Computational Geometry

Lecture 11:
Simple Range Searching

Part I:
The 1-Dimensional Case

Philipp Kindermann Winter Semester 2020

Range-Counting Query . =~

construction of a
new airport

construction of a
new airport

construction of a
new airport

Observation.
Query range
depends on,
e.g., dominant
wind directions

construction of a
new airport

. > ‘ﬂ,-,

Observation.
Query range
depends on,
e.g., dominant
wind directions

= non-orthogonal

Non-orthogonal range queries

Query range: O

Non-orthogonal range queries

Query range:
—r=

Non-orthogonal range queries

Query range:
O-8->

Non-orthogonal range queries

Query range:
98-/

Non-orthogonal range queries

Query range:

Problem. Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

Non-orthogonal range queries

Query range:
e

Problem. Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

Task. Design a data structure for the 1-dim. case:

Non-orthogonal range queries

Query range:

Problem. Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

Task. Design a data structure for the 1-dim. case:

— Given a number x, return |P N [x, 00)|.

Non-orthogonal range queries

Query range:

Problem. Given a set P of n points, preprocess P such
that half-space range-counting queries can be
answered quickly.

Task. Design a data structure for the 1-dim. case:

— Given a number x, return |P N [x, 00)|.

— Consider P static / dynamic!

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution.

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. M use balanced binary search trees

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. M use balanced binary search trees

B augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. M use balanced binary search trees

B augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. M use balanced binary search trees

B augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. M use balanced binary search trees

B augment each node with the number of
nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,

MIT press, 3rd ed., 2009]
oo 00 —0 00006 006 00 oo 00 —0 0000 00 00

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. M use balanced binary search trees

B augment each node with the number of
nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,

MIT press, 3rd ed., 2009]
oo 00 —0 00006 006 00 oo 00 —0 0000 00 00

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. M use balanced binary search trees

B augment each node with the number of
nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,

MIT press, 3rd ed., 2009]
oo 00 —0 00006 006 00 oo 00 —0 0000 00 00

Lesson. On each level, visit < 1 subtree recursively!

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution. M use balanced binary search trees

B augment each node with the number of

nodes in its subtree [see Cormen et al.,

Introduction to Algorithms,
MIT press, 3rd ed., 2009]

~A AL

Pow—o—o—”o—o—o—oo—o—o—‘ oo 00 —0 0000 00 00

V

canonical subset
Lesson. On each level, visit < 1 subtree recursively!

Computational Geometry

Lecture 11:
Simple Range Searching

Part II.
Generalizing to 2 Dimensions

Philipp Kindermann Winter Semester 2020

Generalizing to 2 Dimensions

Any ideas?

Generalizing to 2 Dimensions

Any ideas?
© o
o o
® @)
o o ° o
©)
0 o o

Generalizing to 2 Dimensions

Partition the input!

© o

Generalizing to 2 Dimensions

Partition the input! Query...

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree ... recursively!

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree ... recursively!

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S it

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S it

— S is partitioned by Sq,..., S, and

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S it

— S is partitioned by Sq,..., S, and

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a

simplicial partition (of size r) for S if
— S is partitioned by Sy, ..

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S if
— S is partitioned by Sy, ..

—forl1 <i<vr, t 1satr1angleand5 C t;.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S if
— S is partitioned by Sy, ..

—forl1 <i<vr, t 1satr1angleand5 C t;.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. ¥(S) = {(51,t1),(S2,t2),..., (S, t7) } is a
simplicial partition (of size r) for S if
— S is partitioned by Sy, ..
—forl1 <i<vr, t 1satr1angleand5 C t;.

Y (S) is fine if |S;| < 2@ forevery 1 <i <.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. The crossing number of ¢ (w.r.t. ¥(S)) is the
number of triangles tq,...,t, crossed by /.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Definition. The crossing number of ¢ (w.r.t. ¥(S)) is the
number of triangles tq,...,t, crossed by /.

