Computational Geometry

Lecture 11:
Simple Range Searching

Part I:
The 1-Dimensional Case

Range-Counting Query

area affected by the construction of a new airport

Observation.
Query range depends on, e.g., dominant wind directions
\Rightarrow non-orthogonal

Non-orthogonal range queries
Query range:

Problem.

Task.
Design a data structure for the 1-dim. case:

- Given a number x, return $|P \cap[x, \infty)|$.
- Consider P static / dynamic!

The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!
Solution. ■ use balanced binary search trees

- augment each node with the number of nodes in its subtree [see Cormen et al., Introduction to Algorithms, MIT press, 3rd ed., 2009]

Lesson. On each level, visit ≤ 1 subtree recursively!

Computational Geometry

Lecture 11:
Simple Range Searching

Part II:
Generalizing to 2 Dimensions

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree . . . recursively!

Definition. $\Psi(S)=\left\{\left(S_{1}, t_{1}\right),\left(S_{2}, t_{2}\right), \ldots,\left(S_{r}, t_{r}\right)\right\}$ is a simplicial partition (of size r) for S if
classes of S
$-S$ is partitioned by S_{1}, \ldots, S_{r} and

- for $1 \leq i \leq r, t_{i}$ is a triangle and $S_{i} \subset t_{i}$.
$\Psi(S)$ is fine if $\left|S_{i}\right| \leq 2 \frac{|S|}{r}$ for every $1 \leq i \leq r$.

Generalizing to 2 Dimensions

Partition the input! Query. . . in a partition tree . . . recursively!

Definition. The crossing number of ℓ (w.r.t. $\Psi(S)$) is the number of triangles t_{1}, \ldots, t_{r} crossed by ℓ.

The crossing number of $\Psi(S)$ is the maximum crossing number over all possible lines.

Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree ... recursively!

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine [Matoušek, simplicial partition of size r and crossing DCG 1992] number $O(\sqrt{r})$ exists. For any $\varepsilon>0$, such a partition can be built in $O\left(n^{1+\varepsilon}\right)$ time.

Lemma. A partition tree for S can be constructed in $O\left(n^{1+\varepsilon}\right)$ time. The tree uses $O(n)$ storage.

Computational Geometry

Lecture 11:
 Simple Range Searching

Part III:
Query Algorithm

Example for a Query

point set S
h : query range
$\bigcirc=$ selected node
$\bigcirc=$ visited node
partition by triangles

recursively visited subtrees

Query Algorithm
SelectInHalfplane(half-plane h, partit. tree \mathcal{T} for pt set S) $N \leftarrow \varnothing \quad / /$ set of selected nodes
if $\mathcal{T}=\{\mu\}$ then
if point stored at μ lies in h then
$\lfloor N \leftarrow\{\mu\}$
else
foreach child v of the root of \mathcal{T} do
if $t(v) \subset h$ then
$N \leftarrow N \cup\{v\}$
else
if $t(v) \cap h \neq \varnothing$ then
$L N \leftarrow N \cup \operatorname{SelectInHalfplane}\left(h, \mathcal{T}_{v}\right)$
return $N \quad / /$ with $S \cap h=\bigcup_{v \in N} S(v)$

Query Algorithm
Count
SeicctInHalfplane(half-plane h, partit. tree \mathcal{T} for pt set S) $N \leftarrow 0 \quad / /$ of selected nodes

number

if $\mathcal{T}=\{\mu\}$ then
if point stored at μ lies in h then Task.

$$
N \leftarrow\left\{\begin{array}{l}
\operatorname{dn}\} \\
N+1
\end{array}\right.
$$

else
foreach child v of the root of \mathcal{T} do query algorithm!
if $t(v) \subset h$ then
$N \leftarrow N \perp\{\dot{\sim}\}+|S(v)|$ else
if $t(v) \cap h \neq \varnothing$ then

return N
// with $|S \cap h|=\left|\bigcup_{v \in N} S(v)\right|$

Computational Geometry

Lecture 11:
Simple Range Searching

Part IV:
Analysis of the Partition Tree

Analysis of the Partition Tree

Lemma. For any $\varepsilon>0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h,
SelectinHalfplane selects in $O\left(n^{1 / 2+\varepsilon}\right)$ time a set N of $O\left(n^{1 / 2+\varepsilon}\right)$ nodes of \mathcal{T}
with the property that $h \cap S=\cup_{v \in N} S(v)$.
Proof. Let $\varepsilon>0$. Let $r=2(\sqrt{2} c)^{1 / \varepsilon}$.
$\Rightarrow Q(n) \leq \begin{cases}1 & \text { if } n=1, \\ r+\sum_{v \in C(h)} Q(|S(v)|) & \text { if } n>1 .\end{cases}$
$C(h)$: all children v of the root s.t. h crosses $t(v)$

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine [Matoušek, simplicial partition of size r and crossing DCG 1992] number $c \sqrt{r}$ exists. For any $\varepsilon>0$, such a partition can be built in $O\left(n^{1+\varepsilon}\right)$ time.

