Julius-Maximilians-
UNIVERSITAT Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen & Komplexitat Institut fiir Informatik

Algorithmen und Datenstrukturen

Wintersemester 2020/21
18. Vorlesung

Graphen:
Reprasentation und Durchlaufstrategien

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

Was ist das?

Was ist das?

Ein (und derselbe) Graph.

Was ist das?

Ein (und derselbe) Graph; der dreidimensionale Hyperwiirfel.

StudiVZ am 9. Dezember 2006

Insgesamt 1.074.574 Profile (davon 1.035.890 offentlich)

Davon 430.000 aktiv: ein Profil ist aktiv, wenn
e das Profil offentlich ist,
e die Person mindestens zweil Freunde hat,
e in mindestens einer Gruppe ist und
e das Profil innerhalb des letzten Monats aktualisiert wurde.

StudiVZ am 9. Dezember 2006

Insgesamt 1.074.574 Profile (davon 1.035.890 offentlich)

Davon 430.000 aktiv: ein Profil ist aktiv, wenn
e das Profil offentlich ist,
e die Person mindestens zweil Freunde hat,
e in mindestens einer Gruppe ist und
e das Profil innerhalb des letzten Monats aktualisiert wurde.

Ein wenig Statistik iiber die Mitglieder, sortiert nach Studienfach. ..

StudiVZ-Statistiken

Mitglieder nach Studiengangen

Wirtechaftzwizse nechaft / BWL / WWL
Inge niewraviszenachaft
Erziehung awizse nec haft / Padagogik
Sprachwizzenschaft / Linguistik

Jura/ Rechtawiz=e rechaft

== |rformationzwizsenzschaft! Informatik
Lite ratured === n=chaft

hMediEin

hathe matik

Sozialwizee nec Maft

Ge st hichtawizsse echaft

Bio-Wiz=e rechaft

Zremie /! Biozhemie ! Pharmaz e
Sportwisse rechaft

Palitikorizze rechaft

Geowizse nac haft

Peycholbgie

K.uturad 2=e nechaft

Archite ktur/ Bauwissenschaft
Kunstwizsenzschaft/ Design

Theobgie

Phy=ik

hedie myiz=e nechaft / Joumalismus
Fommunikatio nawissenschaft

Philozo phie

Agrar-{ Garterr und Land schaftzwizs
We nwaltung swissenschaft
Geze|lachaftawiz=e nechaft
Wusikwi == nachaft

Bemgbaw und We ksloffwizee nachaft

0 —

50000

100000

150000

2000(

studivz.irgendwo.org

StudiVZ-Statistiken

Bl Mannlich | Geschlechtsverteilung nach Studiengangen
] Weiblich

Lite raturei 2ee nec haft
Erziehungswizzenac haft / Padagogik
Sprachwizeenachaft / Ling uistik
Futturwi zee nachaft

Paycholbgie

Kunstwizzenzschaft/ Des=ign
Sozialwizee nac haft
Kommunikationawizsenzachaft
Bio-Wizzenschaft

Gie =e||lschaftawizsze nechaft

Theolgie

hMedierwiz=enachaft / Joumalismus
Medein

Musgikwi zze nachaft

Mathe matik

Cremie / Biochemie / Pharmazie

Ve rwalttung swissenschaft

Gie st hichtawizse rechaft

Jura/! Rechiswizes nechaft

Geowizse nac hatt

Philozo phie

Politikawizee nechaft

Sportwizee nachaft

Archite kur / Bauwizsenschaft
Wirtzchaftawisse rechaft / BWL / VWL
Agrar-/ Garerr und Land schaftawiss
Bembau und Werkstofiwiz2e nechaft
Phy=ik

Ingerieursawizsse nachaft

==l Informatio nawissenschaft ! |nfomatik

studivz.irgendwo.org

StudiVZ-Statistiken

Freunde nach Studiengangen

Sportwizee rechaft
Muzikowi 222 nachaft

MedEin

NMedierwissenachaft / Joumalismus
Jura/ Rechtawizea rnechaft
Politilwiz=e rechaft

Wirtechaftswisse nechaft / BWL / WWL
Theokke

Geowizzenac hatt

Sprac hwizzenachaft ¢ Linguistik
Bembau und Werkstoffwizze nachaft
Kommunikatio nawizzenzchaft

Matre matik

Lite raturwi 222 nac Maft
Erziehungzwizsenschaft / Padagogik
Kulturwi zee nachaft

Paycholbgie

Geschichtawisse rechaft

Bio-Wis=e nechaft

Gesellachaftawizee nachaft

Chemie / Biochemie / Pharmaz ie
Kunstwissenzchaft! Design

Phys=ik

Sozialwiz=enchaft

Agrar-/ Garterr und Land schaftawizs
Philozo phie

Werwaltung swizzenachaft

Inge nierawizsee nachaft

Architektur/ Bauwizzenschaft
—.Irrfcrrnatbnswissenscr‘ﬂﬂ.-' Infarmatik

[Extern
B Ander Uni

Bl zusammen

73

StudiVZ-Statistiken

Beziehungsstatus nach Studiengangen |Msolo

w==lp |nforrmationswissenschaft [Informatik lin [Cvergeben .
7 [l offene Beziehung

[Jverheiratet
[Romanze

Ingenieurswissenschaft [

Juraf Recht5wi55-en5chaﬁ:_ I |

Kormrmunikations wissensc haft [

Kulturwissenschatt] |

Kunstwissenschaft [Design |2

IJteraturwi55en5chaﬂ:_ I |
Mathernatile [T 1

MEdiE‘lWiEEEI‘IEEhaﬁ:IJDLIFI'IE“EI‘H.IE_ [|
Medizin [T

I [
I I
I [
Agrar- | Gaten- und Landschaftswiss. | || : :
I [
I [
I [
I [

Musikwissenschatft

[
Fhilosophie [
Physik [
Politikwissenschatt [N
F’Eychdugie_ I |

| |
|
I

Sozialwissenschaft [

Sportwissenschatt [

Sprachwissenschaft | Linguishk 7] |

T|‘|ED|DgiE_ [||

Werwaltungswissenschaft _Il

Architektur | BEILIWiEEEI‘lEEhEl‘H:_ I |
Wirtschafts wissenschaft / BWL/ WL [T

Bergbau- und W erkstoffwissensc haft | I h

BiD-'ﬂ'\"iEEEI‘lEEha‘H:_ H |
Chemie | Biochermie/ Pharmazie [N I
Erzighungs wissenschaft | Padagogik] I | I
Geowissensc haft :II :
Geschichtswissenschaft [1
Gesell schafts wissensc haft] I | !

]
f | | |
0,00% 25, 00% 50,00% 75,000 100,00%

StudiVZ-Statistiken

Politische Einstellung nach Studiengangen

Bergbau- und Werkatoffwissenachaft |

Gesellschaftswiszenschafi :

Musikwissenschaft |

Politikwis s enscnaf

Agrar-/ Garlen- und Landschafiswiss. |

Verwallungswissenschaft |

Philosophie

Kommunikafonswissenschafl

bedienwissen schaft / Journ alismus

Theclogie |

Kulturwissenschaft |

Phiysik |

HKunstwissenschafl f Desgn

Paychologie |

Architektur f Bauwissenschafl :

Genwissenschafi

Geschichiswissenschaft |

Sozialwissenschaft |

Spor twis sen schaf :

Chemis /[Biochamie / Fhanmazie

Jura / Rechiswissenschaft |

Bic-Wissenschaft |

Medizin |

b athe matil :

[] Kommunist
B Sehrlinks
[Links

[[] Griin

B Mitte links
[]Liberal

[Kcnservativ
[] kronloyal

[] Mitte rechts
B Rechts

[[] Unpolitisch

Literaturarissenschaft

Sprachwissenschafl / Linguisik |

== |nformationswissenschaft / Informatils |

Erzighungawissenschafl f PEdagogk :

Ingenisurswisse nschaft

Wirtschaftswissenschaft / BWL / VWL |

Der ,, StudiVZ-Graph*

Der ,,StudiVZ-Graph" enthalt nur Gruppen, die
e mindestens 10 Mitglieder haben und
e zu einem Cluster (= stark verbundener Teilgraph) gehoren.

