
1

Algorithmen und Datenstrukturen

Wintersemester 2020/21

18. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Graphen:
Repräsentation und Durchlaufstrategien

2

Was ist das?

2

Was ist das?

Ein (und derselbe) Graph.

2

Was ist das?

Ein (und derselbe) Graph.; der dreidimensionale Hyperwürfel.

3

StudiVZ am 9. Dezember 2006

Insgesamt 1.074.574 Profile (davon 1.035.890 öffentlich)

Davon 430.000 aktiv ; ein Profil ist aktiv, wenn
• das Profil öffentlich ist,
• die Person mindestens zwei Freunde hat,
• in mindestens einer Gruppe ist und
• das Profil innerhalb des letzten Monats aktualisiert wurde.

3

StudiVZ am 9. Dezember 2006

Insgesamt 1.074.574 Profile (davon 1.035.890 öffentlich)

Davon 430.000 aktiv ; ein Profil ist aktiv, wenn
• das Profil öffentlich ist,
• die Person mindestens zwei Freunde hat,
• in mindestens einer Gruppe ist und
• das Profil innerhalb des letzten Monats aktualisiert wurde.

Ein wenig Statistik über die Mitglieder, sortiert nach Studienfach. . .

4

StudiVZ-Statistiken

studivz.irgendwo.org

4

StudiVZ-Statistiken

studivz.irgendwo.org

4

StudiVZ-Statistiken

studivz.irgendwo.org

4

StudiVZ-Statistiken

studivz.irgendwo.org

4

StudiVZ-Statistiken

studivz.irgendwo.org

5

Der
”
StudiVZ-Graph“

Der
”
StudiVZ-Graph“ enthält nur Gruppen, die

• mindestens 10 Mitglieder haben und
• zu einem Cluster (= stark verbundener Teilgraph) gehören.

Zwei Gruppen sind durch eine Kante verbunden, wenn ≥ 45%
der Mitglieder einer Gruppe auch Mitglieder der anderen sind.

6

studivz.irgendwo.org

Der
StudiVZ-
Graph

6

studivz.irgendwo.org

1

2

3

4
5

Der
StudiVZ-
Graph

7

studivz.irgendwo.org

Ausschnitt 1

8

studivz.irgendwo.org

Ausschnitt 2

9

Ausschnitt 3

studivz.irgendwo.org

10

studivz.irgendwo.org

Ausschnitt 4

11

studivz.irgendwo.org

Ausschnitt 5

12

Die Graphzeichen-Community 1994–2004

Emden R. Gansner, Yifan Hu, Stephen G. Kobourov:
GMap: Drawing Graphs as Maps [PacificVis’10]

12

Die Graphzeichen-Community 1994–2004

Emden R. Gansner, Yifan Hu, Stephen G. Kobourov:
GMap: Drawing Graphs as Maps [PacificVis’10]

Autoren, die in diesen
Jahren auf dem
Symposium für
Graphzeichnen Artikel
veröffentlicht haben

Knoten:

12

Die Graphzeichen-Community 1994–2004

Emden R. Gansner, Yifan Hu, Stephen G. Kobourov:
GMap: Drawing Graphs as Maps [PacificVis’10]

Autoren, die in diesen
Jahren auf dem
Symposium für
Graphzeichnen Artikel
veröffentlicht haben

Knoten:

Autoren, die zusammen
Artikel veröffentlicht haben

Kanten:

12

Die Graphzeichen-Community 1994–2004

Emden R. Gansner, Yifan Hu, Stephen G. Kobourov:
GMap: Drawing Graphs as Maps [PacificVis’10]

Autoren, die in diesen
Jahren auf dem
Symposium für
Graphzeichnen Artikel
veröffentlicht haben

Knoten:

Autoren, die zusammen
Artikel veröffentlicht haben

Kanten:

stark zusammenhängende
Teilgraphen (Cluster)

Länder:

13

Die Graphzeichen-Community 1994–2007

Emden R. Gansner, Yifan Hu, Stephen G. Kobourov:
GMap: Drawing Graphs as Maps [PacificVis’10]

14

F: Was ist ein Graph?

