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Was ist das?



Was ist das?

Ein (und derselbe) Graph.



Was ist das?

Ein (und derselbe) Graph; der dreidimensionale Hyperwiirfel.



StudiVZ am 9. Dezember 2006

Insgesamt 1.074.574 Profile (davon 1.035.890 offentlich)

Davon 430.000 aktiv: ein Profil ist aktiv, wenn
e das Profil offentlich ist,
e die Person mindestens zweil Freunde hat,
e in mindestens einer Gruppe ist und
e das Profil innerhalb des letzten Monats aktualisiert wurde.



StudiVZ am 9. Dezember 2006

Insgesamt 1.074.574 Profile (davon 1.035.890 offentlich)

Davon 430.000 aktiv: ein Profil ist aktiv, wenn
e das Profil offentlich ist,
e die Person mindestens zweil Freunde hat,
e in mindestens einer Gruppe ist und
e das Profil innerhalb des letzten Monats aktualisiert wurde.

Ein wenig Statistik iiber die Mitglieder, sortiert nach Studienfach. ..
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Der ,, StudiVZ-Graph*

Der ,,StudiVZ-Graph" enthalt nur Gruppen, die
e mindestens 10 Mitglieder haben und
e zu einem Cluster (= stark verbundener Teilgraph) gehoren.

Zwei Gruppen sind durch eine Kante verbunden, wenn > 45%
der Mitglieder einer Gruppe auch Mitglieder der anderen sind.



Der
StudiVZ-
Graph




Der

1V /-

Stud

Graph

-
\

stud

dwo.org

Vz.irgen




N i, s
T N et L ) 7
N e e iR ¢ fed

e N P o<y :

Islamische Gemeinschall MiIIi ‘W' ‘\ a‘. *\:'?" kit ., —

ever // Musliuman genclik ::.. a m ﬁ‘ "‘“\‘t}%‘ﬁ{ E :_‘ LA
LA ST e N

A y

RN s~

eL- Topraga yerlesscek u.mk -!ﬁ? Sl "35 I;] ;TW GHT'I'- Cr L”LEE’ leil;rtc n

' R et I W R il o e

= i
el

iy

o,

At Ty ...‘f' L ..l 1
i A '4,,
7 1:55:? “}"-‘ig' ! E = ‘:-|" hh

RV TITIEAN

/
;
H
g

F A
A {*-1' f;f g -"-"‘."!\"llgh‘ (7
S 47 o - Ny
R TR B e T el ey

Tirk Halk Owyuyiilari (Folklet)



s
==k

st
ymnasium
orf Gruppe

ist mein {Far




s 3

3

Tﬁi\'}‘a

N

AL TR 4} -
R

B
Lt
S NI & (o

i

7

f T k@ i—ﬁ“f! ‘ ..‘f-r‘
ki A
Y

17

AN




1land Lebensmittelchemie Wirzburg

Alumni des Regino-Gymnasiums Priim

Ausschnitt 4

nge Union Rheinland-Pfalz

RCDS Westkonferenz 06

\

rwuchsforderungsprogramm CDU-Hessen

Cafeten-Amanda: Die Karte piept!

JU-Mitglieder

Junge Union Schleswig-Holstein

Winfriden-Cocktailparty

RCDS Stupa Wahl 2006 Liste |

re Union Bezirksverband Trier




Ausschnitt 5

liteuniversitit LMU Miinchen

BWL Miinchen |.Semester WS 06/07

Ludwig Maximilians Universitit Miinchen - LMU

"lchhab’s getan" Pidagogik Erstis an der LMU

hematik Erstsemestler WS 06/07 Miinchen




R ! ] I 4

1 Sykora / | Wilhelm /

= / AN / | Alt \ \ e
| / N———— | | L ) \,
{ Newton f \ Ferdinand | - / S
|
— ! Miyazawa \ B
/ -/ >
— = . ____,f —n \l
[ [ [ - 1
[ Miura Egl
— — | ’
/ Una
, /
_ = (:"
Y /_/ D { Nishizeki ~
(// \\\ /__,.- m‘\ II P—— Rahman "x__‘

\ - Nakano |
| y Arono ( \
|I Misue | { " Sharir | L Narnin /

. | Wenger ! \\ /

| h Agarw; T (

/ AN [ Pollack | | Yoshikawa Chos ."I

L } - | \ P
—_ . | \ -
A 1 TokunyamaWatanabe d
i Sugiyama Pach T2rdos piopag N AN —
5] — -~ .
= Carrington | — \\_ d
Stolfl Maeda Taylor Toth Dyck \ ~————
:I Lozada Abelson Wilsdon .

