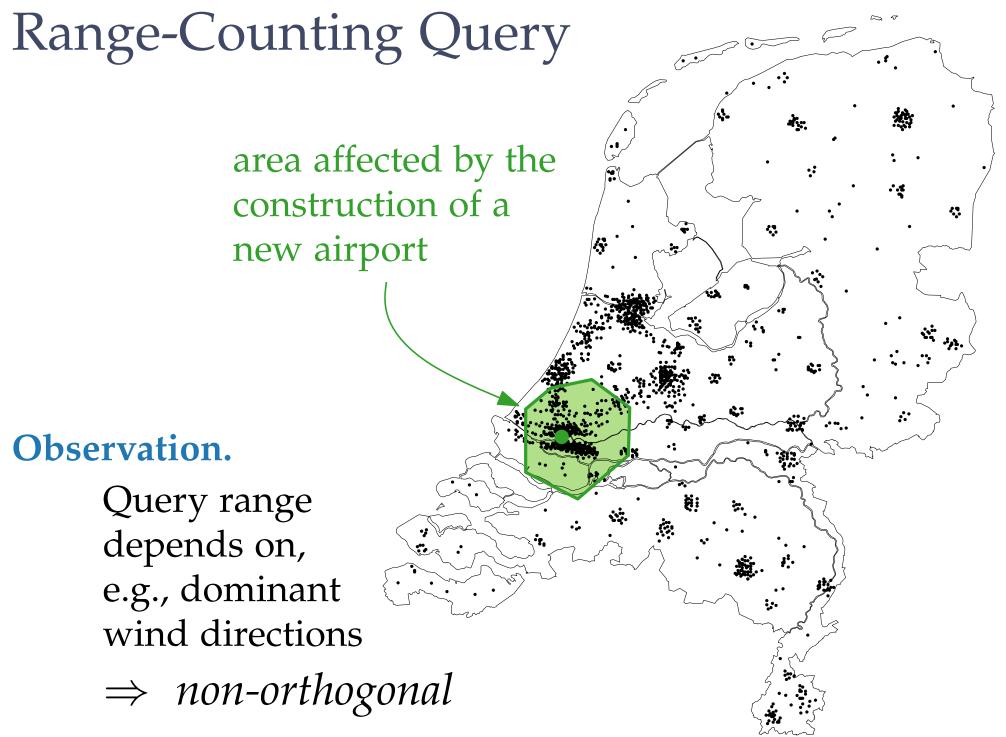
Lecture 11: Simple Range Searching

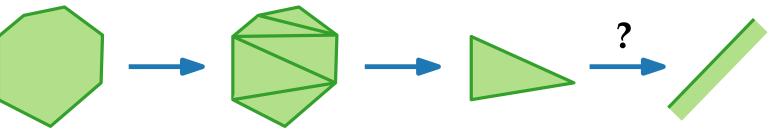
Part I: The 1-Dimensional Case

Philipp Kindermann



Non-orthogonal range queries

Query range:



Problem. Given a set *P* of *n* points, preprocess *P* such that *half-space range-counting queries* can be answered quickly.

Task.Design a data structure for the 1-dim. case:

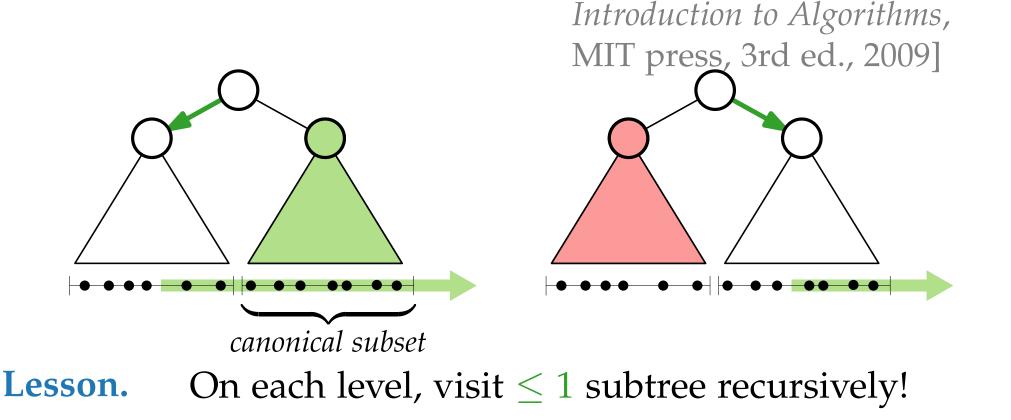
- Given a number *x*, return $|P \cap [x, \infty)|$.
- Consider *P* static / dynamic!

The 1-Dimensional Case

Task.Design a data structure for the 1-dim. case!