The crossing number of ¥(S) is the maximum
crossing number over all possible lines.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

‘Theorem. For any set S of n pts and any 1 < r < n, a fine
‘Matousek, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

. J

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

‘Theorem. For any set S of n pts and any 1 < r < n, a fine
‘Matousek, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

. J

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

‘Theorem. For any set S of n pts and any 1 < r < n, a fine
‘Matousek, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

. J

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

‘Theorem. For any set S of n pts and any 1 < r < n, a fine
‘Matousel, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

‘Theorem. For any set S of n pts and any 1 < r < n, a fine'
‘Matousel, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

& S

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

5(0) Ng)
canonical 1
subset of v © @ O/\® °

‘Theorem. For any set S of n pts and any 1 < r < n, a fine'
‘Matousel, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

& S

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

5(0) Ng)
canonical 1
subset of v © @ O/\® °

‘Theorem. For any set S of n pts and any 1 < r < n, a fine'
‘Matousel, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

& S

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

S (U> J t 1 2 L. r
canonical !
subset of v © @ O/\® °

‘Theorem. For any set S of n pts and any 1 < r < n, a fine'
‘Matousel, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

& S

canonical

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

o 21
5(v)

(0}
subset of v © @ ®/\® ®

‘Theorem. For any set Sof nptsandany 1 <r <mn, a fine
‘Matousel, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

.

\.

Lemma. A partition tree for S can be constructed in
O(n'™¢) time. The tree uses O(n) storage.

A J

J

canonical

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

o 21
5(v)

(0}
subset of v © @ ®/\® ®

‘Theorem. For any set Sof nptsandany 1 <r <mn, a fine
‘Matousel, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

.

\.

Lemma. A partition tree for S can be constructed in
O(n'™¢) time. The tree uses O(n) storage.

A J

J

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . ..recursively!

o 21

5(v) AN
canonical ti T ’
subset of v © @ O/\® °

‘Theorem. For any set Sof nptsandany 1 <r <mn, a fine
‘Matousel, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!*¢) time.

.

\.

Lemma. A partition tree for S can be constructed in
O(n'™¢) time. The tree uses O(n) storage.

_ \ /
search tree with 7n leaves

J

Computational Geometry

Lecture 11:
Simple Range Searching

Part I1I:
Query Algorithm

Philipp Kindermann Winter Semester 2020

Example for a Query

point set S

Example for a Query

point set S

S t2 ©
N
e

partition by triangles

Example for a Query

point set 5 h: query range

partition by triangles

Example for a Query

point set 5

t

' © W 3
t6

partition by triangles

@@@@@

h: query range

partition tree for S

Example for a Query

point set S O = selected node

h: query range

t

' © W 3
t6

partition by triangles

@@@@@

partition tree for S

Example for a Query

point set S O = selected node

h: query range

t

' © W 3
t6

partition by triangles

@@@@@

partition tree for S

Example for a Query

O = selected node
O = visited node

point set 5 h: query range

t

' © W 3
f6

partition by triangles

@@@@@

partition tree for S

Example for a Query

O = selected node
O = visited node

point set 5 h: query range

t

' © W 3
f6

partition by triangles

@ @ @ @& @

N

partition tree for S

Example for a Query

O = selected node
O = visited node

point set 5

t

' © W 3
f6

partition by triangles

@ @ @ @& @

N,

recursively visited subtrees

h: query range

partition tree for S

Query Algorithm

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N <« @

if 7 = {u} then

else

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N <« @

if 7 = {u} then

if point stored at y lies in h then

| N« {u}

else

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N <« @

if 7 = {u} then

if point stored at y lies in h then

| N« {u}

else
foreach child v of the root of 7 do

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N <« @

if 7 = {u} then

if point stored at y lies in h then

| N« {u}

else

foreach child v of the root of 7 do
if t(v) C h then

else

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N <« @

if 7 = {u} then

if point stored at y lies in h then

| N« {u}

else
foreach child v of the root of 7 do
if t(v) C h then
| N+ NU{v}
else

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N <« @

if 7 = {u} then

if point stored at y lies in h then

| N« {u}

else
foreach child v of the root of 7 do
if t(v) C h then
| N+ NU{v}
else
if t(v) Nh # @ then

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N <« @

if 7 = {u} then

if point stored at y lies in h then

| N« {u}

else
foreach child v of the root of 7 do
if t(v) C h then
| N+ NU{v}
else
if t(v) Nh # @ then
| N < N USEeLECTINHALFPLANE(, 7))

re_turn N

Query Algorithm

SELECTINHALFPLANE(half-plane /i, partit. tree T for pt set S)
N <« @

if 7 = {u} then
if point stored at u lies in h then Task.