Allder 3 -
| Chow Neto Hong il Thiele /
| Purchase ) Nickle ¥
\: Quigley Webber Lynn bl -

[ Ruskey Lee Closs f
II James Alt o f
| il Sl Lin Lin MUY Fredrich Fekete Godan g AT
[ (39 \
| \
A
| > !
/ Kt Feng Huang Feng  apvan Houle Morin o her Jolisnsen | Hashemi
. | {
/ Symvonis Iturriags \
N ____.---" Nascimento < Shermer N
\ Hes Grigorescu Bertault Waod Wismath )
Biedl Whitesides Meijer . Vernacotola Dean
Nishimura i Felsner i
Hallett - . —
e Bertolazzi Lillo Snoeyink T — o
sindy \
itehing “Gi \
Rosamond . e L \
Suderman Baoyer Matera Mareandall Bose e Hern e Teje \_ N
Battista Y
Mde FeIhws - g Cortese Leonforte ms .‘\.
Didimo Carmignani MeAllister  Gomez i Hernan . ™
McCartin Patrienani Gmia—uﬁﬁ"“ Noy Garcia \
zonia \
Liotta Bridpeman HEHan o Hurtado Cobos  Castro |
Barbagallo  Italiano - - . )
Finocchi
Vargiu . . N\ e Dana
el yicmara  Buti Binued  Rusu Marguez Stcos
Pl Demetrescu '\
[ inari , Garrido
Tass Chanda \l T :
Nonato . S/
Fanto ; T /
Pap 4 -~
Garg w— _.“/ .
L = Apparwal
Kosaraju —
Goodrich Scheinerman ’/’
Meng Dickerson III
Fialke Buchheim Barth Cheng Tanenhbaum |
Odenthal |
Kobouroy G4 )
BrockenaueZiegler o o » ' .
T e uncan 't - . —_
Hirscuberg Bfeat \ Ve —
Koch \ o/ -
Klau Ambras Theme Wenk / / - \
Alberts Hundack Yee 7 / Kara A
undat Erten f
Navabi ‘Wampler f './ SR
K / | ©
ger Roxhorough _..-"I | Jelinek e
Pouchkarey Le Harding Ve | Pangrac
[ 9
Pitta / Dvorak —, _ Vondrak
Emden R. Gansner, Yifan Hu, Stephen G "Kobourov: > N\ /
A% — —— / —
e