Solution. use balanced binary search trees

augment each node with the number of nodes in its subtree [see Cormen et al.,



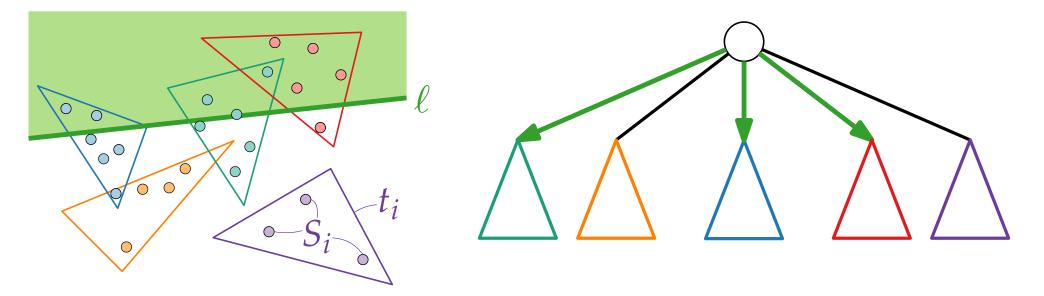
Lecture 11: Simple Range Searching

Part II: Generalizing to 2 Dimensions

Philipp Kindermann

Generalizing to 2 Dimensions

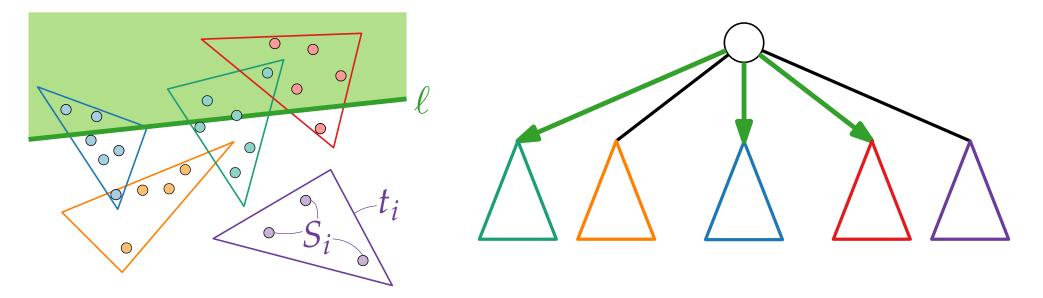
Partition the input! Query... in a *partition tree* ... recursively!



Definition. $\Psi(S) = \{(S_1, t_1), (S_2, t_2), \dots, (S_r, t_r)\}$ is a *simplicial partition* (of size *r*) for *S* if -S is partitioned by S_1, \dots, S_r and - for $1 \le i \le r$, t_i is a triangle and $S_i \subset t_i$. $\Psi(S)$ is *fine* if $|S_i| \le 2\frac{|S|}{r}$ for every $1 \le i \le r$.

Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree* ... recursively!

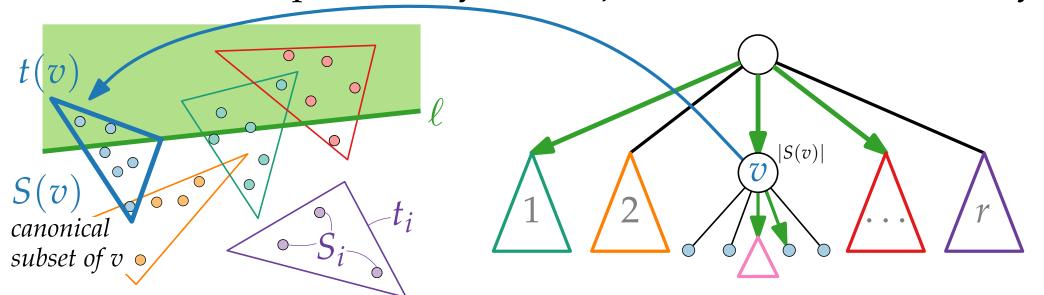


Definition. The *crossing number* of ℓ (w.r.t. $\Psi(S)$) is the number of triangles t_1, \ldots, t_r crossed by ℓ .

The *crossing number* of $\Psi(S)$ is the maximum crossing number over all possible lines.

Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree* ... recursively!



Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing DCG 1992] number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.

Lemma.

A partition tree for *S* can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses O(n) storage.