Zwei Gruppen sind durch eine Kante verbunden, wenn > 45%
der Mitglieder einer Gruppe auch Mitglieder der anderen sind.

Der
StudiVZ-
Graph

Der

1V /-

Stud

Graph

-
\

stud

dwo.org

Vz.irgen

N i, s
T N et L) 7
N e e iR ¢ fed

e N P o<y :

Islamische Gemeinschall MiIIi ‘W' ‘\ a‘. *\:'?" kit ., —

ever // Musliuman genclik ::.. a m ﬁ‘ "‘“\‘t}%‘ﬁ{ E :_‘ LA
LA ST e N

A y

RN s~

eL- Topraga yerlesscek u.mk -!ﬁ? Sl "35 I;] ;TW GHT'I'- Cr L”LEE’ leil;rtc n

' R et I W R il o e

= i
el

iy

o,

At Ty ...‘f' L ..l 1
i A '4,,
7 1:55:? “}"-‘ig' ! E = ‘:-|" hh

RV TITIEAN

/
;
H
g

F A
A {*-1' f;f g -"-"‘."!\"llgh‘ (7
S 47 o - Ny
R TR B e T el ey

Tirk Halk Owyuyiilari (Folklet)

s
==k

st
ymnasium
orf Gruppe

ist mein {Far

s 3

3

Tﬁi\'}‘a

N

AL TR 4} -
R

B
Lt
S NI & (o

i

7

f T k@ i—ﬁ“f! ‘ ..‘f-r‘
ki A
Y

17

AN

1land Lebensmittelchemie Wirzburg

Alumni des Regino-Gymnasiums Priim

Ausschnitt 4

nge Union Rheinland-Pfalz

RCDS Westkonferenz 06

\

rwuchsforderungsprogramm CDU-Hessen

Cafeten-Amanda: Die Karte piept!

JU-Mitglieder

Junge Union Schleswig-Holstein

Winfriden-Cocktailparty

RCDS Stupa Wahl 2006 Liste |

re Union Bezirksverband Trier

Ausschnitt 5

liteuniversitit LMU Miinchen

BWL Miinchen |.Semester WS 06/07

Ludwig Maximilians Universitit Miinchen - LMU

"lchhab’s getan" Pidagogik Erstis an der LMU

hematik Erstsemestler WS 06/07 Miinchen

R !] I 4

1 Sykora / | Wilhelm /

= / AN / | Alt \ \ e
| / N———— | | L) \,
{ Newton f \ Ferdinand | - / S
|
— ! Miyazawa \ B
/ -/ >
— = . ____,f —n \l
[[[- 1
[Miura Egl
— — | ’
/ Una
, /
_ = (:"
Y /_/ D { Nishizeki ~
(// \\\ /__,.- m‘\ II P—— Rahman "x__‘

\ - Nakano |
| y Arono (\
|I Misue | { " Sharir | L Narnin /

. | Wenger ! \\ /

| h Agarw; T (

/ AN [Pollack | | Yoshikawa Chos ."I

L } - | \ P
—_ . | \ -
A 1 TokunyamaWatanabe d
i Sugiyama Pach T2rdos piopag N AN —
5] — -~ .
= Carrington | — _ d
Stolfl Maeda Taylor Toth Dyck \ ~————
:I Lozada Abelson Wilsdon .

Allder 3 -
| Chow Neto Hong il Thiele /
| Purchase) Nickle ¥
\: Quigley Webber Lynn bl -

[Ruskey Lee Closs f
II James Alt o f
| il Sl Lin Lin MUY Fredrich Fekete Godan g AT
[(39 \
| \
A
| > !
/ Kt Feng Huang Feng apvan Houle Morin o her Jolisnsen | Hashemi
. | {
/ Symvonis Iturriags \
N ____.---" Nascimento < Shermer N
\ Hes Grigorescu Bertault Waod Wismath)
Biedl Whitesides Meijer . Vernacotola Dean
Nishimura i Felsner i
Hallett - . —
e Bertolazzi Lillo Snoeyink T — o
sindy \
itehing “Gi \
Rosamond . e L \
Suderman Baoyer Matera Mareandall Bose e Hern e Teje _ N
Battista Y
Mde FeIhws - g Cortese Leonforte ms .‘\.
Didimo Carmignani MeAllister Gomez i Hernan . ™
McCartin Patrienani Gmia—uﬁﬁ"“ Noy Garcia \
zonia \
Liotta Bridpeman HEHan o Hurtado Cobos Castro |
Barbagallo Italiano - - .)
Finocchi
Vargiu . . N\ e Dana
el yicmara Buti Binued Rusu Marguez Stcos
Pl Demetrescu '\
[inari , Garrido
Tass Chanda \l T :
Nonato . S/
Fanto ; T /
Pap 4 -~
Garg w— _.“/ .
L = Apparwal
Kosaraju —
Goodrich Scheinerman ’/’
Meng Dickerson III
Fialke Buchheim Barth Cheng Tanenhbaum |
Odenthal |
Kobouroy G4)
BrockenaueZiegler o o » ' .
T e uncan 't - . —_
Hirscuberg Bfeat \ Ve —
Koch \ o/ -
Klau Ambras Theme Wenk / / - \
Alberts Hundack Yee 7 / Kara A
undat Erten f
Navabi ‘Wampler f './ SR
K / | ©
ger Roxhorough _..-"I | Jelinek e
Pouchkarey Le Harding Ve | Pangrac
[9
Pitta / Dvorak —, _ Vondrak
Emden R. Gansner, Yifan Hu, Stephen G "Kobourov: > N\ /
A% — —— / —
e

GMap: Drawing Graphs as Maps [PacificVis'10] ~— -/

Alzohairi

R

Vrto [{ Sander Digugliclmo | /
.'I Sykora r/ | Wilkielna /I §
Unger | /) — i
—_— { r-l \ Kaplan Durocher |
‘| /N J £ |) V2
| NI f { Ferdinand | ~ / _
l\ :; __ L J ;! Miyazawa : N\ .
~___ — - .
- S Asano
[] [] [] e Miura Egi ".__
le Graphzeichen-Community —
LN T { Nishizeki S
// A 7 . | — Rahman .
\ / robal 1
.II II.' ,erf Aronoy II Nakm - .I
| Misue \ .. I'I Woager Sharir || \ Naznin {
| al 1 ~— |
/ \ - II 20 Pollack _I \ Yoshikawa Chos ,..-I
_— . e | i r'f/
Rost Sugiyama Pach T2rdos piopag N N [T _
o _ /-_ }
Carrington | — \\ 7
/ Stolfi Maeda Taylor Toth ~—————
{ Lozada Abelson = -
\ Wilsdon . . .
Alder chon e seott | et : Autoren, die in diesen
[Neto . /
I Purchase Nickle !
) oo QugEY Webber | Lynn Jahren a Uf dem Az
II- James Brkey Alt Clossan . T {
f
| Cohen AN | R SR AN Symposium fiir | e mon
{ = - - I'.
| \ VALY NN Graphzeichnen Artikel
) y Kmt Feng Huang C0E Garvan 3 Bretscher] | Hashemi »
Yo [N\ wald e \ veroffentlicht haben N
h o i ascimento . —
- Vopelmann i e 1 * A Tiped ‘Wismath e —
| Fosmicier Xia Biedl Whitesides Meijer Vernacotola -
| Steckelbacky aiatatd | Lubiw
/W (Neka ; Madden Eades Hallett * v
I S papakosts P Bertolazzi Lille Snoeyink B e i
Ritt Dujmovic Kitehing HlGindy
Mehidan Kau Suderman Rosamo 18C0MY poyer Bose
S\ %.ﬂh s Tollis U, MateraMarcandalli Sonenint e Tojel .
\ e Kuche Castello Ragde S ol Cortese Leonforte Ramos T . N
\ m - Didimo Carmignani i : nando _
Ik\ mMsdde.n McCartin Patrignani - e Gmia-uﬁﬁ"“m Noy Garcia \".
. Himsholt Pizzonia nhart \
Liotta Bridpeman —— i o~ Hurtado Cobos Castro \
W A Barbagallo Italiano |
B Lesh A Finoechi ,
¥ = " Y Dana \
Blair M Vismara Bud Binuweel Rusu Marquez Mateos
Brandes Tamassia Demetrescu "\ |
Rohrer Parise Tass Chanda \, . Gerrido I'.
Nonato /J . S
Fanto Pop /, - /
Garg e e
i agner Apparwal
; Kosaraju —
COtiEh Scheinerman ,'/
Kupke -
Meng Dickerson {
Klein Fialke Buchheim Barth Cheng Tanenbaum |
Leipert Ofiatual Kobouroy G4ier)
Perean Brockenaudfiegler ' —~
Gutwenger Lee (Dillencourt Duncan —_— / — /,x R
- \ —
felckifcher Koch RLERey \ y ~ P
Klau Ambras Theme Wenk f N NG
Alberts Hundack Erten Yee ,/') / Kara Kral g
""'——-_____________ - Naher Navahi ‘Wampler .;.. / Nyklova
) N LS Roxborough _ | Jelinek s Babilon
"\\ Pouchkarey Le Harding ’ | i
. e —) Pitta / ™, Dvorak e~ Vondrak
Emden R. Gansner, Yifan Hu, Stephen G."Kobourov: 3 \ / —
— — -