GMap: Drawing Graphs as Maps [PacificVis'10] ~— -/

Alzohairi




R

Vrto [ { Sander Digugliclmo | /
.'I Sykora r/ | Wilkielna /I §
Unger | /) — i
—_— { r-l \ Kaplan Durocher |
‘| /N J £ | ) V2
| NI f { Ferdinand | ~ / \_
l\ :; \__ L J ;! Miyazawa : N\ .
~___ — - .
- S Asano
[ ] [ ] [ ] e Miura Egi ".__
le Graphzeichen-Community —
LN T { Nishizeki S
// A 7 . | — Rahman .
\ / robal 1
.II II.' ,erf Aronoy II Nakm - .I
| Misue \ .. I'I Woager Sharir || \ Naznin {
| al 1 ~— |
/ \ - II 20 Pollack _I \ Yoshikawa Chos ,..-I
_— . e | i r'f/
Rost Sugiyama Pach T2rdos piopag N N [T _
o _ /-_ }
Carrington | — \\ 7
/ Stolfi Maeda Taylor Toth ~—————
{ Lozada Abelson = -
\ Wilsdon . . .
Alder chon e seott | et : Autoren, die in diesen
[ Neto . /
I Purchase Nickle !
) oo QugEY Webber | Lynn Jahren a Uf dem Az
II- James Brkey Alt Clossan . T {
f
| Cohen AN | R SR AN Symposium fiir | e mon
{ = - - I'.
| \ VALY NN Graphzeichnen Artikel
) y Kmt  Feng Huang C0E  Garvan 3 Bretscher ] | Hashemi »
Yo [ N\ wald e \ veroffentlicht haben N
h o i ascimento . —
- Vopelmann i e 1 * A Tiped ‘Wismath e —
| Fosmicier Xia Biedl Whitesides Meijer Vernacotola -
| Steckelbacky aiatatd | Lubiw
/W (Neka ; Madden Eades Hallett * v
I S papakosts P Bertolazzi  Lille Snoeyink B e i
Ritt Dujmovic  Kitehing HlGindy
Mehidan Kau Suderman Rosamo 18C0MY poyer Bose
S\ %.ﬂh s Tollis U, MateraMarcandalli Sonenint e Tojel .
\ e Kuche Castello Ragde S ol Cortese Leonforte Ramos T . N
\ m - Didimo Carmignani i : nando _
Ik\ mMsdde.n McCartin Patrignani - e Gmia-uﬁﬁ"“m Noy Garcia \".
. Himsholt Pizzonia nhart \
Liotta Bridpeman —— i o~ Hurtado Cobos  Castro \
W A Barbagallo  Italiano |
B Lesh A Finoechi ,
¥ = " Y Dana \
Blair M Vismara Bud Binuweel  Rusu Marquez Mateos
Brandes Tamassia Demetrescu "\ |
Rohrer Parise Tass Chanda \, . Gerrido I'.
Nonato /J . S
Fanto Pop /, - /
Garg e e
i agner Apparwal
; Kosaraju —
COtiEh Scheinerman ,'/
Kupke -
Meng Dickerson {
Klein Fialke Buchheim Barth Cheng Tanenbaum |
Leipert Ofiatual Kobouroy G4ier )
Perean Brockenaudfiegler ' —~
Gutwenger Lee  (Dillencourt Duncan —_— / — /,x R
- \ —
felckifcher Koch RLERey \ y ~ P
Klau Ambras Theme Wenk f N NG
Alberts Hundack Erten Yee ,/') / Kara Kral g
""'——-_____________ - Naher Navahi ‘Wampler .;.. / Nyklova
) N LS Roxborough _ | Jelinek s Babilon
"\\ Pouchkarey Le Harding ’ | i
. e — ) Pitta / ™, Dvorak e~ Vondrak
Emden R. Gansner, Yifan Hu, Stephen G."Kobourov: 3 \ / —
— — -

GMap: Drawing Graphs as Maps [PacificVis'10] N ./ TN



R

Vrto

'. Sander Diguglielmo ! \
1 Sykora s Il Wilhelm |
Unger | /) — |/
— { rl \ Kaplan Durocher |
1 g \\\‘_ - i II Alt II I'.I /a'_ B "'-.,\
.l Newton { { Ferdinand } .‘\‘\___ . ____/._/" -' N )
l / \_ _ \ Miyazawa T
.. /.-' o | / AN _—
o — PR __,»" Asano S
L} [ ] [ ] I,/ Miura Egi ".__
le Graphzeichen-Community —
- ' ‘Io'.
— P { Nishizeki .
(// \, ,.--""’ 'a_\_‘\ I| Chraba Rahman e
| I-’j . || rebal Nakano _ ,
| Misue ,_ ',I Wenger Sharir I| \ Naznin II,-'
) arwal \ T
e \ - | P Pollack ' | e Ghosh /_'
e — |
\ | . Watanabe _
g EHyama Pach Tar0S pipepag \ . R -
| T——, ,/"
Stolfi Maeda Taylor Toth e
Lozada Abelson N
Wilsdon . . .
Allde . .
: r o N\ BE st | Trice : Autoren, die in diesen
Purchase Nickle S
Quigley Webber | Lynn Jahren auf dem — e
ll: James Bty N Al Closson . oo f
| Cohen AN | R SR AN Symposium fiir | e ol
{ = - - I'.
| \ VALY NN _ Graphzeichnen Artikel
) y Kmt  Feng Huang C0E  Garvan 3 Bretscher ' __ ] Hashemi »
D / - Syosvants tariga \ verdffentlicht haben N
— asciments - .
, — N, Hes Urigorescu Bertault Wood Wismath Shermer ' e
i o Whitesides i
| : Xia Biedl ; Vernacotola
| Steckelbachy ~ Fosmeier I L Dyan
g Kesk ubeck Nishimura Felmer \
/ : M v Papakostas Eades . - Helett Bertolazzi Lillo Sooayink - - S o
-y Bnstes Dujmovic  Kitehing ElGindy ) -
~ Mehldan Kau Suderman Rosamo 18C0MY poyer B
f H 1 M. dalli e R
Rosenstiel TR koutis s Tollis A MageraMarcn Toomaint Hernandez—Penver Tejel —,
Ludwig Paowers - Ragde Fellows ttista = — .
| L Didimo Carmignani i : Hernando .
. gmsmmadm McCartin Patrignani - e Gm;a_u'gﬁ"“m Noy Garcia \".
. Himshaolt = 2 nhart \
Piz: \
| Gene Schank Finlepe; Rt Vi Liotta Bridpeman et L~ Hurtado Cobos  Castro |
N Freivalds Barbagallo  Italisno P — \
\ " = Wagner Shubina Lesh /) il : Finoechi 9 N
| Cornelsen Kop AFE yigmara Bui Bimueed R Marquez ]
usu Mateos
. Kikusts Marks Demetrescu A - |
| Benkert o Parise Tassinari \ ~__ Garrido [
/ Chanda ) ~— )
| Rucevskis Nonato | T
\ Fanto s /
\ Pnp 4 \..\\ - 4
I'._ Gﬂl‘g . .(/ . . -
— Chan Wagser | sl ) Kanten: Autoren, die zusammen
II' Goodricn | -

