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Was ist das?

Ein (und derselbe) Graph.; der dreidimensionale Hyperwürfel.
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StudiVZ am 9. Dezember 2006

Insgesamt 1.074.574 Profile (davon 1.035.890 öffentlich)

Davon 430.000 aktiv ; ein Profil ist aktiv, wenn
• das Profil öffentlich ist,
• die Person mindestens zwei Freunde hat,
• in mindestens einer Gruppe ist und
• das Profil innerhalb des letzten Monats aktualisiert wurde.
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StudiVZ am 9. Dezember 2006

Insgesamt 1.074.574 Profile (davon 1.035.890 öffentlich)

Davon 430.000 aktiv ; ein Profil ist aktiv, wenn
• das Profil öffentlich ist,
• die Person mindestens zwei Freunde hat,
• in mindestens einer Gruppe ist und
• das Profil innerhalb des letzten Monats aktualisiert wurde.

Ein wenig Statistik über die Mitglieder, sortiert nach Studienfach. . .
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Der
”
StudiVZ-Graph“

Der
”
StudiVZ-Graph“ enthält nur Gruppen, die

• mindestens 10 Mitglieder haben und
• zu einem Cluster (= stark verbundener Teilgraph) gehören.

Zwei Gruppen sind durch eine Kante verbunden, wenn ≥ 45%
der Mitglieder einer Gruppe auch Mitglieder der anderen sind.
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Die Graphzeichen-Community 1994–2004

Emden R. Gansner, Yifan Hu, Stephen G. Kobourov:
GMap: Drawing Graphs as Maps [PacificVis’10]
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Die Graphzeichen-Community 1994–2004

Emden R. Gansner, Yifan Hu, Stephen G. Kobourov:
GMap: Drawing Graphs as Maps [PacificVis’10]

Autoren, die in diesen
Jahren auf dem
Symposium für
Graphzeichnen Artikel
veröffentlicht haben

Knoten:

Autoren, die zusammen
Artikel veröffentlicht haben

Kanten:

stark zusammenhängende
Teilgraphen (Cluster)

Länder:
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Die Graphzeichen-Community 1994–2007

Emden R. Gansner, Yifan Hu, Stephen G. Kobourov:
GMap: Drawing Graphs as Maps [PacificVis’10]



14

F: Was ist ein Graph?



14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V , E )



14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V , E )



14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V , E )

– V Knotenmenge und
– E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
Kantenmenge.

, wobei



14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V , E )

– V Knotenmenge und
– E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
Kantenmenge.

, wobei

V ={000, 001, . . . , 111}
{u, v} ∈ E ⇔ ?

000 001

011010

100
101

111
110



14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V , E )

– V Knotenmenge und
– E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
Kantenmenge.

, wobei

V ={000, 001, . . . , 111}
{u, v} ∈ E ⇔ ?

000 001

011010

100
101

111

Alice Bob

110

Charlie



14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V , E )

– V Knotenmenge und
– E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
Kantenmenge.

, wobei

V ={000, 001, . . . , 111}
{u, v} ∈ E ⇔ ?

000 001

011010

100
101

111

Alice Bob

110

Charlie

A2: Ein gerichteter Graph ist ein Paar (V , E )

– V Knotenmenge und
– E ⊆ V × V = {(u, v) | u, v ∈ V } Kantenmenge.

, wobei
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Wir sagen: Knoten 3 und 5 sind adjazent.
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Zähle alle Knoten-Kanten-Inzidenzen.

Aus Sicht der Knoten:

Aus Sicht der Kanten:

Def.

also gleich!

∑
v∈V deg v

2 · |E |

Eine Kante ist inzident
zu ihren Endknoten.

Ein Knoten ist inzident
zu allen Kanten, deren
Endknoten er ist.



16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v ]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E ) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

X



16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v ]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E ) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.



16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v ]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E ) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v



16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v ]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E ) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v



16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v ]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E ) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade!



16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v ]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E ) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade! gerade!



16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v ]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E ) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade! gerade! gerade!



16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v ]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E ) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade! gerade! gerade!



16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v ]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E ) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade! gerade! gerade! ⇒ gerade!



16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v ]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E ) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade! gerade! gerade! ⇒ gerade!∑
v∈Vung

deg v gerade ⇒



16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v ]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E ) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade! gerade! gerade! ⇒ gerade!∑
v∈Vung

deg v gerade ⇒ |Vung| ist gerade! �



17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.



17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?



17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?



17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.



17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?



17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

P



17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

P
NP-schwer



17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

P
NP-schwer

Vorlesung Algorithmische Graphentheorie (nächstes Semester!)
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F: Wie durchlaufe ich einen Graphen?

Ideen?

G
s

1. wellenförmige Ausbreitung ab einem gegebenen Startknoten s

Breitensuche (breadth-first search, BFS)

2. vom Startknoten s möglichst schnell weit weg

Tiefensuche (depth-first search, DFS)

nächstes Mal!

jetzt!
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X

Beweis.

Korollar. Angenommen u wird früher als v in Q eingefügt,
dann gilt u.d ≤ v .d , wenn v in Q eingefügt wird.

Folgt aus Lemma 3 und der Tatsache, dass jeder
Knoten ≤ 1× einen endlichen d-Wert bekommt.

Also d-Werte der Knoten in Q z.B. 〈3, 3, 4, 4, 4〉.
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Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

(i) Für alle Knoten v ∈ V gilt v .d = δ(s, v).
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Beweis.

Widerspruchsbeweis mit Wahl des
”
kleinsten Schurken“.

Siehe Kapitel 22.2 [CLRS].
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