GMap: Drawing Graphs as Maps [PacificVis'10] N ./ TN

R

Vrto

'. Sander Diguglielmo ! \
1 Sykora s Il Wilhelm |
Unger | /) — |/
— { rl \ Kaplan Durocher |
1 g \\\‘_ - i II Alt II I'.I /a'_ B "'-.,\
.l Newton { { Ferdinand } .‘\‘___ . ____/._/" -' N)
l / _ _ \ Miyazawa T
.. /.-' o | / AN _—
o — PR __,»" Asano S
L} [] [] I,/ Miura Egi ".__
le Graphzeichen-Community —
- ' ‘Io'.
— P { Nishizeki .
(// \, ,.--""’ 'a__‘\ I| Chraba Rahman e
| I-’j . || rebal Nakano _ ,
| Misue ,_ ',I Wenger Sharir I| \ Naznin II,-'
) arwal \ T
e \ - | P Pollack ' | e Ghosh /_'
e — |
\ | . Watanabe _
g EHyama Pach Tar0S pipepag \ . R -
| T——, ,/"
Stolfi Maeda Taylor Toth e
Lozada Abelson N
Wilsdon . . .
Allde . .
: r o N\ BE st | Trice : Autoren, die in diesen
Purchase Nickle S
Quigley Webber | Lynn Jahren auf dem — e
ll: James Bty N Al Closson . oo f
| Cohen AN | R SR AN Symposium fiir | e ol
{ = - - I'.
| \ VALY NN _ Graphzeichnen Artikel
) y Kmt Feng Huang C0E Garvan 3 Bretscher ' __] Hashemi »
D / - Syosvants tariga \ verdffentlicht haben N
— asciments - .
, — N, Hes Urigorescu Bertault Wood Wismath Shermer ' e
i o Whitesides i
| : Xia Biedl ; Vernacotola
| Steckelbachy ~ Fosmeier I L Dyan
g Kesk ubeck Nishimura Felmer \
/ : M v Papakostas Eades . - Helett Bertolazzi Lillo Sooayink - - S o
-y Bnstes Dujmovic Kitehing ElGindy) -
~ Mehldan Kau Suderman Rosamo 18C0MY poyer B
f H 1 M. dalli e R
Rosenstiel TR koutis s Tollis A MageraMarcn Toomaint Hernandez—Penver Tejel —,
Ludwig Paowers - Ragde Fellows ttista = — .
| L Didimo Carmignani i : Hernando .
. gmsmmadm McCartin Patrignani - e Gm;a_u'gﬁ"“m Noy Garcia \".
. Himshaolt = 2 nhart \
Piz: \
| Gene Schank Finlepe; Rt Vi Liotta Bridpeman et L~ Hurtado Cobos Castro |
N Freivalds Barbagallo Italisno P — \
\ " = Wagner Shubina Lesh /) il : Finoechi 9 N
| Cornelsen Kop AFE yigmara Bui Bimueed R Marquez]
usu Mateos
. Kikusts Marks Demetrescu A - |
| Benkert o Parise Tassinari \ ~__ Garrido [
/ Chanda) ~—)
| Rucevskis Nonato | T
\ Fanto s /
\ Pnp 4 \..\\ - 4
I'._ Gﬂl‘g . .(/ . . -
— Chan Wagser | sl) Kanten: Autoren, die zusammen
II' Goodricn | -

Sccomena__ Artikel veroffentlicht haber

Cheng Tanenbaum |

D 4 e /,.f""- —
Moy Kt/ ’ ~ .y /
Wenk J /-"' . _— _ \ g
Alberts Hundack riada = Fee .;.-"d -./ Nyklova
Roxborough Y S | Jelinek s AN Babilon
N\ Pouchkarey Harding v | grac
o P~ | AN ok R

Emden R. Gansner, Yifan Hu, Stephen G“Kobourov: >~ ™= N
GMap: Drawing Graphs as Maps [PacificVis'10]

— Vondrak
_--- i - -

\ Vrto [
"I Sykora { |

Unger i

Wilkelm

~ o S | Alt |

| - J
l Newton I_I.' \

Ferdinand

\\.

Sander

Die Gra phzéhiéhen—Com munity 1994—2004

P ™ e ""a.\
1% - ~
| \ _r"’ |
| \ { Aronov |
| Misue ',I Wenger Sharir '|
| arw |
p N\ . l P Pollack |
— — |
ot Sugiyama Pach Tardos poood I‘-.
5]
Carrington |
Stalfi Maeda Tayler Toth
Lomta Abelnt Wilsdon
Alld .
< Chow Neto Hong St Thiele
Purchase Nickle
g m Quigley Webber | Lynn
III James Y Alt Clossan
NS Lin Lin ™M™ Friedrich Fekete
! Miller
| 2!
- // Kant Feng Huang Feng Garvan Houle Motin, pretscher
Symvonis Iturriaga
_— - ' Hes Grigorescn Bertault | Jcimento Wood R Shermer
I‘J AN z Xia Biedl Whitesides Vernacotola
| Fosmeier Meijer -
g Keskin Steckelbachy, oo Madd s, Nishimura Lubiw Felsner
.'/ S Papakostas o f - . Bertolazzi Lille
! Ritt Dujmovic Kitehing EJGmd!'G,
Mehld: KEIIfIlEIIIIIE Rosam iacomo
- Rosenstiel ulis sy Tollis NN g Boyer \ fateraMarcandalli
Ludwig Paowers Ragde Fellows Battista —
i Kuchem i . / _ Didimo Cortest - — Carmignani "’
Madden McCartin Patrignani
N Himsholt Lenhart
\ Pizzonia g0
[Gene Schank Fialepes = Liotta Bridgeman A
A arbag iano
\.I'n Freipe 1 Kopl Wagner Lesh Vagsin S Finoechi
| - s Blair B Vismara Bud Binuweei R
usu
| Kikusts Brandes { Demetrescu
Ben\ere e Rohrer Parise Tassinari Chanda
|II Rucevskis Nonalo
\ Fanto
\ Pop
Garg
e L e Pagner Agparwal
I', Kosaraju
\ Kupke Goodrich Scheinerman / 4
o Meng Dickerson /
Klein = Fialke Buchheim Barth it Cheng Tanenbaum |
Lei Kobourov S8ier)
P Brockenaudfiegle
hw Gutwenger T Le |Dillncourt Duncan = {/
) Koch Hirschberg e
CHL s Klau Ambras Theme Wenk
Yee -~
Alberts Hundack I
T—— - Naher Navahi ‘Wampler /
- .\... Kruger Roxbarough ;
\ Pouchkarev Le Harding S
o [
. e) Pitta /
Emden R. Gansner, Yifan Hu, Stephen G."Kobourov: >~ /
— N — o
. e - \
GMap: Drawing Graphs as Maps [PacificVis'10]