14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V , E)

14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V , E)

14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V , E)

– V Knotenmenge und
– E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
Kantenmenge.

, wobei

14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V , E)

– V Knotenmenge und
– E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
Kantenmenge.

, wobei

V ={000, 001, . . . , 111}
{u, v} ∈ E ⇔ ?

000 001

011010

100
101

111
110

14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V , E)

– V Knotenmenge und
– E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
Kantenmenge.

, wobei

V ={000, 001, . . . , 111}
{u, v} ∈ E ⇔ ?

000 001

011010

100
101

111

Alice Bob

110

Charlie

14

F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V , E)

– V Knotenmenge und
– E ⊆

(
V
2

)
=
{
{u, v} ⊆ V | u 6= v

}
Kantenmenge.

, wobei

V ={000, 001, . . . , 111}
{u, v} ∈ E ⇔ ?

000 001

011010

100
101

111

Alice Bob

110

Charlie

A2: Ein gerichteter Graph ist ein Paar (V , E)

– V Knotenmenge und
– E ⊆ V × V = {(u, v) | u, v ∈ V } Kantenmenge.

, wobei

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

ungerichteter
Graph

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42
ungerichteter
Graph

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42

Adjazenzlistenungerichteter
Graph

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42

Adjazenzlistenungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

Adjazenzlistenungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlistenungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrixungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

gerichteter
Graph

ungerichteter
Graph

Wir sagen: Knoten 3 und 5 sind adjazent.

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

1
2
3
4
5

5 3
2
1

3

4
gerichteter
Graph

ungerichteter
Graph

Adj[i] = {j ∈ V | (i , j) ∈ E}

Wir sagen: Knoten 3 und 5 sind adjazent.

15

F: Wie repräsentiere ich einen Graphen?

1 2

34

5

1
2
3
4
5

1 3
2 4
3 1

3 4
5
5

42 5
4
3
2
1

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1

Adjazenzlisten Adjazenzmatrix

1 2

34

5

1
2
3
4
5

5 3
2
1

3

4 5
4
3
2
1

1 2 3 4 5

0 0 1 0 0

0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 1

gerichteter
Graph

ungerichteter
Graph

Adj[i] = {j ∈ V | (i , j) ∈ E} ai j = 1⇔ (i , j) ∈ E

Wir sagen: Knoten 3 und 5 sind adjazent.

16

Grad eines Knotens

u
Def.

16

Grad eines Knotens

deg(u) = |Adj[u]|u
Def.

16

Grad eines Knotens

deg(u) = |Adj[u]|

v

u
Def.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
v

u
Def.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u
Def.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade =

Def.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Beweis. Technik des zweifachen Abzählens:

Def.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Def.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Def.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Def.

Eine Kante ist inzident
zu ihren Endknoten.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Def.

Eine Kante ist inzident
zu ihren Endknoten.

Ein Knoten ist inzident
zu allen Kanten, deren
Endknoten er ist.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Aus Sicht der Knoten:

Aus Sicht der Kanten:

Def.

Eine Kante ist inzident
zu ihren Endknoten.

Ein Knoten ist inzident
zu allen Kanten, deren
Endknoten er ist.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Aus Sicht der Knoten:

Aus Sicht der Kanten:

Def.

∑
v∈V deg v

Eine Kante ist inzident
zu ihren Endknoten.

Ein Knoten ist inzident
zu allen Kanten, deren
Endknoten er ist.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Aus Sicht der Knoten:

Aus Sicht der Kanten:

Def.

∑
v∈V deg v

2 · |E |

Eine Kante ist inzident
zu ihren Endknoten.

Ein Knoten ist inzident
zu allen Kanten, deren
Endknoten er ist.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Beweis. Technik des zweifachen Abzählens:

Zähle alle Knoten-Kanten-Inzidenzen.

Aus Sicht der Knoten:

Aus Sicht der Kanten:

Def.

also gleich!

