. berechnen
	4. Optimale Loesung aus berechneter Info. konstruieren
	Längste Wege
	Längste Wege in azyklischen Graphen
	Algorithmus nach Fahrplan
	Und jetzt?