..-/
| Miyazawa - \ B
P _." Asano e h S
" Miura Egl
Uno y
Nishizeki \
Rahman ~
Chrebak Nakano I'.
Narnin I_-"':
T Yoshikawa T ,,'-'I
Y TokuyamaWatanabe a
Autoren, die in diesen
Jahren auf dem SR
Symposium fiir | i i
_ Graphzeichnen Artikel
\ veroffentlicht haben N

Bose

MeAllister

Snoevink

— "\
Foamsint Hernandez-Penver Tejel n—
Ramos)
s Gmia-uﬁﬁ"“m Noy Heptendp Garcia \
_~ Hurtado Cobos Castro I
\ Dana Marquez Y
\-\: — Garrido :.
/,JI — ')
'1/' _.\\---__ _',’
' Kanten: Autoren, die zusammen
Artikel veroffentlicht haber
Liander: stark zusammenhingende
Teilgraphen (Cluster)
._»"' -) _h.\\ /./" T~ i .
/ Kara . — Kral \ T .
_/ Nyklova
I'| Jelinek s Babilon
| Pangrac
Dvarak — - Vondrak }
__ / N

{ Kislelewlcz

—— |

.ff Ty ~ S

{ Twarog {

\ Lambe | .y _'-_ o
\ J Y, —
- —_ i o S—

LT N
/ Cruz — Moshah Y RS
y Rusu \ [e Lickfeld P A
— Chpnan A — Felsner ~ Dergelmar
e Mumfard 4

Buchheim

‘Wampler
Yusufoy . Ny yahi

..."-_ -~ = % Abello
. w Jelinkovd

Suehy Kira L

elinek
Tath ! A

\. i Kedl T

_‘ Keszeni] Cerny ™o

| Pach PaviigytTardos Kyncl

Wenger

Nyklové

Pangrie !

~ Fox BACn Bal
Trigntafilon Papamanthou e e

. Tith

Mili poeer Aparwal Ma

Kia
Castellé ", Sharr—— poNack

y —
| S Dhandapani

"™ Dogrusoz Papukostas { ~ /
J - Basu /
Kakoulis Giral . AN p=
Diidjev

Gene |

|
¢ / Brup’ Vogelmann -~
/ Keskin [o~

.'| Carrington
Alder | [’ Ludwly Mebldau J

F: Was ist ein Graph?

14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V, E)

14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V, E)

14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V/, E), wobei

— V' Knotenmenge und
- E C (\2/) = {{u, v} C V| u+# v} Kantenmenge.

14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V/, E), wobei

— V' Knotenmenge und
- E C (\2/) = {{u, v} C V| u+# v} Kantenmenge.

14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V/, E), wobei

— V' Knotenmenge und
- E C (\2/) = {{u, v} C V| u+# v} Kantenmenge.

14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V/, E), wobei

— V' Knotenmenge und
- E C (\2/) = {{u, v} C V| u+# v} Kantenmenge.

A,: Ein gerichteter Graph ist ein Paar (V, E), wobei
— V' Knotenmenge und
- ECV xV=A{(u,v)|u,veV} Kantenmenge.

14

F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

15

F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

=N W B O

dRdR AR AR

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

—»15

>3

> 1

*IPIPILDIL®

ollo||o|lo|e

—>12

—+{2

15

F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

.??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

15

F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

15

F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

=N W B O

?

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

—>12

*

ollo||o|lo|e

—+{2

Adjazenzlisten

Tt B LW N =

1 2345

15

F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

Tt B LW N =

1

2

OO O

OO, O

R =) O = OlWw

_ O = O |~

O R K= O O|ul

15

F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

=N W B O

?

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

—>12

*

ollo||o|lo|e

—+{2

Adjazenzlisten

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15

F: Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

®

@

@

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15

F: Wie reprasentiere ich einen Graphen?

1 2 3 45

5 e+—i3[el—i4]e {01 010

s[el—»lTTel—»B3[e»Ee] 2|1 010 0

3|oeT—>{2|e—>4|[e—> 50 3{01 011

2| o3 |e—>i]]|e 411 01 0 1

| [—»oTel—s{aTe 500110

ungerichteter Adjazenzlisten Adjazenzmatrix
Graph
®

(2)

©®

F: Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

®

O
(1) —

(3

2

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15

F: Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

®
T

(2)

(1) —

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15

F: Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

o
T

(2)

(1) —

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15

F: Wie reprasentiere ich einen Graphen?

1 2345

5 e+—i3[el—i4]e 1fO01 010
s[el—»lTTel—»B3[e»Ee] 2|1 010 0
3|oeT—>{2|e—>4|[e—> 50 3{01 011

2| o3 |e—>i]]|e 411 01 0 1

| [o—>[2Tel—»{aTe sloo110

ungerichteter Adjazenzlisten Adjazenzmatrix

Graph

F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

gerichteter
Graph

=N W B O

?

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

—>12

*

ollo||o|lo|e

—+{2

Adjazenzlisten

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15

F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

gerichteter
Graph

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

=N W B O

?

>3

—>5

—»3

—>2

.??.

> 1

—>14

ollo||olo|e

Adjli] =1 e V[(ij)cE}

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15

15

F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

gerichteter
Graph

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

=N W B O

?

>3

—>5

—»3

—>2

.??.

> 1

—>14

ollo||olo|e

Adjli] =1 e V[(ij)cE}

1 2345
1fO01 010
21101 00
310 1 011
41101 01
51001 10
Adjazenzmatrix
1 2345
1100 010
2110 000
310 1 0 00
410 01 0 1
51001 00
a,'j:].<:>(l',j)€E

Grad eines Knotens

Def. ;

16

Grad eines Knotens

Def. ;

deg(u) = |Adj|u]]

16

Grad eines Knotens

.
0=

deg(u) = |Adj|u]]

16

Grad eines Knotens

Def.
O deg(w) = Adil]
_}C‘Kz outdeg(v) = |Adj[v]|

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K{ outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

16

Grad eines Knotens

Def.

Beob.

O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2-|E]| .

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Beweis. Technik des zweifachen Abzahlens:

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Beweis. Technik des zweifachen Abzahlens:

/ahle alle Knoten-Kanten-Inzidenzen.

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Beweis. Technik des zweifachen Abzahlens:

/ahle alle Knoten-Kanten-Inzidenzen.

16

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘Kz outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade 2 |E|.

Eine Kante ist inzident
Beweis. Technik des zweifachen Abzahlens: ~ =% hren Endknoten.

/ahle alle Knoten-Kanten-Inzidenzen.

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K{ outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade 2 |E|.

Eine Kante ist inzident

Beweis. Technik des zweifachen Abzahlens: ~ #% hren Endknoten.

. : Ein Knoten ist inzident
Zahle alle Knoten-Kanten-Inzidenzen: ., .o Kanten deren

Endknoten er ist.

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade 2 |E|.

Eine Kante ist inzident

Beweis. Technik des zweifachen Abzahlens: ~ #% hren Endknoten.

. : Ein Knoten ist inzident
Zahle alle Knoten-Kanten-Inzidenzen: ., .o Kanten deren

Endknoten er ist.

Aus Sicht der Knoten:
Aus Sicht der Kanten:

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade 2 |E|.

Eine Kante ist inzident

Beweis. Technik des zweifachen Abzahlens: ~ #% hren Endknoten.