L N {7’{} Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!
if t(v) C h then
| N <+ NU{v}
else
if t(v) Nh # @ then
| N < N USEeLECTINHALFPLANE(, 7))

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N @

if 7 = {u} then
if point stored at u lies in h then Task.

L N {7’{} Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!
if t(v) C h then

| N <+ NU{v}
else
if t(v) Nh # @ then

| N < N USEeLECTINHALFPLANE(, 7))

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N @ >

number

if 7 = {u} then
if point stored at u lies in h then Task.

L N {7’{} Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!
if t(v) C h then

| N <+ NU{v}
else
if t(v) Nh # @ then

| N < N USEeLECTINHALFPLANE(, 7))

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N &0 >

number

if 7 = {u} then
if point stored at u lies in h then Task.

L N {7’{} Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!
if t(v) C h then

| N <+ NU{v}
else
if t(v) Nh # @ then

| N < N USEeLECTINHALFPLANE(, 7))

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N &0 >

number

if 7 = {u} then
if point stored at u lies in h then Task.

I— N %% N+1 Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!

if t(v) C h then
| N <+ NU{v}
else
if t(v) Nh # @ then
| N < N USEeLECTINHALFPLANE(, 7))

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N &0 >

number

if 7 = {u} then
if point stored at u lies in h then Task.

I— N %% N+1 Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!

if t(v) C h then
| N« N7} +[5(v)

else
if t(v) Nh # @ then
| N < N USEeLECTINHALFPLANE(, 7))

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N &0 >

number

if 7 = {u} then
if point stored at u lies in h then Task.

I— N %% N+1 Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!

if t(v) C h then

| N < NA7T +[5(0)
else

if t(v) Nh # @ then

L N < N} SswwpetINHALFPLANE(/, 7))
+ COUNT

re_turn N

Query Algorithm

COUNT '
SerrCTINHALFPLANE(half-plane £, part1t tree T for pt set S)

N &0 >

number

if 7 = {u} then
if point stored at u lies in h then Task.

I— N %% N+1 Turn this into a

else range counting
foreach child v of the root of 7 do query algorithm!

if t(v) C h then

| N < NA7T +[5(0)
else

if t(v) Nh # @ then

L N < N} SswwpetINHALFPLANE(/, 7))
+ COUNT

return N S N k=] |

Computational Geometry

Lecture 11:
Simple Range Searching

Part 1V:
Analysis of the Partition Tree

Philipp Kindermann Winter Semester 2020

11-1

Analysis of the Partition Tree

11-2

Analysis of the Partition Tree

11-3

Analysis of the Partition Tree

11-4

Analysis of the Partition Tree

Lemma. For any € > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.

11-5

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

A J

Proof. Lete > 0.

‘Theorem. For any set Sof nptsandany 1 <r <mn,a fine
[Matousel, simplicial partition of size r and crossing

DCG 1992] number O(4/r) exists. For any € > 0, such a
partition can be built in O(n!"¢) time.

\. J

11-6

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

A J

Proof. Lete > 0.

‘Theorem. For any set Sof nptsandany 1 <r <mn,a fine
[Matousel, simplicial partition of size r and crossing
DCG 1997] number ¢y/r exists. For any ¢ > 0, such a

partition can be built in O(n!"¢) time.

\. J

11-7

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

A J

Proof. Lete> 0.Letr =2(1/2c)¢.

‘Theorem. For any set Sof nptsandany 1 <r <mn,a fine
[Matousel, simplicial partition of size r and crossing
DCG 1997] number ¢y/r exists. For any ¢ > 0, such a

partition can be built in O(n!"¢) time.

\. J

11-8

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

A J

Proof. Lete> 0.Letr =2(1/2c)¢.

1 ifn =1,
= o(m < { no 1

‘Theorem. For any set Sof nptsandany 1 <r <mn,a fine
[Matousel, simplicial partition of size r and crossing
DCG 1997] number ¢y/r exists. For any ¢ > 0, such a

partition can be built in O(n!"¢) time.

\. J

11-9

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete> 0.Letr =2(1/2c)¢.
1 ifn =1,
:>Q(n)§{r+ if n > 1.