∑
v∈V deg v

2 · |E |

Eine Kante ist inzident
zu ihren Endknoten.

Ein Knoten ist inzident
zu allen Kanten, deren
Endknoten er ist.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

X

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade!

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade! gerade!

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade! gerade! gerade!

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade! gerade! gerade!

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade! gerade! gerade! ⇒ gerade!

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade! gerade! gerade! ⇒ gerade!∑
v∈Vung

deg v gerade ⇒

16

Grad eines Knotens

deg(u) = |Adj[u]|

outdeg(v) = |Adj[v]|
indeg(v) = |{u ∈ V : (u, v) ∈ E}|

v

u

Beob. Sei G = (V , E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 · |E | .

Def.

Sätzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2 · |E | =
∑

v∈V deg v =
∑

v∈Vger
deg v +

∑
v∈Vung

deg v

gerade! gerade! gerade! ⇒ gerade!∑
v∈Vung

deg v gerade ⇒ |Vung| ist gerade! �

17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

P

17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

P
NP-schwer

17

Rundlaufstrategien für ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,

so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,

so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?

P
NP-schwer

Vorlesung Algorithmische Graphentheorie (nächstes Semester!)

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

G
s

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

G
s

1. wellenförmige Ausbreitung ab einem gegebenen Startknoten s

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

G
s

1. wellenförmige Ausbreitung ab einem gegebenen Startknoten s

Breitensuche (breadth-first search, BFS)

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

G
s

1. wellenförmige Ausbreitung ab einem gegebenen Startknoten s

Breitensuche (breadth-first search, BFS)

2. vom Startknoten s möglichst schnell weit weg

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

G
s

1. wellenförmige Ausbreitung ab einem gegebenen Startknoten s

Breitensuche (breadth-first search, BFS)

2. vom Startknoten s möglichst schnell weit weg

Tiefensuche (depth-first search, DFS)

18

F: Wie durchlaufe ich einen Graphen?

Ideen?

G
s

1. wellenförmige Ausbreitung ab einem gegebenen Startknoten s

Breitensuche (breadth-first search, BFS)

2. vom Startknoten s möglichst schnell weit weg

Tiefensuche (depth-first search, DFS)

nächstes Mal!

jetzt!

19

Breitensuche
r s t u

v w x y

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

0

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

0

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

0

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

w r

11

1

0

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

w r

11

1

00

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

w r

00

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

w r

00

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

w r

2

2

00

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

w r t x

2

2

00

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

w r t x

2

21

00

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x

00

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x

00

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x

2

00

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

00

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

001

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

001

usw.

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

Welche
Datenstruktur??

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

Aufgabe:
Schreiben Sie Pseudocode, so dass:
v .d = Länge eines kürzesten

s-v -Weges über u, falls ...
v .π = Vorgänger auf diesem Weg

001

usw.

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

Laufzeit?

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

Initialize

Laufzeit?

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

Initialize

Laufzeit? O(|V |)

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

Initialize En-/Dequeues

Laufzeit? O(|V |)

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

Initialize En-/Dequeues

Laufzeit? O(|V |) + O(|V |)

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

Initialize En-/Dequeues Adjazenzlisten (foreach-Schleifen)

Laufzeit? O(|V |) + O(|V |)

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

Initialize En-/Dequeues Adjazenzlisten (foreach-Schleifen)

Laufzeit? O(|V |) + O(|V |) + O(|E |)
[Beob. über Knotengrade!]

19

Breitensuche
r s t u

v w x y

∞ ∞∞

∞∞∞∞

11

1

2

21

w r t x v

2

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

Initialize(Graph G , Vertex s)
foreach u ∈ V do

u.color = white
u.d =∞
u.π = nil

s.color = gray
s.d = 0

001

usw.

Initialize En-/Dequeues Adjazenzlisten (foreach-Schleifen)

Laufzeit? O(|V |) + O(|V |) + O(|E |) = O(|V |+ |E |)
[Beob. über Knotengrade!]

20

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V , E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) :=∞).