. : Ein Knoten ist inzident
Zahle alle Knoten-Kanten-Inzidenzen: ., .o Kanten deren

Aus Sicht der Knoten:)
Aus Sicht der Kanten:

Endknoten er ist.

Vevdeg V

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade 2 |E|.

Eine Kante ist inzident

Beweis. Technik des zweifachen Abzahlens: ~ #% hren Endknoten.

. : Ein Knoten ist inzident
Zahle alle Knoten-Kanten-Inzidenzen: ., .o Kanten deren

Endknoten er ist.
Aus Sicht der Knoten: [}/

Aus Sicht der Kanten: 2 - | E|

deg v

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade 2 |E|.

Eine Kante ist inzident

Beweis. Technik des zweifachen Abzahlens: ~ #% hren Endknoten.

. : Ein Knoten ist inzident
Zahle alle Knoten-Kanten-Inzidenzen: ., .o Kanten deren

Endknoten er ist.
Aus Sicht der Knoten: [}/

Aus Sicht der Kanten: 2 - |E|—Jalso gleich!

deg v

Grad eines Knotens

Def.

Beob.

O deg(w) = Adil]
%‘Kz outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E| Ve

16

Grad eines Knotens

Def.

Beob.

Satzle.

O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Die Anzahl der Knoten ungeraden Grades ist gerade.

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ., degv

16

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =3, cydegv =) o\ degv+) .\ degv

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =), cydegv =) o\ degv+) .\ degv
gerade!

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ,cydegv =) ., degv+) ., degv

ger ung

gerade! gerade!

16

Grad eines Knotens

Def.
O deg(w) = Adil]
% outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ,cydegv =5 ., degv+) _, degyv

ger ung

gerade! gerade! gerade!

16

Grad eines Knotens

Def.
O deg(w) = Adil]
% outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ,cydegv =) .\ degv -+ ., degv

ger ung

gerade! gerade! gerade!

16

Grad eines Knotens

Def.
O deg(w) = Adil]
% outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ,cydegv =) .\ degv -+ ., degv

ger ung

gerade! gerade! gerade! = gerade!

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ,cydegv =) .\ degv -+ ., degv

ger ung

gerade! gerade! gerade! = gerade!
Zvevung degv gerade =

16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ,cydegv =) .\ degv -+ ., degv

ger ung

gerade! gerade! gerade! = gerade!

D vevi, 968V gerade = |Ving| ist gerade!

17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?
Konstruktion: Wie (und in welcher Zeit) finde ich

einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,
so dass jeder Knoten genau einmal durchlaufen wird.

17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?
Konstruktion: Wie (und in welcher Zeit) finde ich

einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,
so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei raphen geht das (nicht)?

Konstruktion: Wie (ulid j@’welcher Zeit) finde ich
einen olchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,
so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei raphen geht das (nicht)?

Konstruktion: Wie (ulid j@’welcher Zeit) finde ich
einen olchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,
so dass jeder Knoten genau einmal durchlaufen wird.

harakteriiefing’ PBei welchen Graplien geht das (nicht)?
ruktio \dbia ! welcler eW er
einen h ulld|f, W IsWr uadderll?

17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei raphen geht das (nicht)?

Konstruktion: Wie (ulid j@’welcher Zeit) finde ich
einen Jolchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,
so dass jeder Knoten genau einmal durchlaufen wird.

harakteriiefing’ PBei welchen Graplien geht das (nicht)?
ruktio LVEPS ! welcller eW er
einen h ulld|f, W IsWr uadderll?

— Vorlesung Algorithmische Graphentheorie (nichstes Semester!)

F: Wie durchlaufe ich einen Graphen?

Ideen?

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

18

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

G

1. wellenformige Ausbreitung ab einem gegebenen Startknoten s

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

G

1. wellenformige Ausbreitung ab einem gegebenen Startknoten s
Breitensuche (breadth-first search, BFS)

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

G

1. wellenformige Ausbreitung ab einem gegebenen Startknoten s

Breitensuche (breadth-first search, BFS)

2. vom Startknoten s moglichst schnell weit weg

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

G

1. wellenformige Ausbreitung ab einem gegebenen Startknoten s

Breitensuche (breadth-first search, BFS)

2. vom Startknoten s moglichst schnell weit weg

Tiefensuche (depth-first search, DFS)

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

G

1. wellenformige Ausbreitung ab einem gegebenen Startknoten s

Breitensuche (breadth-first search, BFS) <—— jetzt!

2. vom Startknoten s moglichst schnell weit weg

CTiefensuche (depth-first search, DFS)

nachstes Mal!

Breitensuche

19

Breitensuche

r S t U

) ()
@‘@‘@"@

v w X y

Breitensuche

19

Breitensuche

19

19

Breitensuche

19

Breitensuche

19

Breitensuche

19

Breitensuche

19

Breitensuche

19

Breitensuche

19

Breitensuche

19

Breitensuche

19

Breitensuche

19

Breitensuche

19

Breitensuche

19

Breitensuche

19

Breitensuche

usw.

Breitensuche

19

w r|ltlx|Vv LUSW.

Initialize(Graph G, Vertex s)
foreach v € V do
u.color = white
u.d = oo

L u.m = nal

s.color = gray

s.d=0

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
= new

19

w r|ltlx|Vv LUSW.

Initialize(Graph G, Vertex s)
foreach v € V do
u.color = white
u.d = oo

L u.m = nal

s.color = gray

s.d=0

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()

19

w r|ltlx|Vv LUSW.

Initialize(Graph G, Vertex s)
foreach v € V do
u.color = white
u.d = oo

L u.m = nal

s.color = gray

s.d=0

19

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)

w r|ltlx|Vv LUSW.

Initialize(Graph G, Vertex s)
foreach v € V do
u.color = white
u.d = oo

L u.m = nal

s.color = gray

s.d=0

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

19

w r|ltlx|Vv LUSW.

Initialize(Graph G, Vertex s)
foreach u € V do

u.color = white
u.d = oo

_ u.m = nil
s.color = gray
s.d=0

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do
u = Q.Dequeue()

19

w r|ltlx|Vv LUSW.

Initialize(Graph G, Vertex s)
foreach u € V do

u.color = white
u.d = oo

_ u.m = nil
s.color = gray
s.d=0

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do
u = Q.Dequeue()
foreach v € Adj[u] do

19

w r|ltlx|Vv LUSW.

Initialize(Graph G, Vertex s)
foreach u € V do

u.color = white
u.d = oo

_ u.m = nil
s.color = gray
s.d=0

19

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do
u = Q.Dequeue()

foreach v € Adj[u| do w rit{x|v Uusw.
Aufgabe: Initialize(Graph G, Vertex s)
Schreiben Sie Pseudocode, so dass: foreach v € V do
v.d = Linge eines kiirzesten u.color = white
s-v-Weges iiber u, falls ... u.d = oo
v.m = Vorgdnger auf diesem Weg u.m = nil
L s.color = gray

s.d=0

19

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = .Dequeue
foreach v € AdJ(fu] do wrlt)|x|v HSW-
if v.color == white then Initialize(Graph G, Vertex s)
v.color = gray foreach v € V do
v.d =u.d+1 u.color = white
V.T = U u.d = oo
. Q.Enqueue(v) - u. = nil
- s.color = gray

s.d=0

19

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = @.Dequeue
foreach vqe AdJ(fu] do wrlt)|x|v HSW-
if v.color == white then Initialize(Graph G, Vertex s)
v.color = gray foreach v € V do
v.d =u.d+1 u.color = white
V.T = u u.d = oo
. Q.Enqueue(v) | u.m = nil
| u.color = black s.color = gray

s.d=0

19

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v € Adj[u] do wrt[x|v usw-
if v.color == white then Initialize(Graph G, Vertex s)
v.color = gray foreach v € V do
v.d =ud+1 u.color = white
V.T = u u.d = oo
. Q.Enqueue(v) - u. = nil
| u.color = black s.color = gray
s.d=20

Laufzeit?