‘Theorem. For any set Sof nptsandany 1 <r <, a fine
[Matousel, simplicial partition of size r and crossing
DCG 1997] number ¢y/r exists. For any ¢ > 0, such a

partition can be built in O(n!"¢) time.

\. J

11-10

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete> 0.Letr =2(1/2c)¢.
1 ifn=1
< . ’
= Q(n) < { r+ ZZ)EC(]’!) if n > 1.

C(h) : all children v of the root s.t. h crosses t(v)

‘Theorem. For any set Sof nptsandany 1 <r <, a fine
[Matousel, simplicial partition of size r and crossing
DCG 1997] number ¢y/r exists. For any ¢ > 0, such a

partition can be built in O(n!"¢) time.

\. J

11-11

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete> 0.Letr =2(1/2c)¢.
1 ifn=1
= Q(n) < . '
Q) <4 14 oy @S in o1
C(h) : all children v of the root s.t. h crosses t(v)

‘Theorem. For any set Sof nptsandany 1 <r <, a fine
[Matousel, simplicial partition of size r and crossing
DCG 1997] number ¢y/r exists. For any ¢ > 0, such a

partition can be built in O(n!"¢) time.

\. J

11-12

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete> 0.Letr =2(1/2c)¢.
1 ifn=1
= Q(n) < . '
Q) <4 14 oy @S in o1
C(h) : all children v of the root s.t. h crosses t(v)

‘Theorem. For any set Sof nptsandany 1 <r <, a fine
[Matousel, simplicial partition of size r and crossing
DCG 1997] number ¢y/r exists. For any ¢ > 0, such a

partition can be built in O(n!"¢) time.

\. J

11-13

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete> 0.Letr =2(1/2c)¢.

1 ifn =1,
= Qn) < { F Yoecqn QUSET) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

‘Theorem. For any set Sof nptsandany 1 <r <, a fine
[Matousel, simplicial partition of size r and crossing
DCG 1997] number ¢y/r exists. For any ¢ > 0, such a

partition can be built in O(n!"¢) time.

\. J

11-14

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = z(fc)l/e

ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

‘Theorem. For any set Sof nptsandany 1 <r <, a fine
[Matousel, simplicial partition of size r and crossing
DCG 1997] number ¢y/r exists. For any ¢ > 0, such a

partition can be built in O(n!"¢) time.

\. J

11-15

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

A J

Proof. Lete > 0.Letr = z(fc)l/e

ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

= Q(n) < 2(v/20)V/¢ + c1/2(v2¢)1/eQ(2n/2(v/2e)/¢)

11-16

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

A J

Proof. Lete > 0.Letr = 2(\/_0)1/8

ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

= Q(n) < 2(v/20)'/* + EyJ2(v/2e)1/=Q(2n/2(N/2e)/*)

11-17

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

A J

Proof. Lete > 0.Letr = 2(\/_0)1/8

ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < 2(v/20)'/* + EyJ2(v/2e)1/=Q(2n/2(¥/2e)/*)
ford = \/2¢c

11-18

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

A J

Proof. Lete > 0.Letr = 2(\/_0)1/8

ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < 2(V20)\/* + Ey/2(V2e)/<Q(2n/2(V/20) /%)
ford = \/2¢c

11-19

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

A J

Proof. Lete > 0.Letr = 2(\/_0)1/8

ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

= Q(n) < 2(V20)'/* + ey/2(V/20)1/:Q(2n/2(\/3e) /*)
— 2dl/e ¢ dl“/ng(n/dl/s) for d = \/2¢

11 -20

Analysis of the Partition Tree

~

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = 2(\/_c)1/8

ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < 2(V/20)'/* + &y/2(V/2e) /< Q(2n/2(\/20) /*)
= 241/ 4 g1H1/26 (1 /dV€) ford = v/2¢
Master Theorem: f(1n) € O(n'°8:%~¢) = Q(n) € O(n'°8?)

11-21

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = 2(\/_0)1/8
ifn=1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

= Q(n) < 2(v/20)V/* + Ey/2(v/2¢)'/*Q(2n /2(V/2e)*)
— 2dl/e ¢ d1+1/28Q(n/d1/€) for d = \/2¢
Master Theorem: f(1n) € O(n'°8:%~¢) = Q(n) € O(n'°8?)

Q(n) < f(n) +-a-Q(n/b)

11 - 22

Analysis of the Partition Tree

Lemma.