Sccomena\__ Artikel veroffentlicht haber

Cheng Tanenbaum |

D 4 e /,.f""- —
Moy Kt/ ’ ~ .y /
Wenk J /-"' . _— _ \ g
Alberts Hundack riada = Fee .;.-"d -./ Nyklova
Roxborough Y S | Jelinek s AN Babilon
N\ Pouchkarey Harding v | grac
o P~ | AN ok R

Emden R. Gansner, Yifan Hu, Stephen G“Kobourov: >~ ™= N
GMap: Drawing Graphs as Maps [PacificVis'10]

— Vondrak
\\_--- i - -




\ Vrto [
"I Sykora { |

Unger i

Wilkelm

~ o S | Alt |

| - J
l Newton I_I.' \

Ferdinand

\\.

Sander

Die Gra phzéhiéhen—Com munity 1994—2004

P ™ e ""a.\
1% - ~
| \ _r"’ |
| \ { Aronov |
| Misue ',I Wenger Sharir '|
| arw |
p N\ . l P Pollack |
— — |
ot Sugiyama Pach Tardos poood I‘-.
5]
Carrington |
Stalfi Maeda Tayler Toth
Lomta Abelnt Wilsdon
Alld .
< Chow Neto Hong St Thiele
Purchase Nickle
g m Quigley  Webber | Lynn
III James Y Alt Clossan
NS Lin Lin ™M™ Friedrich Fekete
! Miller
| 2!
- // Kant  Feng Huang Feng  Garvan Houle Motin,  pretscher
Symvonis Iturriaga
_— - ' Hes Grigorescn Bertault | Jcimento Wood R Shermer
I‘J AN z Xia Biedl Whitesides Vernacotola
| Fosmeier Meijer -
g Keskin Steckelbachy, oo Madd s, Nishimura Lubiw Felsner
.'/ S Papakostas o f - . Bertolazzi Lille
! Ritt Dujmovic  Kitehing EJGmd!'G,
Mehld: KEIIfIlEIIIIIE Rosam iacomo
- Rosenstiel ulis sy Tollis NN g Boyer  \ fateraMarcandalli
Ludwig Paowers Ragde Fellows Battista —
i Kuchem i . / _ Didimo Cortest - — Carmignani "’
Madden McCartin Patrignani
N Himsholt Lenhart
\ Pizzonia g0
[ Gene Schank Fialepes = Liotta Bridgeman A
A arbag iano
\.I'n Freipe 1 Kopl Wagner Lesh Vagsin S Finoechi
| - s Blair B Vismara Bud Binuweei R
usu
| Kikusts Brandes { Demetrescu
Ben\ere e Rohrer Parise Tassinari Chanda
|II Rucevskis Nonalo
\ Fanto
\ Pop
Garg
e L e Pagner Agparwal
I', Kosaraju
\ Kupke Goodrich Scheinerman / 4
o Meng  Dickerson /
Klein = Fialke Buchheim Barth it Cheng Tanenbaum |
Lei Kobourov S8ier )
P Brockenaudfiegle
hw Gutwenger T Le  |Dillncourt Duncan = {/
) Koch Hirschberg e
CHL s Klau Ambras Theme Wenk
Yee -~
Alberts Hundack I
T—— - Naher Navahi ‘Wampler /
- .\... Kruger Roxbarough ;
\ Pouchkarev Le Harding S
o [
. e ) Pitta /
Emden R. Gansner, Yifan Hu, Stephen G."Kobourov: >~ /
— N — o
. e - \
GMap: Drawing Graphs as Maps [PacificVis'10]