19

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v € Adj[u] do wrt[x|v usw-
if v.color == white then Initialize(Graph G, Vertex s)
v.color = gray foreach v € V do
v.d =ud+1 u.color = white
V.T = u u.d = oo
. Q.Enqueue(v) - u. = nil
| u.color = black s.color = gray
s.d=20

Laufzeit?

19

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v € Adj[u] do wrt[x|v usw-
if v.color == white then Initialize(Graph G, Vertex s)
v.color = gray foreach v € V do
v.d =ud+1 u.color = white
V.T = u u.d = oo
. Q.Enqueue(v) - u. = nil
| u.color = black s.color = gray
s.d=20

Laufzeit? O(|V|)

19

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v € Adj[u] do wrt[x|v usw-
if v.color == white then Initialize(Graph G, Vertex s)
v.color = gray foreach v € V do
v.d =ud+1 u.color = white
V.T = u u.d = oo
. Q.Enqueue(v) - u. = nil
| u.color = black s.color = gray
s.d=20

Laufzeit? O(|V|)

19

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v € Adj[u] do wrt[x|v usw-
if v.color == white then Initialize(Graph G, Vertex s)
v.color = gray foreach v € V do
v.d =ud+1 u.color = white
V.T = u u.d = oo
. Q.Enqueue(v) - u. = nil
| u.color = black s.color = gray
s.d=20

Laufzeit? O(|V]) + O(|V|)

19

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v € Adj[u] do wrt[x|v usw-
if v.color == white then Initialize(Graph G, Vertex s)
v.color = gray foreach v € V do
v.d =ud+1 u.color = white
V.T = u u.d = oo
. Q.Enqueue(v) - u. = nil
| u.color = black s.color = gray
s.d=20

Laufzeit? O(|V]) + O(|V|)

19

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v € Adj[u] do wrt[x|v usw-
if v.color == white then Initialize(Graph G, Vertex s)
v.color = gray foreach v € V do
v.d =ud+1 u.color = white
V.T = u u.d = oo
. Q.Enqueue(v) - u. = nil
| u.color = black s.color = gray
s.d=20

Laufzeit? O(|V]) + O(|V]) + O(|E])

19

Breitensuche

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v € Adj[u] do wrt[x|v usw-
if v.color == white then Initialize(Graph G, Vertex s)
v.color = gray foreach v € V do
v.d =ud+1 u.color = white
V.T = u u.d = oo
. Q.Enqueue(v) - u. = nil
| u.color = black s.color = gray
s.d=20

Laufzeit? O(|V|) + O(|V|) + O(IE]) = O(|V|+ |E|)

Korrektheit von BFS — Vorbereitung

Definition.

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

20

Korrektheit von BFS — Vorbereitung

Definition.

Ziel:

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
v.d = (s, v).

20

20

Korrektheit von BFS — Vorbereitung

Definition.

Ziel:

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Zeige, dass nach BFS(G, s) fiir alle v € V gilt:

berechneter L tatsachlicher
Abstand von s v.d = 5(5’ V)' Abstand von s

20

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
berechneter L tatsachlicher
Abstand von s v.d = 5(5’ V)' Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)

20

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
berechneter L tatsachlicher
Abstand von s v.d = 5(5’ V)' Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)
Sei G = (V/, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u) + 1.

]

u

20

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
berechneter L tatsachlicher
Abstand von s v.d = 5(5’ V)' Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)
Sei G = (V/, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u) + 1.

]

u

Bewels.

20

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
berechneter L tatsachlicher
Abstand von s v.d = 5(5’ V)' Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)
Sei G = (V/, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u) + 1.

Beweis. 1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

]

u

20

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
berechneter L tatsachlicher
Abstand von s v.d = 5(5’ V)' Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)
Sei G = (V/, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u) + 1.

Beweis. 1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

v
SN\)U

20

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
berechneter L tatsachlicher
Abstand von s v.d = 5(5’ V)' Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)
Sei G = (V/, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u) + 1.

Beweis. 1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

V
sfé\(s’/uJU

20

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
berechneter L tatsachlicher
Abstand von s v.d = 5(5’ V)' Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)
Sei G = (V/, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u) + 1.

Beweis. 1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

4 Dieser s-v-Weg hat Lange (s, u) + 1.
o(s, u
S u

20

Korrektheit von BFS — Vorbereitung

Definition. Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Ziel: Zeige, dass nach BFS(G, s) fiir alle v € V gilt:
berechneter L tatsachlicher
Abstand von s v.d = 5(5’ V)' Abstand von s

Lemma 1. (Eigenschaft kiirzester Wege)
Sei G = (V/, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u) + 1.

Beweis. 1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

4 Dieser s-v-Weg hat Lange (s, u) + 1.
U
o(s, u
S u

20

Korrektheit von BFS — Vorbereitung

Definition.

Ziel:

Lemma 1.

Bewels.

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Zeige, dass nach BFS(G, s) fiir alle v € V gilt:

berechneter L tatsachlicher
Abstand von s v.d = 5(5’ V)' Abstand von s

(Eigenschaft kiirzester Wege)
Sei G = (V/, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:

o(s,v) < d(s,u) + 1.

1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

4 Dieser s-v-Weg hat Lange (s, u) + 1.
U
S 5(5' u U Kiirzester s-v-Weg hat Lange < 4(s, u) + 1.

Korrektheit von BFS — Fortsetzung

Lemma 1.

Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) < d(s,u)+ 1.

v

21

Korrektheit von BFS — Fortsetzung

Lemma 1.

Lemma 2.

Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

21

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Bewels.

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Bewels.

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do
u = Q.Dequeue()
foreach v € Adj[u] do
if v.color == white then
v.color = gray
v.d =u.d+1
VT = u

Q.Enqueue(v)

u.color = black

Korrektheit von BFS — Fortsetzung

Lemma 1.

Lemma 2.

Bewels.

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v € Adj[u] do

v.color = gray
v.d =ud+1
V.T = U

Q.Enqueue(v)

u.color = black

Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Induktion liber die Anz. kK von Enqueue-Oper.

if v.color == white then

21

Korrektheit von BFS — Fortsetzung

Lemma 1.

Lemma 2.

Bewels.

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v € Adj[u] do

v.color = gray
v.d =ud+1
V.T = U

Q.Enqueue(v)

u.color = black

Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Induktion liber die Anz. kK von Enqueue-Oper.

if v.color == white then

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve
Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > i(s, v).
Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k —]_:
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do
u = Q.Dequeue()
foreach v € Adj[u] do
if v.color == white then

v.color = gray
v.d =ud+1
V.T = U

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.

BFS(Graph G, Vertex s) k =1. Situation nach Q.Enqueue(s):
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do
u = Q.Dequeue()
foreach v € Adj[u] do
if v.color == white then
v.color = gray
v.d=ud+1
VT = u

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1. Situation nach Q.Enqueue(s):

Initialize(G, s)

Q = new Queue() e sd=0= 5(5, 5)

Q.Enqueue(s)

while not Q.Empty() do

u = Q.Dequeue()

foreach v € Adj[u] do

if v.color == white then
v.color = gray
v.d =ud+1
VT =u

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.

BFS(Graph G, Vertex s) k =1. Situation nach Q.Enqueue(s):
Initialize(G, s)
Q = new Queue() e s.d=0=1/(s,s)
Q.Enqueue(s)
while not Q.Empty() do ¥ : —
N T o fiiralle ve V\{s}giltv.d =00
foreach v € Adj[u] do
if v.color == white then
v.color = gray
v.d=ud+1
VT =u

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.

BFS(Graph G, Vertex s) k =1. Situation nach Q.Enqueue(s):
Initialize(G, s)
Q = new Queue() e s.d=0=1/(s,s)
Q.Enqueue(s)
while not Q.Empty() do ¥ : —
N T o fiiralle ve V\{s}giltv.d =00
foreach v € Adj[u] do
if v.color == white then
v.color = gray
v.d=ud+1
VT =u

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.