For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof.

Lete > 0. Le’cr—Z(\/_c)l/8
ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

= Q(n) < 2(V2)"/* + ByJ2(V/2e)'/*Q(2n /2(V/2e)" *)

=24V + A1 T1/2¢Q(n/d'V€) ford = \/2¢

Master Theorem: f(1n) € O(n!°8:%~¢) = Q(n) € O(n'°8?)

Q(n) < f(n) +-a-Q(n/b)

11 -23

Analysis of the Partition Tree

Lemma.

For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof.

Lete > 0. Le’cr—Z(\/_c)l/8
ifn =1,

= Q(n) —{ r+NQ [SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

= Q(n) < 2(20)"/* + By[2(V/2¢)'/*Q(2n /2(V/26)"*)

=24V + @1 F1/26Q(n/d'V/€) ford = \/2¢

Master Theorem: f(1n) € O(n!°8:%—¢') = Q(n) € O(n'°8?)

Q(n) < f(n) +-a-Q(n/b)

11-24

Analysis of the Partition Tree

Lemma.

For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof.

Lete > 0. Le’cr—Z(\/_c)l/8
ifn =1,

= Q(n) —{ r+NQ [SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

= Q(n) < 2(20)"/* + By[2(V/2¢)'/*Q(2n /2(V/26)"*)

— 2dl/e + le/ZEQ(n/dl/E) for d = \/2¢

Master Theorem: f(1n) € O(n'°8%—¢) = Q(n) € O(n'°8?)

Q(n) < f(n) +-a-Q(n/b)

11-25

Analysis of the Partition Tree

~

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = 2(\/_c)1/8

ifn =1,

= Q(n) —{ r+NQ |SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < 2(V/20)'/* + &y/2(V/2e) /< Q(2n/2(\/20) /*)
— 2dl/e + le/ZEQ(n/dl/E) for d = \/2¢
Master Theorem: f(1n) € O(n'°8%—¢) = Q(n) € O(n'°8?)

logga =

11 - 26

Analysis of the Partition Tree

~

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = 2(\/_c)1/8

if n =1,
= Q(n) _{r—FMQm/uM if n > 1.
C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < 2(V/30)/* + Ey/2(v/20)/*Q(2n /Z(V2e))
— 2dl/e + le/ZEQ(n/dl/E) for d = \/2¢
Master Theorem: f(1n) € O(n'°8%—¢) = Q(n) € O(n'°8?)

_ 1+1/2¢e
logya = /s £ =

11-27

Analysis of the Partition Tree

~

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = 2(\/_c)1/8

if n =1,
= Q(n) _{r—FMQm/uM if n > 1.
C(h) : all children v of the root s.t. h crosses t(v)
= Q(n) < 2(V/30)/* + Ey/2(v/20)/*Q(2n /Z(V2e))
— 2dl/e + le/ZEQ(n/dl/E) for d = \/2¢
Master Theorem: f(1n) € O(n'°8%—¢) = Q(n) € O(n'°8?)

logya = 1+11//828 —e¢+1/2

11 - 28

Analysis of the Partition Tree

~

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Proof. Lete > 0.Letr = 2(\/_c)1/8

ifn =1,

= Q(n) —{ r+NQ [SéoT]) ifn > 1.

C(h) : all children v of the root s.t. h crosses t(v)

= Q(n) < 2(v/20)V/* + Ey/2(v/2e)'/*Q(2n /2(V/20) /%)
— 2dl/e + le/ZEQ(n/dl/E) for d = \/2¢
Master Theorem: f(1n) € O(n'°8%—¢) = Q(n) € O(n'°8?)

logya = _1+11//828 —e+1/2 = Q(n) € O(nl/2+¢)

12-1

Analysis of the Partition Tree

12-2

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.: :

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Lemma. A partition tree for S can be constructed in
O(n'™"t) time. The tree uses O(n) storage.

12 - 2

Analysis of the Partition Tree

Lemma. For any ¢ > 0, there is a partition tree 7 for S s.t.:

for a query half-plane #,
SELECTINHALFPLANE selects in O(n1/21¢) time

a set N of O(n!/?%¢) nodes of T
with the property that 1 NS = U, cn S(V).