20

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V , E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) :=∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v).

20

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V , E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) :=∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v). tatsächlicher
Abstand von s

berechneter
Abstand von s

20

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V , E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) :=∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v). tatsächlicher
Abstand von s

berechneter
Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

20

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V , E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) :=∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v). tatsächlicher
Abstand von s

berechneter
Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

u

v

20

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V , E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) :=∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v). tatsächlicher
Abstand von s

berechneter
Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

u

v
Beweis.

20

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V , E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) :=∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v). tatsächlicher
Abstand von s

berechneter
Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

u

v
Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)

20

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V , E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) :=∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v). tatsächlicher
Abstand von s

berechneter
Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

u

v

s

Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)

20

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V , E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) :=∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v). tatsächlicher
Abstand von s

berechneter
Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

u

v

s
δ(s, u)

Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)

20

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V , E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) :=∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v). tatsächlicher
Abstand von s

berechneter
Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

u

v

s
δ(s, u)

Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)
Dieser s-v -Weg hat Länge δ(s, u) + 1.

20

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V , E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) :=∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v). tatsächlicher
Abstand von s

berechneter
Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

u

v

s
δ(s, u)

Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)
Dieser s-v -Weg hat Länge δ(s, u) + 1.

⇓

20

Korrektheit von BFS – Vorbereitung

Definition. Sei G = (V , E) (un)gerichteter Graph, u, v ∈ V .
δ(u, v) := Länge eines kürzesten u-v -Wegs,

(falls v von u erreichbar; sonst δ(u, v) :=∞).

Ziel: Zeige, dass nach BFS(G , s) für alle v ∈ V gilt:

v .d = δ(s, v). tatsächlicher
Abstand von s

berechneter
Abstand von s

Lemma 1. (Eigenschaft kürzester Wege)

Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Dann gilt für jede Kante (u, v) ∈ E :

δ(s, v) ≤ δ(s, u) + 1.

u

v

s
δ(s, u)

Beweis. 1. Fall: u ist von s erreichbar (d.h. ∃ s-u-Weg)
Dieser s-v -Weg hat Länge δ(s, u) + 1.

Kürzester s-v -Weg hat Länge ≤ δ(s, u) + 1.

⇓

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

Situation nach Q.Enqueue(v):k > 1:

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

v war gerade noch weiß und ist benachbart zu u.

Situation nach Q.Enqueue(v):k > 1:

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1

Situation nach Q.Enqueue(v):k > 1:

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1

Situation nach Q.Enqueue(v):k > 1:

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1

Induktionsannahme für u

Situation nach Q.Enqueue(v):k > 1:

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1

Induktionsannahme für u
(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Induktionsannahme für u
(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Induktionsannahme für u Lemma 1
(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Induktionsannahme für u Lemma 1

Jetzt ist v grau.

(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Induktionsannahme für u Lemma 1

Jetzt ist v grau. ⇒ v .d ändert sich nicht mehr.

(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Induktionsannahme für u Lemma 1

Jetzt ist v grau. ⇒ v .d ändert sich nicht mehr.

(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

Situation nach Q.Enqueue(v):k > 1:

21

Korrektheit von BFS – Fortsetzung

Lemma 1. Sei s ∈ V . Dann gilt für jede Kante (u, v) ∈ E :
δ(s, v) ≤ δ(s, u) + 1. X

Beweis.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

Induktion über die Anz. k von Enqueue-Oper.
Situation nach Q.Enqueue(s):

• s.d = 0 = δ(s, s)

• für alle v ∈ V \ {s} gilt v .d =∞ ≥ δ(s, v)

k = 1:BFS(Graph G , Vertex s)

Initialize(G , s)
Q = new Queue()
Q.Enqueue(s)
while not Q.Empty() do

u = Q.Dequeue()
foreach v ∈ Adj[u] do

if v .color == white then
v .color = gray
v .d = u.d + 1
v .π = u
Q.Enqueue(v)

u.color = black

X

v war gerade noch weiß und ist benachbart zu u.
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v)

Induktionsannahme für u Lemma 1

Jetzt ist v grau. ⇒ v .d ändert sich nicht mehr.

