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Query range:

Problem. Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

Task. Design a data structure for the 1-dim. case:

— Given a number x, return |P N [x, 00)|.

— Consider P static / dynamic!
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Task. Design a data structure for the 1-dim. case!

Solution. M use balanced binary search trees

B augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]
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DCG 1997] number  ¢y/r exists. For any ¢ > 0, such a

partition can be built in O(n!"¢) time.
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Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :
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Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

A J

Proof. Lete > 0.Letr = z(fc)l/e

ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

= Q(n) < 2(v/20)V/¢ + c1/2(v2¢)1/eQ(2n/2(v/2e)/¢)
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Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
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a set N of O(n!/?%¢) nodes of T
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ifn =1,
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Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :
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Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

A J
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Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

A J

Proof. Lete > 0.Letr = 2(\/_0)1/8

ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

= Q(n) < 2(V20)'/* + ey/2(V/20)1/:Q(2n/2(\/3e) /*)
— 2dl/e ¢ dl“/ng(n/dl/s) for d = \/2¢
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Analysis of the Partition Tree

~

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = 2(\/_c)1/8

ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < 2(V/20)'/* + &y/2(V/2e) /< Q(2n/2(\/20) /*)
= 241/ 4 g1H1/26 (1 /dV€) ford = v/2¢
Master Theorem: f(1n) € O(n'°8:%~¢) = Q(n) € O(n'°8?)
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Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = 2(\/_0)1/8
ifn=1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

= Q(n) < 2(v/20)V/* + Ey/2(v/2¢)'/*Q(2n /2(V/2e)*)
— 2dl/e ¢ d1+1/28Q(n/d1/€) for d = \/2¢
Master Theorem: f(1n) € O(n'°8:%~¢) = Q(n) € O(n'°8?)

Q(n) < f(n) +-a-Q(n/b)
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Lemma.

For any ¢ > 0, there is a partition tree 7 for S s.t.: :
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SELECTINHALFPLANE selects in O(n1/21¢) time
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Lemma.

For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof.

Lete > 0. Le’cr—Z(\/_c)l/8
ifn =1,
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Lemma.

For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof.

Lete > 0. Le’cr—Z(\/_c)l/8
ifn =1,
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~

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = 2(\/_c)1/8

ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < 2(V/20)'/* + &y/2(V/2e) /< Q(2n/2(\/20) /*)
— 2dl/e + le/ZEQ(n/dl/E) for d = \/2¢
Master Theorem: f(1n) € O(n'°8%—¢) = Q(n) € O(n'°8?)
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Analysis of the Partition Tree

~

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = 2(\/_c)1/8

if n =1,
= Q(n) _{r—FMQm/uM if n > 1.
C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < 2(V/30)/* + Ey/2(v/20)/*Q(2n /Z(V2e) )
— 2dl/e + le/ZEQ(n/dl/E) for d = \/2¢
Master Theorem: f(1n) € O(n'°8%—¢) = Q(n) € O(n'°8?)

_ 1+1/2¢e
logya = /s £ =
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~

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = 2(\/_c)1/8

if n =1,
= Q(n) _{r—FMQm/uM if n > 1.
C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < 2(V/30)/* + Ey/2(v/20)/*Q(2n /Z(V2e) )
— 2dl/e + le/ZEQ(n/dl/E) for d = \/2¢
Master Theorem: f(1n) € O(n'°8%—¢) = Q(n) € O(n'°8?)

logya = 1+11//828 —e¢+1/2
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Analysis of the Partition Tree

~

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = 2(\/_c)1/8

ifn =1,

= Q(n) —{ r+NQ [SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

= Q(n) < 2(v/20)V/* + Ey/2(v/2e)'/*Q(2n /2(V/20) /%)
— 2dl/e + le/ZEQ(n/dl/E) for d = \/2¢
Master Theorem: f(1n) € O(n'°8%—¢) = Q(n) € O(n'°8?)

logya = _1+11//828 —e+1/2 = Q(n) € O(nl/2+¢)
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Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Lemma. A partition tree for S can be constructed in
O(n'™"t) time. The tree uses O(n) storage.
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Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.:

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Lemma. A partition tree for S can be constructed in
O(n'™"t) time. The tree uses O(n) storage.

(Corollary. Half-plane range counting queries can be
answered in O(n!/21¢) time
using O(n) space and O(n!™¢) prep.
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Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!
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Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.




Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.
The points inside the query range can be

reported in O(k) additional time, where k is the
number of reported pts.

‘Theorem. Given a set S of 7 pts in the plane, for any ¢ > 0, a

\




13-6

Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

\.

‘Theorem. Given a set S of 7 pts in the plane, for any ¢ > 0, a

\

triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.
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number of reported pts.
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in O(n!/27¢) time using a partition tree.
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Can we do better?
Use cutting trees! (Chapter 16.3 [dBCvKO])



Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

\

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.
The points inside the query range can be

reported in O(k) additional time, where k is the
number of reported pts.

\. J

Can we do better?
Use cutting trees! (Chapter 16.3 [dBCvKO])

Query time O(log®n), prep. & storage O(n>"¢).
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Idea.

Task.

Hint:

Store with each internal node not just a number,
but another data structure!

Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Pleft (S)
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Query Algorithm

SelectIntSegments(line ¢, two-level partition tree 7 for S)

N+ O
if 7 = {u} then
| if segment stored in y intersects ¢ then N < {y}
else
foreach child v of 7’s root do
if t(v) C " then
| N < N U SelectInHalfplane(¢—, T,255°¢)
else
if t(v) N ¢ # @ then
| N < N U SelectIntSegments(¢, 7, )

re_turn N



. For S’ C S, let
Query Algorithm G L () s e 5

P right right
SelectIntSegments(line ¢, two-level partition tree 7 for S)

N <O
if 7 = {u} then
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P right right
SelectIntSegments(line ¢, two-level partition tree 7 for S)

N+ O

if 7 = {u} then
| if segment stored in y intersects ¢ then N < {y}

else

foreach child v of 7’s root do

if t(v) C (1 then
| N« NU Selecﬂm T assoc)

else stores Pleft(Sseg (v)), where

if t(l/) N/ 75 %, thensseg(v) — {5 | pright(s) = S(V)}
| N < N U SelectIntSegments(¢, Ty )

return N below above- ?

M Upen S(v) = {s € S| Prignt(s) above £ and pief(s) below £}
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Results

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.
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A

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree T for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by .
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Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

A

Lemma. Let S be a set of n segments in the plane. For any
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