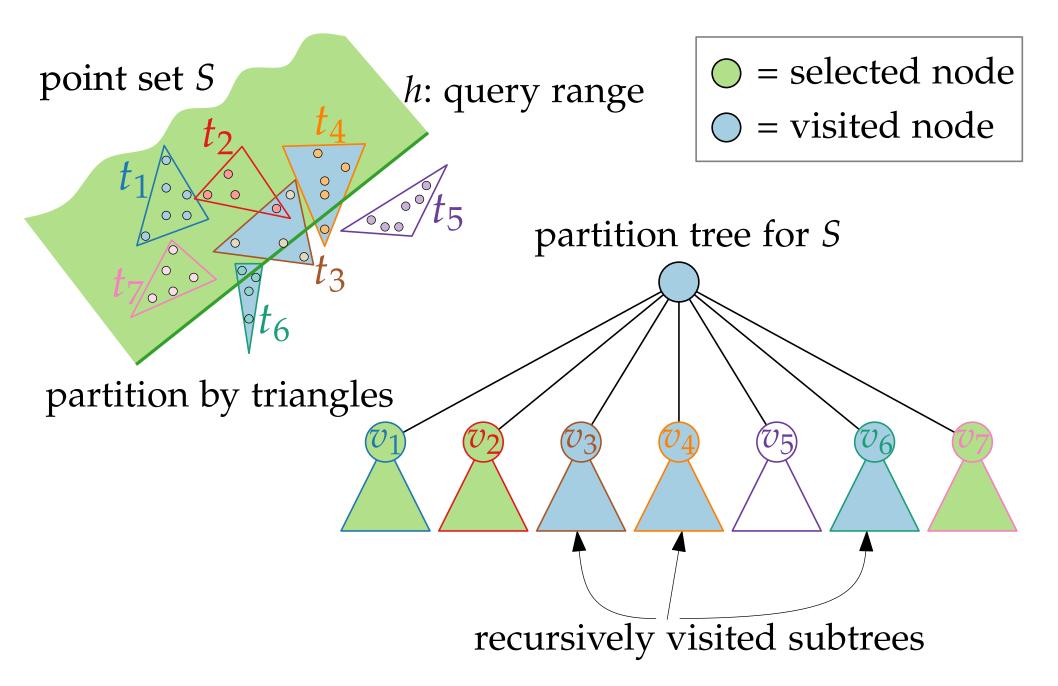
search tree with *n* leaves

Lecture 11: Simple Range Searching

Part III: Query Algorithm

Philipp Kindermann

Example for a Query



Query Algorithm

```
SELECTINHALFPLANE(half-plane h, partit. tree \mathcal{T} for pt set S)
N \leftarrow \emptyset // set of selected nodes
```

```
if \mathcal{T} = \{\mu\} then
| if point stored at \mu lies in h then
| N \leftarrow \{\mu\}
```

else

```
foreach child v of the root of \mathcal{T} do

if t(v) \subset h then

\mid N \leftarrow N \cup \{v\}

else

if t(v) \cap h \neq \emptyset then

\mid N \leftarrow N \cup \text{SelectInHalfPlane}(h, \mathcal{T}_v)
```

return *N* // with $S \cap h = \bigcup_{\nu \in N} S(\nu)$

Query Algorithm Count **SELECTINHALFPLANE**(half-plane h, partit. tree \mathcal{T} for pt set S) // set of selected nodes $N \leftarrow \not \sim 0$ number if $\mathcal{T} = \{\mu\}$ then if point stored at *µ* lies in *h* then Task. $N \leftarrow \{ N+1 \}$ Turn this into a else range *counting* **foreach** child ν of the root of \mathcal{T} **do** query algorithm! if $t(\nu) \subset h$ then $N \leftarrow N \sqcup v + |S(v)|$ else if $t(\nu) \cap h \neq \emptyset$ then // with $S \cap h = \bigcup_{\nu \in N} S(\nu)$ return N

9 - 16

Lecture 11: Simple Range Searching

Part IV: Analysis of the Partition Tree

Philipp Kindermann

Analysis of the Partition Tree

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for *S* s.t.: for a query half-plane *h*, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set *N* of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$. **Proof.** Let $\varepsilon > 0$. Let $r = 2(\sqrt{2}c)^{1/\varepsilon}$. $\Rightarrow Q(n) \leq \begin{cases} 1 & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases}$ C(h) : all children v of the root s.t. h crosses t(v)

Theorem. For any set *S* of *n* pts and any $1 \le r \le n$, a fine [Matoušek, simplicial partition of size *r* and crossing number $c\sqrt{r}$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.

Analysis of the Partition Tree

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h, SELECTINHALFPLANE selects in $O(n^{1/2+\varepsilon})$ time a set N of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$.

Lemma. A partition tree for *S* can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses O(n) storage.

Corollary. Half-plane range counting queries can be answered in $O(n^{1/2+\varepsilon})$ time using O(n) space and $O(n^{1+\varepsilon})$ prep.

Back to Triangular Range Queries

Any ideas? Just use SelectInHalfplane!