(u.d wurde gesetzt, als Anz. Enqueue-Oper. < k)

X

�

Situation nach Q.Enqueue(v):k > 1:

22

Korrektheit von BFS – Fortsetzung

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

X

22

Korrektheit von BFS – Fortsetzung

Lemma 3. Sei Q = 〈v1, v2, . . . , vr 〉 während BFS. Dann gilt:
(A) vr .d ≤ v1.d + 1 und
(B) vi .d ≤ vi+1.d für i = 1, . . . , r − 1.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

X

22

Korrektheit von BFS – Fortsetzung

Lemma 3. Sei Q = 〈v1, v2, . . . , vr 〉 während BFS. Dann gilt:
(A) vr .d ≤ v1.d + 1 und
(B) vi .d ≤ vi+1.d für i = 1, . . . , r − 1.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

X

Also d-Werte der Knoten in Q z.B. 〈3, 3, 4, 4, 4〉.

22

Korrektheit von BFS – Fortsetzung

Lemma 3. Sei Q = 〈v1, v2, . . . , vr 〉 während BFS. Dann gilt:
(A) vr .d ≤ v1.d + 1 und
(B) vi .d ≤ vi+1.d für i = 1, . . . , r − 1.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

X

Korollar. Angenommen u wird früher als v in Q eingefügt,
dann gilt u.d ≤ v .d , wenn v in Q eingefügt wird.

Also d-Werte der Knoten in Q z.B. 〈3, 3, 4, 4, 4〉.

22

Korrektheit von BFS – Fortsetzung

Lemma 3. Sei Q = 〈v1, v2, . . . , vr 〉 während BFS. Dann gilt:
(A) vr .d ≤ v1.d + 1 und
(B) vi .d ≤ vi+1.d für i = 1, . . . , r − 1.

Lemma 2. Sei G = (V , E) ein (un)gerichteter Graph, s ∈ V .
Nach BFS(G , s) gilt für alle v ∈ V : v .d ≥ δ(s, v).

X

Beweis.

Korollar. Angenommen u wird früher als v in Q eingefügt,
dann gilt u.d ≤ v .d , wenn v in Q eingefügt wird.

Folgt aus Lemma 3 und der Tatsache, dass jeder
Knoten ≤ 1× einen endlichen d-Wert bekommt.

Also d-Werte der Knoten in Q z.B. 〈3, 3, 4, 4, 4〉.

23

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

(i) Für alle Knoten v ∈ V gilt v .d = δ(s, v).

23

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

(i)

(ii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

23

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v 6= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v.π-Weg und der Kante (v.π, v) besteht.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

23

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v 6= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v.π-Weg und der Kante (v.π, v) besteht.

Beweis.

(i)

(ii)

(iii)

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

23

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v 6= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v.π-Weg und der Kante (v.π, v) besteht.

Beweis.

(i)

(ii)

(iii)

(i) ⇒ (ii), (iii).

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

23

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v 6= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v.π-Weg und der Kante (v.π, v) besteht.

Beweis.

(i)

(ii)

(iii)

(i) ⇒ (ii), (iii). Es genügt also (i) zu zeigen.

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

23

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v 6= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v.π-Weg und der Kante (v.π, v) besteht.

Beweis.

(i)

(ii)

(iii)

(i) ⇒ (ii), (iii). Es genügt also (i) zu zeigen.

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

Lemma 2 ⇒ v .d ≥ δ(s, v).

23

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v 6= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v.π-Weg und der Kante (v.π, v) besteht.

Beweis.

(i)

(ii)

(iii)

(i) ⇒ (ii), (iii). Es genügt also (i) zu zeigen.

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

Lemma 2 ⇒ v .d ≥ δ(s, v). Noch z.z.: v .d ≤ δ(s, v).

23

Korrektheit von BFS – Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G .
Nach BFS(G , s) gilt:

Für jeden von s erreichbaren Knoten v 6= s gilt:
es gibt einen kürzesten s-v -Weg, der aus einem
kürzesten s-v.π-Weg und der Kante (v.π, v) besteht.

