
Lehrstuhl für Informatik I
Algorithmen und Komplexität

Universität Würzburg

Würzburg, den 21. Januar 2021

Prof. Dr. Alexander Wolff
Felix Klesen, M. Sc.

2. Kurztest zur Vorlesung
Algorithmen und Datenstrukturen

(Wintersemester 2020/2021)

Bitte beachten Sie die folgenden Hinweise!

1. Personalien: Bitte tragen Sie Ihre Daten gut lesbar ein.

Nachname

Vorname

Matrikelnummer

Übungsgruppe

2. Papier: Tragen Sie Ihre Lösungen direkt unterhalb der Aufgaben ein.
Verwenden Sie kein eigenes Papier.

3. Sie dürfen ein einseitig handgeschriebenes DIN-A4-Blatt mit Notizen
verwenden. Weitere Hilfsmittel sind nicht zugelassen.

4. Schreiben Sie nicht mit Bleistift oder einem roten Stift.

5. Die Bearbeitungszeit beträgt 60 Minuten.

Wir wünschen Ihnen viel Erfolg!

Aufgabe 1 2 3 4 5 6 7 8 Gesamt

Punkte 6 9 9 6 5 10 10 5 60

Ergebnis

A1

Algorithmen und Datenstrukturen

/ 6 P.Aufgabe 1 — Zufall

AlgoSum(int n)
sum = 0
for i = 1 to n do

if Random(1, i) == 1 then
sum = sum+ i2

return sum

Die Methode Random(1, i) liefert zufällig gleichverteilt eine Zahl aus {1, 2, . . . , i}.

Bestimmen Sie den Erwartungswert der Ausgabe von AlgoSum(n) in Abhängigkeit
von n. Verwenden Sie hierzu geeignete Zufallsvariablen.

Aufgabe 2 — QuickSort

Im Folgenden sei n die Länge des zu sortierenden Eingabefeldes, wobei alle Einträge
des Eingabefeldes paarweise verschieden sind.

(a) / 2 P.Was ist die asymptotische Best-Case-Laufzeit von QuickSort in Abhängigkeit
von n? Begründen Sie kurz Ihre Antwort.

Die Best-Case-Laufzeit ist Θ(), denn:

A2 Lehrstuhl für Informatik I

Algorithmen und Datenstrukturen

(b) / 3 P.Geben Sie ein Feld A der Länge 7 bestehend aus den Zahlen 1, . . . , 7 an, bei dem
die Anzahl der Vergleiche, die QuickSort macht, so gering wie möglich ist.

A =

Begründen Sie kurz, warum Ihr Feld A am wenigsten Vergleiche benötigt.

(c) / 3 P.Erklären Sie kurz, wie man die Partition-Methode modifizieren kann, sodass
die Worst-Case-Laufzeit (nicht die erwartete Laufzeit) von QuickSort inΘ(n logn)
liegt? Begründen Sie Ihren Vorschlag.

(d) / 1 P.Warum wird die Modifikation aus Teilaufgabe (c) in der Praxis nicht angewandt,
obwohl dadurch die Worst-Case-Laufzeit erheblich verbessert wird?

Lehrstuhl für Informatik I A3

Algorithmen und Datenstrukturen

Aufgabe 3 — Hashing

(a) / 5 P.Fügen Sie die Schlüssel in die gegebenen Hashtabellen ein und zeichnen Sie ge-
gebenenfalls die Sondierfolge ein. Wenden Sie dabei doppeltes Hashing mit der
Hashfunktion

• h(k, i) =
(
h1(k) + i · h2(k)

)
mod 7

an, wobei

• h1(k) = k mod 7 und
• h2(k) = 2+ (k mod 4) .

Fügen Sie rechts den Schlüssel 16 ein.

0 1 2 3 4 5 6

Fügen Sie rechts den Schlüssel 1 ein.

0 1 2 3 4 5 6

14 8

Fügen Sie rechts den Schlüssel 21 ein.

0 1 2 3 4 5 6

7 10 20

(b) / 4 P.In dieser Teilaufgabe wurde eine Folge von Zahlen (von links nach rechts) mit
einer Hashfunktion in eine anfangs leere Hashtabelle eingefügt. Bestimmen Sie
die fehlenden Parameter der Hashfunktionen, wobei Ihnen lediglich die Länge
der Sondierfolge der Zahlen bekannt ist. Begründen Sie Ihre Antworten. Geben
Sie auch die gefüllte Hashtabelle an.
Hashfunktion: h(k, i) = (h0(k) + i) mod m mit h0(k) = k mod m
Auflösung von Kollisionen durch lineares Sondieren.

Zahlenfolge 5 3 16 6
Anzahl Kollisionen 0 0 1 0

m = und Hashtabelle T [0..m− 1] =

A4 Lehrstuhl für Informatik I

Algorithmen und Datenstrukturen

/ 6 P.Aufgabe 4 — CountingSort

Für ein Feld A von Zahlen wird CountingSort(A, B, k) ausgeführt. Nachdem die
ersten beiden for-Schleifen durchlaufen wurden, enthält das Rechenfeld C[0..k] folgende
Werte:

C = 〈0, 2, 3, 7, 7, 7, 8〉 .