Lemma. A partition tree for S can be constructed in
O(n'™"t) time. The tree uses O(n) storage.

(Corollary. Half-plane range counting queries can be
answered in O(n!/21¢) time
using O(n) space and O(n!™¢) prep.

Back to Triangular Range Queries

Any ideas?

13 -

Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

13 -

Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

13-4

Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

N

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.

Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.
The points inside the query range can be

reported in O(k) additional time, where k is the
number of reported pts.

‘Theorem. Given a set S of 7 pts in the plane, for any ¢ > 0, a

\

13-6

Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

\.

‘Theorem. Given a set S of 7 pts in the plane, for any ¢ > 0, a

\

triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.
The points inside the query range can be

reported in O(k) additional time, where k is the
number of reported pts.

Can we do better?

Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

\

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.
The points inside the query range can be

reported in O(k) additional time, where k is the
number of reported pts.

\. J

Can we do better?
Use cutting trees! (Chapter 16.3 [dBCvKO])

Back to Triangular Range Queries

Any ideas? Just use SELECTINHALFPLANE!

\

Theorem. Given a set S of n pts in the plane, for any ¢ > 0, a
triangular range-counting query can be answered
in O(n!/27¢) time using a partition tree.

The tree can be built in O(n' ™) time and uses
O(n) space.
The points inside the query range can be

reported in O(k) additional time, where k is the
number of reported pts.

\. J

Can we do better?
Use cutting trees! (Chapter 16.3 [dBCvKO])

Query time O(log®n), prep. & storage O(n>"¢).

Computational Geometry

Lecture 11:
Simple Range Searching

Part V:
Multi-Level Partition Trees

Philipp Kindermann Winter Semester 2020

Multi-Level Partition Trees

Idea. Store with each internal node not just a number,

15 -

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,

Multi-Level Partition Trees S(v)]

Idea.

Store with each internal node not just a number,
but another data structure!

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

\] N/

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

BN

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Hint:

BN

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Hint:

A=

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Hint:
p left S

A= |

pmght S

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Hint:
p left S

A= |

pmght S

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Hint:
p left S

\ f

p r1ght S P left

Multi-Level Partition Trees S(v)]

Idea.

Task.

Hint:

Store with each internal node not just a number,
but another data structure!

Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Pleft (S)

- 11

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

] Prlght

P left

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

] Prlght

P left

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Q prlght

P left

g—l—

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Q prlght

P left

g—l—

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

] Prlght

P left

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

\ f

p left

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Prlght 14
XY][-

Dleft (S

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Prlght 14
XY][-

Dleft (S

Multi-Level Partition Trees S(v)]

Idea. Store with each internal node not just a number,
but another data structure!

Task. Design a fast data structure for line segments
that counts all segments intersecting a query line /.

Prlght 14
XY][-

Dleft (S

Query Algorithm

SelectIntSegments(line ¢, two-level partition tree 7 for S)

N+ O
if 7 = {u} then
| if segment stored in y intersects ¢ then N < {y}
else
foreach child v of 7’s root do
if t(v) C " then
| N < N U SelectInHalfplane(¢—, T,255°¢)
else
if t(v) N ¢ # @ then
| N < N U SelectIntSegments(¢, 7,)

re_turn N

. For S’ C S, let
Query Algorithm G L () s e 5

P right right
SelectIntSegments(line ¢, two-level partition tree 7 for S)

N <O
if 7 = {u} then

‘ if segment stored in u intersects ¢ then N < {u}
else

foreach child v of 7’s root do

if t(v) C " then —
| N« NU Selecﬂn@plane(é, T,2550¢)

else stores Pleft(Sseg (v)), where

if t(l/) N +#Q thensseg(v) = {s| Pright(s) € S(v)}
| N < N U SelectIntSegments(¢, 7,)

re_turn N

. For S’ C S, let
Query Algorithm G L () s e 5

P right right
SelectIntSegments(line ¢, two-level partition tree 7 for S)

N <O
if 7 = {u} then

‘ if segment stored in u intersects ¢ then N < {u}
else

foreach child v of 7’s root do

if t(v) C " then —
| N« NU Selecﬂn@plane(é, T,2550¢)

else stores Pleft(Sseg (v)), where

if t(l/) N +#Q thensseg(v) = {s| Pright(s) € S(v)}
| N < N U SelectIntSegments(¢, 7,)

return N
M Upen S(v) = {s € S| Prignt(s) above £ and pief(s) below £}

. For S’ C S, let
Query Algorithm G L () s e 5

P right right
SelectIntSegments(line ¢, two-level partition tree 7 for S)