BFS(Graph G, Vertex s) k =1. Situation nach Q.Enqueue(s):
Initialize(G, s)
Q = new Queue() e s.d=0=1/(s,s)
Q.Enqueue(s)
while not Q.Empty() do ¥ : —
N T o fiiralle ve V\{s}giltv.d =00
foreach v € Adj[u] do
if v.color == white then
v.color = gray
v.d=ud+1
VT =u

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1.

Lemma 2.

Bewels.

BFS(Graph G, Vertex s)
Initialize(G, s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v € Adj[u] do

v.color = gray
v.d =ud+1
V.T = U

Q.Enqueue(v)

u.color = black

Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Induktion liber die Anz. kK von Enqueue-Oper.
k =1: Situation nach Q.Enqueue(s): v
e s.d=0=J(s,s)
o fiiralleve V\ {s}gilt v.d =

if v.color == white then

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1: Situation nach Q.Enqueue(s): v

Initialize(G, s)

Q = new Queue() e s.d=0=1/(s,s)

Q.I?nqueue(s)

Wil Ge Glmpi() ¢ o firalle ve V\ {s}gilt v.d =

u = Q.Dequeue()

foreach v € Adj[u] do . . _
if v color —— white then. kK > 11 Situation nach Q.Enqueue(v):

v.color = gray
v.d =ud+1
V.T = U

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1: Situation nach Q.Enqueue(s): v

Initialize(G, s)

Q = new Queue() e s.d=0=1/(s,s)

Q.I?nqueue(s)

Wil Ge Glmpi() ¢ o firalle ve V\ {s}gilt v.d =

u = Q.Dequeue()

foreach v € Adj[u] do . . _
if v color —— white then. kK > 11 Situation nach Q.Enqueue(v):

v.color = gray

vd—udal v war gerade noch weill und ist benachbart zu wu.

v.m=u

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1: Situation nach Q.Enqueue(s): v

Initialize(G, s)

Q = new Queue() e s.d=0=1/(s,s)

Q.I?nqueue(s)

Wil Ge Glmpi() ¢ o firalle ve V\ {s}gilt v.d =

u = Q.Dequeue()

foreach v € Adj[u] do . . _
if v color —— white then. kK > 11 Situation nach Q.Enqueue(v):

v.color = gray

vd—udt1 v war gerade noch weill und ist benachbart zu wu.
v = u v.d=u.d+1

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1: Situation nach Q.Enqueue(s): v

Initialize(G, s)

Q = new Queue() e s.d=0=1/(s,s)

Q.I?nqueue(s)

Wil Ge Glmpi() ¢ o firalle ve V\ {s}gilt v.d =

u = Q.Dequeue()

foreach v € Adj[u] do . . _
if v color —— white then. kK > 11 Situation nach Q.Enqueue(v):

v.color = gray

vd—udt1 v war gerade noch weill und ist benachbart zu wu.
v.m = U v.d=ud+1>d(s,u)+1

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1: Situation nach Q.Enqueue(s): v

Initialize(G, s)

Q = new Queue() e s.d=0=1/(s,s)

Q.I?nqueue(s)

Wil Ge Glmpi() ¢ o firalle ve V\ {s}gilt v.d =

u = Q.Dequeue()

foreach v € Adj[u] do . . _
if v color —— white then. kK > 11 Situation nach Q.Enqueue(v):

v.color = gray

vd—udt1 v war gerade noch weill und ist benachbart zu wu.
v.m = U v.d=ud+1>d(s,u)+1

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1: Situation nach Q.Enqueue(s): v

Initialize(G, s)

Q = new Queue() e s.d=0=1/(s,s)

Q.I?nqueue(s)

Wil Ge Glmpi() ¢ o firalle ve V\ {s}gilt v.d =

u = Q.Dequeue()

foreach v € Adj[u] do . . _
if v color —— white then. kK > 11 Situation nach Q.Enqueue(v):

v.color = gray

vd—udt1 v war gerade noch weill und ist benachbart zu wu.
v.m = U v.d=ud+1>d(s,u)+1

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1: Situation nach Q.Enqueue(s): v

Initialize(G, s)

Q = new Queue() e s.d=0=1/(s,s)

Q.I?nqueue(s)

Wil Ge Glmpi() ¢ o firalle ve V\ {s}gilt v.d =

u = Q.Dequeue()

foreach v € Adj[u] do . . _
if v color —— white then. kK > 11 Situation nach Q.Enqueue(v):

v.color = gray

vd—udt1 v war gerade noch weill und ist benachbart zu wu.
v.m = u v.d=ud+1>0d(s,u)+1>0d(s,v)

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Lemma 1. Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1: Situation nach Q.Enqueue(s): v

Initialize(G, s)

Q = new Queue() e s.d=0=1/(s,s)

Q.I?nqueue(s)

Wil Ge Glmpi() ¢ o firalle ve V\ {s}gilt v.d =

u = Q.Dequeue()

foreach v € Adj[u] do . . _
if v color —— white then. kK > 11 Situation nach Q.Enqueue(v):

v.color = gray

vd—udt1 v war gerade noch weill und ist benachbart zu wu.
v.m = u v.d=ud+1>0d(s,u)+1>0d(s,v)

Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS — Fortsetzung

Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1: Situation nach Q.Enqueue(s): v

Initialize(G, s)

Q = new Queue() e s.d=0=1/(s,s)

Q.I?nqueue(s)

Wil Ge Glmpi() ¢ o firalle ve V\ {s}gilt v.d =

u = Q.Dequeue()

foreach v € Adj[u] do . . _
if v color —— white then. kK > 11 Situation nach Q.Enqueue(v):

v.color = gray

vd—udt1 v war gerade noch weill und ist benachbart zu wu.
v.m = u v.d=ud+1>0d(s,u)+1>0d(s,v)

Q.Enqueue(v)

u.color = black

Jetzt ist v grau.

21

Korrektheit von BFS — Fortsetzung

Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1: Situation nach Q.Enqueue(s): v

Initialize(G, s)

Q = new Queue() e s.d=0=1/(s,s)

Q.I?nqueue(s)

Wil Ge Glmpi() ¢ o firalle ve V\ {s}gilt v.d =

u = Q.Dequeue()

foreach v € Adj[u] do . . _
if v color —— white then. kK > 11 Situation nach Q.Enqueue(v):

v.color = gray

vd—udt1 v war gerade noch weill und ist benachbart zu wu.
v.m = u v.d=ud+1>0d(s,u)+1>0d(s,v)

Q.Enqueue(v)

u.color = black

Jetzt ist v grau. = v.d andert sich nicht mehr.

21

Korrektheit von BFS — Fortsetzung

Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1: Situation nach Q.Enqueue(s): v

Initialize(G, s)

Q = new Queue() e s.d=0=1/(s,s)

Q.I?nqueue(s)

Wil Ge Glmpi() ¢ o firalle ve V\ {s}gilt v.d =

u = Q.Dequeue()

foreach v € Adj[u] do . . _
if v color —— white then. kK > 11 Situation nach Q.Enqueue(v):

v.color = gray

vd—udt1 v war gerade noch weill und ist benachbart zu wu.
v.r = U v.d=ud+1>0d(s,u)+12=>d(s,v)

Q.Enqueue(v)

u.color = black

Jetzt ist v grau. = v.d andert sich nicht mehr.

21

Korrektheit von BFS — Fortsetzung

Sei s € V. Dann gilt fiir jede Kante (u, v) € E:
o(s,v) <d(s,u)+1. Ve

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).

Beweis. Induktion liber die Anz. kK von Enqueue-Oper.
BFS(Graph G, Vertex s) k =1: Situation nach Q.Enqueue(s): v
Initialize(G, s)
Q = new Queue() e sd=0= 5(5, 5)
Q.I?nqueue(s)
wh-':-:nog Séizneitey(()) do o firalleve V\{s}giltv.d =00
fore}?cr_cvolirAjj:[u]wZZe then k > 1: Situation nach Q.Enqueue(v): v
v.color 9l v war gerade noch weiB und ist benachbart zu v.
T v.d =ud+12>6(s,u)+1=>6(s,v)
L u._color = black

Jetzt ist v grau. = v.d andert sich nicht mehr.