Analysis of the Partition Tree

Lemma. For any $\varepsilon>0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h, SelectinHalfplane selects in $O\left(n^{1 / 2+\varepsilon}\right)$ time a set N of $O\left(n^{1 / 2+\varepsilon}\right)$ nodes of \mathcal{T} with the property that $h \cap S=\cup_{v \in N} S(v)$.

Lemma. A partition tree for S can be constructed in $O\left(n^{1+\varepsilon}\right)$ time. The tree uses $O(n)$ storage.

Corollary. Half-plane range counting queries can be answered in $O\left(n^{1 / 2+\varepsilon}\right)$ time using $O(n)$ space and $O\left(n^{1+\varepsilon}\right)$ prep.

Back to Triangular Range Queries

Any ideas? Just use SelectinHalfplane!
Theorem. Given a set S of n pts in the plane, for any $\varepsilon>0$, a triangular range-counting query can be answered in $O\left(n^{1 / 2+\varepsilon}\right)$ time using a partition tree.
The tree can be built in $O\left(n^{1+\varepsilon}\right)$ time and uses $O(n)$ space.
The points inside the query range can be reported in $O(k)$ additional time, where k is the number of reported pts.

Can we do better?
Use cutting trees! (Chapter 16.3 [dBCvKO])
Query time $O\left(\log ^{3} n\right)$, prep. \& storage $O\left(n^{2+\varepsilon}\right)$.

Computational Geometry

Lecture 11:
Simple Range Searching

Part V:
Multi-Level Partition Trees

Multi-Level Partition Trees
Idea. Store with each internal node not just a number, but another data structure!

Task. Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

Query Algorithm

SelectIntSegments(line ℓ, two-level partition tree \mathcal{T} for S) $N \leftarrow \varnothing$ if $\mathcal{T}=\{\mu\}$ then ${ }^{- \text {second-level trees store subsets of } P_{\text {left }}(S)}$ if segment stored in μ intersects ℓ then $N \leftarrow\{\mu\}$ else

foreach child v of \mathcal{T} 's root do

$$
\begin{aligned}
& \text { if } t(v) \subset \ell^{+} \text {then } \\
& \quad N \leftarrow N \cup \text { SelectIn Halfplane }\left(\ell^{-}, \mathcal{T}_{v}^{\text {assoc }}\right)
\end{aligned}
$$ else stores $P_{\text {left }}\left(S_{\text {seg }}(v)\right)$, where if $t(v) \cap \ell \neq \varnothing$ then $S_{\text {seg }}(v)=\left\{s \mid p_{\text {right }}(s) \in S(v)\right\}$ $N \leftarrow N \cup$ SelectIntSegments $\left(\ell, \mathcal{T}_{\nu}\right)$

return N
below $!!!\bigcup_{v \in N} S(v)=\left\{s \in S \mid p_{\text {right }}(s) \text { above } \ell \text { and } p_{\text {left }}(s) \text { below } \ell\right\}^{\circ}$.

Results

Lemma. A 2-level partition tree for line-intersection queries among a set of n segments uses $O(n \log n)$ storage.

Lemma. Let S be a set of n segments in the plane. For any $\varepsilon>0$, there is a 2-level partition tree \mathcal{T} for S s.t.

- given a query line ℓ, we can select $O\left(n^{1 / 2+\varepsilon}\right)$ nodes from \mathcal{T} whose canonical subsets represent the segments intersected by ℓ.
- The selection takes $O\left(n^{1 / 2+\varepsilon}\right)$ time.

Corollary. Let S be a set of n segments in the plane. We can count the number of segments in S intersected by a query line in $O\left(n^{1 / 2+\varepsilon}\right)$ time using $O(n \log \quad n)$ space and $O\left(n^{1+\varepsilon}\right)$ prep.

Results

Lemma. A 2-level partition tree for line-intersection queries among a set of n segments uses $O(n \log n)$ storage.

Lemma. Let S be a set of n segments in the plane. For any $\varepsilon>0$, there is a 2-level partition tree \mathcal{T} for S s.t.

- given a query line ℓ, we can select $O\left(n^{1 / 2+\varepsilon}\right)$ nodes from \mathcal{T} whose canonical subsets represent the segments intersected by ℓ.
- The selection takes $O\left(n^{1 / 2+\varepsilon}\right)$ time.

- δ-level objects

Corollary. Let S be a set of n segments in the plane. We can count the number of segmetts in S in a δ-level intercocted by a query iline in $O\left(n^{1 / 2+\delta \varepsilon}\right)$ time query using $O\left(n \log ^{\delta-1} n\right)$ space and $O\left(n^{1+\delta \varepsilon}\right)$ prep.