..-/
| Miyazawa - \ B
P _." Asano e h S
" Miura Egl
Uno y
Nishizeki \
Rahman ~
Chrebak Nakano I'.
Narnin I_-"':
T Yoshikawa T ,,'-'I
Y TokuyamaWatanabe a
Autoren, die in diesen
Jahren auf dem SR
Symposium fiir | i i
_ Graphzeichnen Artikel
\ veroffentlicht haben N

Bose

MeAllister

Snoevink

— "\
Foamsint Hernandez-Penver Tejel n—
Ramos )
s Gmia-uﬁﬁ"“m Noy Heptendp Garcia \
_~ Hurtado Cobos  Castro I
\ Dana Marquez Y
\-\: — Garrido :.
/,JI — ' )
'1/' \_.\\---__ _',’
' Kanten: Autoren, die zusammen
Artikel veroffentlicht haber
Liander: stark zusammenhingende
Teilgraphen (Cluster)
._»"' - ) _h.\\ /./" T~ i .
/ Kara . — Kral \ T .
_/ Nyklova
I'| Jelinek s Babilon
| Pangrac
Dvarak — - Vondrak }
\\__ / N



{ Kislelewlcz

—— |

.ff Ty ~ S

{ Twarog {

\ Lambe | .y \\_'-_ o
\ J Y, —
- —_ i o S—

LT N
/ Cruz — Moshah Y RS
y Rusu \ [ e Lickfeld P A
— Chpnan A — Felsner ~ Dergelmar
e Mumfard 4

Buchheim

‘Wampler
Yusufoy . Ny yahi

..."-_ -~ = % Abello
. w Jelinkovd

Suehy Kira L

elinek
Tath ! A

\. i Kedl T

\_‘ Keszeni ] Cerny ™o

|  Pach PaviigytTardos Kyncl

Wenger

Nyklové

Pangrie !

~ Fox BACn Bal
Trigntafilon  Papamanthou e e

. Tith

Mili poeer Aparwal Ma

Kia
Castellé ", Sharr—— poNack

y —
| S Dhandapani

"™ Dogrusoz Papukostas { ~ /
J - Basu /
Kakoulis Giral . AN p=
Diidjev

Gene |

|
¢ /  Brup’ Vogelmann -~
/ Keskin [ o~

.'| Carrington
Alder | [’ Ludwly Mebldau J



F: Was ist ein Graph?

14



F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V, E)

14



F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V, E)

14



F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V/, E), wobei

— V' Knotenmenge und
- E C (\2/) = {{u, v} C V| u+# v} Kantenmenge.

14



F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V/, E), wobei

— V' Knotenmenge und
- E C (\2/) = {{u, v} C V| u+# v} Kantenmenge.

14



F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V/, E), wobei

— V' Knotenmenge und
- E C (\2/) = {{u, v} C V| u+# v} Kantenmenge.

14



F: Was ist ein Graph?

A1: Ein (ungerichteter) Graph ist ein Paar (V/, E), wobei

— V' Knotenmenge und
- E C (\2/) = {{u, v} C V| u+# v} Kantenmenge.

A,: Ein gerichteter Graph ist ein Paar (V, E), wobei
— V' Knotenmenge und
- ECV xV=A{(u,v)|u,veV} Kantenmenge.

14



F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

15



F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

=N W B O

dRdR AR AR

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

—»15

>3

> 1

*IPIPILDIL®

ollo||o|lo|e

—>12

—+{2

15



F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

.??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

15



F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

15



F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

=N W B O

?

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

—>12

*

ollo||o|lo|e

—+{2

Adjazenzlisten

Tt B LW N =

1 2345

15



F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

Tt B LW N =

1

2

OO O

OO, O

R =) O = OlWw

_ O = O |~

O R K= O O|ul

15



F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

=N W B O

?

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

—>12

*

ollo||o|lo|e

—+{2

Adjazenzlisten

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15



F: Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

®

@

@

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15



F: Wie reprasentiere ich einen Graphen?