21

22

Korrektheit von BFS — Fortsetzung

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > 4(s, v).\/

22

Korrektheit von BFS — Fortsetzung

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).\/

Lemma 3. Sei Q = (w1, w,..., v,) wahrend BFS. Dann gilt:
(A) v,.d < wvp.d+1 und
(B) vi.d < vii1.d furi=1,..., r—1.

22

Korrektheit von BFS — Fortsetzung

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > 4(s, v).\/

Lemma 3. Sei Q = (w1, w,..., v,) wahrend BFS. Dann gilt:
(A) v,.d <wvp.d+1 und
(B) V,'.d S V,'_|_1.d fuiri=1,..., r—1.

Also d-Werte der Knoten in Q z.B. (3,3,4,4,4).

22

Korrektheit von BFS — Fortsetzung

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.
Nach BFS(G, s) gilt fiir alle v € V: v.d > i(s, v).

v
Lemma 3. Sei Q = (w1, w,..., v,) wahrend BFS. Dann gilt:
(A) v,.d < wvp.d+1 und
(B) vid < vji1.d furi=1,..., r—1.
Korollar. Angenommen u wird friither als v in Q eingefiigt,

dann gilt u.d < v.d, wenn v in Q eingefiigt wird.

22

Korrektheit von BFS — Fortsetzung

Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).\/

Lemma 3. Sei Q = (v, v»,...,Vv,) wahrend BFS. Dann gilt:
(A) v,.d < wvp.d+1 und
(B) vid < vji1.d furi=1,..., r—1.

Korollar. Angenommen u wird friither als v in Q eingefiigt,
dann gilt u.d < v.d, wenn v in Q eingefiigt wird.

Bewels. Folgt aus Lemma 3 und der Tatsache, dass jeder
Knoten < 1x einen endlichen d-Wert bekommt.

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = 4(s, v).

23

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = 4(s, v).

(ii) Jeder von s erreichbare Knoten wird entdeckt.

23

23

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = 4(s, v).
(ii) Jeder von s erreichbare Knoten wird entdeckt.

(iii) Fiir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem
kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

23

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = 4(s, v).
(ii) Jeder von s erreichbare Knoten wird entdeckt.

(iii) Fiir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem
kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Bewels.

23

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = 4(s, v).
(ii) Jeder von s erreichbare Knoten wird entdeckt.

(iii) Fiir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem
kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis. (i) = (ii), (iii).

23

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.

Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = 4(s, v).

(ii) Jeder von s erreichbare Knoten wird entdeckt.

(iii) Fiir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem
kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis. (i) = (ii), (iii). Es geniigt also

(i)

Zu zeigen.

23

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.

Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = 4(s, v).

(ii) Jeder von s erreichbare Knoten wird entdeckt.

(iii) Fiir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem
kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis. (i) = (ii), (iii). Es geniigt also
Lemma 2 = v.d > §(s, v).

(i)

Zu zeigen.

23

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.

Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = (s, v).

(ii) Jeder von s erreichbare Knoten wird entdeckt.

(iii) Fiir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem
kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis. (i) = (ii), (iii). Es geniigt also

(i)

Zu zeigen.

Lemma 2 = v.d > d(s,v). Noch z.z.: v.d < (s, v).

23

Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.

Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = (s, v).

(ii) Jeder von s erreichbare Knoten wird entdeckt.

(iii) Fiir jeden von s erreichbaren Knoten v # s gilt:
es gibt einen kiirzesten s-v-Weg, der aus einem
kiirzesten s-v.m-Weg und der Kante (v.7, v) besteht.

Beweis. (i) = (ii), (iii). Es geniigt also

(i)

Zu zeigen.

Lemma 2 = v.d > d(s,v). Noch z.z.: v.d < (s, v).

Widerspruchsbeweis mit Wahl des ,, kleinsten Schurken®.

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

24

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

Vo

={veV:vr#£nl}U{s}

24

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

Vo

Ex

={veV:vr#£nl}U{s}
= {(v.mr,v):ve Vi \{s}}}

24

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

Vo

Ex

={veV:vr#£nl}U{s}
= {(v.mr,v):ve Vi \{s}}}

24

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

Vo

Ex

={veV:vr#£nl}U{s}
= {(v.mr,v):ve Vi \{s}}}

24

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

Vo

Ex

Klar:

={veV:vr#£nl}U{s}
= {(v.mr,v):ve Vi \{s}}}

G, ist ein Baum

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

Vo

Ex

Klar:

={veV:vr#£nl}U{s}
= {(v.mr,v):ve Vi \{s}}}

G, ist ein Baum (da zshg. und |E;| = |V, | — 1).

24

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

Vo

Ex

Klar:

Beh.:

={veV:var#nl}U{s} 3;"\; g
={(v.m,v):veV\{s}}} — .

G, ist ein Baum (da zshg. und |E;| = |V, | — 1).

G, ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.

24

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

Vo

Ex

Klar:

Beh.:

={veV:var#nl}U{s} 3;"\; g
={(v.m,v):ve V. \{s}}} — .

G, ist ein Baum (da zshg. und |E;| = |V, | — 1).

G, ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.
e V. ={v € V: v erreichbar von s}

24

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

Vo

Ex

Klar:

Beh.:

={veV:var#nl}U{s} 3;"\; g
={(v.m,v):ve V. \{s}}} — .

G, ist ein Baum (da zshg. und |E;| = |V, | — 1).

G, ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.
e V. ={v € V: v erreichbar von s}

o fiir alle v € V. enthalt G, einen eindeutigen Weg
von s nach v, der ein kiirzester s-v-Weg ist.

24

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

Vo

Ex

Klar:

Beh.:

={veV:var#nl}U{s} ;"\; ’
={(v.m,v):ve V. \{s}}} L —>o
G, ist ein Baum (da zshg. und |E;| = |V, | — 1).

G, ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.
e V. ={v € V: v erreichbar von s}

o fiir alle v € V. enthalt G, einen eindeutigen Weg
von s nach v, der ein kiirzester s-v-Weg ist.

24

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

o |V |={veV:vr#£nil}U{s} %>.;>0\~: °
o |E.|[={(v.mr,v):ve V. \{s}}} — ..

Klar: G, ist ein Baum (da zshg. und |E;| = |V,| — 1).

Beh.: G ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.
e V. ={v € V: v erreichbar von s}

o fiir alle v € V. enthalt G, einen eindeutigen Weg
von s nach v, der ein kiirzester s-v-Weg ist.

Bew.:

24

BFS-Biaume

Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

o |V |={veV:vr#£nil}U{s} %>.;>0\~: °
o |E.|[={(v.mr,v):ve V. \{s}}} — ..

Klar: G, ist ein Baum (da zshg. und |E;| = |V,| — 1).

Beh.: G ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.
e V. ={v € V: v erreichbar von s}

o fiir alle v € V. enthalt G, einen eindeutigen Weg
von s nach v, der ein kiirzester s-v-Weg ist.

Bew.: Folgt aus (ii) und (iii) im Hauptsatz.

	Titel
	Was ist das?
	StudiVZ am 9. Dezember 2006
	StudiVZ-Statistiken
	Der "`StudiVZ-Graph"'
	Kozitationsnetzwerk
	F: Was ist ein Graph?
	F: Wie repräsentiere ich einen Graphen?
	Grad eines Knotens
	Rundlaufstrategien für ungerichtete Graphen
	F: Wie durchlaufe ich einen Graphen?
	Breitensuche
	Korrektheit von BFS -- Vorbereitung
	Korrektheit von BFS -- Fortsetzung
	Korrektheit von BFS -- Fortsetzung
	Korrektheit von BFS -- Hauptsatz
	BFS-Bäume