Beweis.

Widerspruchsbeweis mit Wahl des
”
kleinsten Schurken“.

Siehe Kapitel 22.2 [CLRS].

(i)

(ii)

(iii)

(i) ⇒ (ii), (iii). Es genügt also (i) zu zeigen.

Für alle Knoten v ∈ V gilt v .d = δ(s, v).

Jeder von s erreichbare Knoten wird entdeckt.

Lemma 2 ⇒ v .d ≥ δ(s, v). Noch z.z.: v .d ≤ δ(s, v).

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

s

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

• Vπ = {v ∈ V : v .π 6= nil} ∪ {s}
s

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

• Vπ = {v ∈ V : v .π 6= nil} ∪ {s}

• Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}
s

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

• Vπ = {v ∈ V : v .π 6= nil} ∪ {s}

• Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}
s

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

• Vπ = {v ∈ V : v .π 6= nil} ∪ {s}

• Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}
s

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

• Vπ = {v ∈ V : v .π 6= nil} ∪ {s}

• Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum

s

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

• Vπ = {v ∈ V : v .π 6= nil} ∪ {s}

• Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

s

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

• Vπ = {v ∈ V : v .π 6= nil} ∪ {s}

• Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

Beh.: Gπ ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

s

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

• Vπ = {v ∈ V : v .π 6= nil} ∪ {s}

• Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

Beh.: Gπ ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

• Vπ = {v ∈ V : v erreichbar von s}

s

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

• Vπ = {v ∈ V : v .π 6= nil} ∪ {s}

• Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

Beh.: Gπ ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

• Vπ = {v ∈ V : v erreichbar von s}
• für alle v ∈ Vπ enthält Gπ einen eindeutigen Weg

von s nach v , der ein kürzester s-v -Weg ist.

s

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

• Vπ = {v ∈ V : v .π 6= nil} ∪ {s}

• Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

Beh.: Gπ ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

• Vπ = {v ∈ V : v erreichbar von s}
• für alle v ∈ Vπ enthält Gπ einen eindeutigen Weg

von s nach v , der ein kürzester s-v -Weg ist.

s

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

• Vπ = {v ∈ V : v .π 6= nil} ∪ {s}

• Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

Beh.: Gπ ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

• Vπ = {v ∈ V : v erreichbar von s}
• für alle v ∈ Vπ enthält Gπ einen eindeutigen Weg

von s nach v , der ein kürzester s-v -Weg ist.

Bew.:

s

24

BFS-Bäume

Betrachte den Vorgänger-Graphen Gπ = (Vπ, Eπ) von G :

• Vπ = {v ∈ V : v .π 6= nil} ∪ {s}

• Eπ = {(v .π, v) : v ∈ Vπ \ {s}}}

Klar: Gπ ist ein Baum (da zshg. und |Eπ| = |Vπ| − 1).

Beh.: Gπ ist ein Kürzeste-Wege-Baum (oder BFS-Baum), d.h.

• Vπ = {v ∈ V : v erreichbar von s}
• für alle v ∈ Vπ enthält Gπ einen eindeutigen Weg

von s nach v , der ein kürzester s-v -Weg ist.

Bew.: Folgt aus (ii) und (iii) im Hauptsatz.

s

�

	Titel
	Was ist das?
	StudiVZ am 9. Dezember 2006
	StudiVZ-Statistiken
	Der "`StudiVZ-Graph"'
	Kozitationsnetzwerk
	F: Was ist ein Graph?
	F: Wie repräsentiere ich einen Graphen?
	Grad eines Knotens
	Rundlaufstrategien für ungerichtete Graphen
	F: Wie durchlaufe ich einen Graphen?
	Breitensuche
	Korrektheit von BFS -- Vorbereitung
	Korrektheit von BFS -- Fortsetzung
	Korrektheit von BFS -- Fortsetzung
	Korrektheit von BFS -- Hauptsatz
	BFS-Bäume