N <O
if 7 = {u} then

‘ if segment stored in u intersects ¢ then N < {u}
else

foreach child v of 7’s root do

if t(v) C " then —
| N« NU Selecﬂn@plane(é, T,2550¢)

else stores Pleft(Sseg (v)), where

if t(l/) N +#Q thensseg(v) = {s| Pright(s) € S(v)}
| N < N U SelectIntSegments(¢, 7,)

return N below above- ?

M Upen S(v) = {s € S| Prignt(s) above £ and pief(s) below £}

. For S’ C S, let
Query Algorithm G L () s e 5

P right right
SelectIntSegments(line ¢, two-level partition tree 7 for S)

N <O
if 7 = {u} then

‘ if segment stored in u intersects ¢ then N < {u}
else

foreach child v of 7’s root do

if t(v) C " then —
| N« NU Selecﬂn@plane(é, T,2550¢)

else stores Pleft(Sseg (v)), where

if t(l/) N +#Q thensseg(v) = {s| Pright(s) € S(v)}
| N < N U SelectIntSegments(¢, 7,)

return N below above- ?

M Upen S(v) = {s € S| Prignt(s) above £ and pief(s) below £}

. For S’ C S, let
Query Algorithm 61 L (it (o) s € §7)

P right right
SelectIntSegments(line ¢, two-level partition tree 7 for S)

N+ O

if 7 = {u} then
| if segment stored in y intersects ¢ then N < {y}

else

foreach child v of 7’s root do

if t(v) C (1 then
| N« NU Selecﬂm T assoc)

else stores Pleft(Sseg (v)), where

if t(l/) N/ 75 %, thensseg(v) — {5 | pright(s) = S(V)}
| N < N U SelectIntSegments(¢, Ty)

return N below above- ?

M Upen S(v) = {s € S| Prignt(s) above £ and pief(s) below £}

17 -1

Results

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

Results

17 -3

Results

>

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

A

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree T for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by .

17 -4

Results

>

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

A

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree T for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by .

— The selection takes O(n1/2%¢) time.

Results

\

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

A

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree T for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by .

— The selection takes O(n1/2%¢) time.

AN J

Corollary. Let S be a set of n segments in the plane.
We can count the number of segments in S
intersected by a query line in O(n'/?* €) time

using O(nlog n) space and O() prep.

Results

\

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

A

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree T for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by .

— The selection takes O(n1/2%¢) time.

AN J

Corollary. Let S be a set of n segments in the plane.
We can count the number of segments in S
intersected by a query line in O(n'/?* €) time

using O(nlog n) space and O(n!™ ¢) prep.

Results

>

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

A

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree T for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by .

— The selection takes O(n1/2%¢) time.

AN J

_—0-level obiects

Corollary. Let S be a set of n segmérts in the plane.)
We can count the number of in S

in a J-level intersectedby=aerareryHIE in O(n!/2") time
query using O(nlog n) space and O(n!™ ¢) prep.

J

Results

>

Lemma. A 2-level partition tree for line-intersection queries
among a set of n segments uses O(n log 1) storage.

A

Lemma. Let S be a set of n segments in the plane. For any
e > 0, there is a 2-level partition tree T for S s.t.

~ given a query line ¢, we can select O(n!/27¢)
nodes from 7 whose canonical subsets
represent the segments intersected by .

— The selection takes O(n1/2%¢) time.

AN J

_—0-level obiects

Corollary. Let S be a set of n segmérts in the plane.
We can count the number of in S

in a J-level intersected-by=aerareryHIE in O(n!/27¢) time
query using O(nlog’ ' n) space and O(n!*+%) prep.

J

	The 1-Dimensional Case
	Range-Counting Query
	Non-orthogonal range queries
	The 1-Dimensional Case

	Generalizing to 2 Dimensions
	Query Algorithm
	Example for a Query
	Query Algorithm

	Analysis of the Partition Tree
	Back to Triangular Range Queries
	Multi-Level Partition Trees
	Query Algorithm
	Results