Bestimmen Sie k, die Länge des Eingabefeldes A.length = n, den Inhalt des Rechen-
feldes C nach der Ausführung der ersten for-Schleife und das Ausgabefeld B[1..n] am
Ende der Ausführung von CountingSort.

k = n =

C =

B =

/ 5 P.Aufgabe 5 — DeleteMulti

Erweitern Sie die Datenstruktur Liste um die Operation DeleteMulti(int k), die alle
Elemente der Liste löscht, deren Schlüssel kleiner als der Eingabewert k ist. Wir nehmen
dabei an, dass die Schlüssel vom Typ int sind.

Geben Sie die Operation in gut kommentiertem Pseudocode an. Die Laufzeit soll in
O(n) liegen, wobei n die aktuelle Länge der (unsortierten!) Liste ist.

Sie dürfen hierbei die aus der Vorlesung bekannten Operationen des abstrakten Daten-
typs Liste verwenden.

DeleteMulti(int k)

Lehrstuhl für Informatik I A5

Algorithmen und Datenstrukturen

Aufgabe 6 — MaxStapel

Ein MaxStapel ist eine Datenstruktur, die eine Menge von Schlüsseln verwaltet und
die folgenden Operationen besitzt:

• Die Operationen Push(key k) und Pop() verhalten sich wie bei einem Stapel.

• Die Operation Maximum() gibt den größten Schlüssel zurück, der sich in der Da-
tenstruktur befindet. Dieser Schlüssel wird nicht aus der Datenstruktur entfernt.

(a) / 6 P.Wir implementieren einen MaxStapel durch zwei gewöhnliche Stapel, welche die
gleiche Höhe haben: Der Stapel Skeys speichert die Schlüssel des MaxStapel. Der
Stapel Smax verwaltet das Maximum; das Topelement von Smax ist also immer das
augenblickliche Maximum des MaxStapel.
Implementieren Sie Push(key k), Pop() und Maximum() in Pseudocode, sodass alle
drei Methoden eine Worst-Case-Laufzeit von Θ(1) haben.

Push(key k)

key Pop()

key Maximum()

A6 Lehrstuhl für Informatik I

Algorithmen und Datenstrukturen

(b) / 4 P.Seien nun alle Elemente, die in Skeys eingefügt werden, paarweise verschieden.
Beschreiben Sie textuell, wie man die Implementierung ändern müsste, damit Smax

in vielen Fällen weniger Schlüssel als Skeys enthält, die Operation Maximum() aber
weiterhin wie gefordert funktioniert.

Aufgabe 7 — Binärbäume

(a) / 5 P.Zeigen Sie mittels vollständiger Induktion:

Jeder Binärbaum mit n ≥ 1 Knoten hat genau n− 1 Kanten.

Induktionsanfang:

Induktionsvoraussetzung:

Induktionsschritt:

Lehrstuhl für Informatik I A7

Algorithmen und Datenstrukturen

(b) / 5 P.Sei T ein Binärbaum, in dem jeder Knoten y das zusätzliche Attribut x.size hat,
das mit 0 initialisiert sei.
Geben Sie einen Algorithmus ComputeSize in Pseudocode an, nach dessen Aus-
führung für jeden Knoten x von T gilt, dass x.size die Anzahl der Knoten ist, die
der Teilbaum von T mit Wurzel x hat. ComputeSize(x) soll x.size zurückgeben.
Die asymptotische Worst-Case-Laufzeit des Algorithmus soll Θ(n) sein, wobei n
die Anzahl der Knoten von T ist.

int ComputeSize(Node x = root)

Begründen Sie, warum Ihr Algorithmus die geforderte Laufzeit einhält.

A8 Lehrstuhl für Informatik I

Algorithmen und Datenstrukturen

Aufgabe 8 — Ausgabe von Bäumen

Gegeben sei der folgende Algorithmus AusgabeAlgo, der auf einem Binärbaum ar-
beitet und dabei die Methode BaumAlgo aufruft.

AusgabeAlgo(Node x)
S = new Schlange
BaumAlgo(x, S)
while not S.Empty() do
k = S.Dequeue()
gib k aus

BaumAlgo(Node x, Schlange S)
S.Enqueue(x.key)
if x.left 6= nil then

BaumAlgo(x.left, S)

if x.right 6= nil then
BaumAlgo(x.right, S)

(a) / 2 P.Führen Sie AusgabeAlgo(T.root) für den folgenden Binärbaum T aus.

3

5

8

1 4 6 11

root

Ausgabe:

(b) / 3 P.Bestimmen Sie die Laufzeit von AusgabeAlgo(T.root) für einen Binärbaum T mit
n Knoten. Begründen Sie Ihre Antwort.

Laufzeit: O(), denn:

Lehrstuhl für Informatik I A9