Theorem. Given a set *S* of *n* pts in the plane, for any $\varepsilon > 0$, a triangular range-counting query can be answered in $O(n^{1/2+\varepsilon})$ time using a partition tree. The tree can be built in $O(n^{1+\varepsilon})$ time and uses O(n) space. The points inside the query range can be reported in O(k) additional time, where *k* is the number of reported pts.

Can we do better?

Use cutting trees! (Chapter 16.3 [dBCvKO]) Query time $O(\log^3 n)$, prep. & storage $O(n^{2+\varepsilon})$.

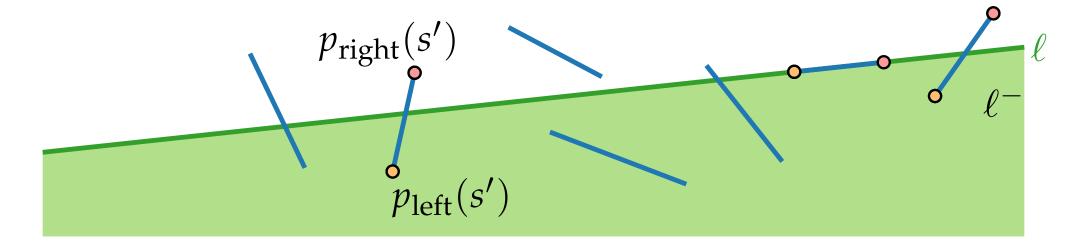
Lecture 11: Simple Range Searching

Part V: Multi-Level Partition Trees

Philipp Kindermann

Multi-Level Partition Trees

- Idea. Store with each internal node not just a number, but another data structure!
- Task.Design a fast data structure for line segmentsthat counts all segments intersecting a query line ℓ .



S(v)

Query Algorithm

For $S' \subseteq S$, let $P_{\text{right}}^{\text{left}}(S') = \{p_{\text{right}}^{\text{left}}(s) \mid s \in S'\}$

SelectIntSegments(line ℓ , two-level partition tree \mathcal{T} for S) - first-level tree stores $P_{\text{right}}(S)$ $N \leftarrow \emptyset$ if $\mathcal{T} = {\mu}$ then ⁻ second-level trees store subsets of $P_{\text{left}}(S)$ **if** segment stored in μ intersects ℓ **then** $N \leftarrow \{\mu\}$ else **foreach** child ν of \mathcal{T} 's root **do** if $t(\nu) \subset \ell^+$ then $N \leftarrow N \cup \text{SelectInHalfplane}(\ell^{-}, \mathcal{T}_{\nu}^{\text{assoc}})$ stores $P_{\text{left}}(S_{\text{seg}}(\nu))$, where else if $t(\nu) \cap \ell \neq \emptyset$ then $S_{seg}(\nu) = \{s \mid p_{right}(s) \in S(\nu)\}$ $N \leftarrow N \cup \text{SelectIntSegments}(\ell, \mathcal{T}_{\nu})$ return N below----above ? $\coprod \bigcup_{\nu \in N} S(\nu) = \{ s \in S \mid p_{\text{right}}(s) \text{ above } \ell \text{ and } p_{\text{left}}(s) \text{ below } \ell \}.$

Results

Lemma. A 2-level partition tree for line-intersection queries among a set of n segments uses $O(n \log n)$ storage.

Lemma. Let *S* be a set of *n* segments in the plane. For any $\varepsilon > 0$, there is a 2-level partition tree \mathcal{T} for *S* s.t.

- given a query line ℓ , we can select $O(n^{1/2+\epsilon})$ nodes from \mathcal{T} whose canonical subsets represent the segments intersected by ℓ .

– The selection takes $O(n^{1/2+\varepsilon})$ time.

Corollary. Let *S* be a set of *n* segments in the plane. We can count the number of segments in *S* intersected by a query line in $O(n^{1/2+ \varepsilon})$ time using $O(n \log n)$ space and $O(n^{1+\varepsilon})$ prep.

Results

Lemma. A 2-level partition tree for line-intersection queries among a set of *n* segments uses $O(n \log n)$ storage.

Lemma. Let *S* be a set of *n* segments in the plane. For any $\varepsilon > 0$, there is a 2-level partition tree \mathcal{T} for *S* s.t.

- given a query line ℓ , we can select $O(n^{1/2+\epsilon})$ nodes from \mathcal{T} whose canonical subsets represent the segments intersected by ℓ .

– The selection takes $O(n^{1/2+\varepsilon})$ time.

Corollary. Let *S* be a set of *n* segments in the plane. We can count the number of segments in *S* **in a \delta-level intersected by a query line** in $O(n^{1/2+\delta\varepsilon})$ time **query** using $O(n \log^{\delta-1} n)$ space and $O(n^{1+\delta\varepsilon})$ prep.