1 2 3 45

5 e+—i3[el—i4]e {01 010

s[el—»lTTel—»B3[e»Ee] 2|1 010 0

3|oeT—>{2|e—>4|[e—> 50 3{01 011

2| o3 |e—>i]]|e 411 01 0 1

| [ —»oTel—s{aTe 500110

ungerichteter  Adjazenzlisten Adjazenzmatrix
Graph
®

(2)

©®



F: Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

®

O
(1) —

(3

2

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15



F: Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

®
T

(2)

(1) —

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15



F: Wie reprasentiere ich einen Graphen?

ungerichteter

Graph

o
T

(2)

(1) —

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15



F: Wie reprasentiere ich einen Graphen?

1 2345

5 e+—i3[el—i4]e 1fO01 010
s[el—»lTTel—»B3[e»Ee] 2|1 010 0
3|oeT—>{2|e—>4|[e—> 50 3{01 011

2| o3 |e—>i]]|e 411 01 0 1

| [o—>[2Tel—»{aTe sloo110

ungerichteter  Adjazenzlisten Adjazenzmatrix

Graph



F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

gerichteter
Graph

=N W B O

?

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

—>12

*

ollo||o|lo|e

—+{2

Adjazenzlisten

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15



F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

gerichteter
Graph

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

=N W B O

?

>3

—>5

—»3

—>2

.??.

> 1

—>14

ollo||olo|e

Adjli] =1 e V[(ij)cE}

1

2

orT B~ W DN
= O =k O

0

O OR

0

= O = O|lWw

1

_ O = O |~

= = O O|Ul

0

Adjazenzmatrix

15



15

F: Wie reprasentiere ich einen Graphen?

ungerichteter
Graph

gerichteter
Graph

=N W B O

>3

> 4

—>1

—>{3

—>15

—>2

—»{2

C??.

—»15

>3

L AIRAIL AR

> 1

?

ollo||o|lo|e

—>12

*

—+{2

Adjazenzlisten

=N W B O

?

>3

—>5

—»3

—>2

.??.

> 1

—>14

ollo||olo|e

Adjli] =1 e V[(ij)cE}

1 2345
1fO01 010
21101 00
310 1 011
41101 01
51001 10
Adjazenzmatrix
1 2345
1100 010
2110 000
310 1 0 00
410 01 0 1
51001 00
a,'j:].<:>(l',j)€E



Grad eines Knotens

Def. ;

16



Grad eines Knotens

Def. ;

deg(u) = |Adj|u]]

16



Grad eines Knotens

.
0=

deg(u) = |Adj|u]]

16



Grad eines Knotens

Def.
O deg(w) = Adil]
_}C‘Kz outdeg(v) = |Adj[v]|

16



Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K{ outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

16



Grad eines Knotens

Def.

Beob.

O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade

16



Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2-|E]| .

16



Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Beweis. Technik des zweifachen Abzahlens:

16



Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Beweis. Technik des zweifachen Abzahlens:

/ahle alle Knoten-Kanten-Inzidenzen.

16



Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Beweis. Technik des zweifachen Abzahlens:

/ahle alle Knoten-Kanten-Inzidenzen.

16



16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘Kz outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade 2 |E|.

Eine Kante ist inzident
Beweis. Technik des zweifachen Abzahlens: ~ =% hren Endknoten.

/ahle alle Knoten-Kanten-Inzidenzen.



16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K{ outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade 2 |E|.

Eine Kante ist inzident

Beweis. Technik des zweifachen Abzahlens: ~ #% hren Endknoten.

. : Ein Knoten ist inzident
Zahle alle Knoten-Kanten-Inzidenzen: ., .o Kanten deren

Endknoten er ist.



16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade 2 |E|.

Eine Kante ist inzident

Beweis. Technik des zweifachen Abzahlens: ~ #% hren Endknoten.

. : Ein Knoten ist inzident
Zahle alle Knoten-Kanten-Inzidenzen: ., .o Kanten deren

Endknoten er ist.

Aus Sicht der Knoten:
Aus Sicht der Kanten:



16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade 2 |E|.

Eine Kante ist inzident

Beweis. Technik des zweifachen Abzahlens: ~ #% hren Endknoten.

. : Ein Knoten ist inzident
Zahle alle Knoten-Kanten-Inzidenzen: ., .o Kanten deren

Aus Sicht der Knoten: )
Aus Sicht der Kanten:

Endknoten er ist.

Vevdeg V



16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade 2 |E|.

Eine Kante ist inzident

Beweis. Technik des zweifachen Abzahlens: ~ #% hren Endknoten.

. : Ein Knoten ist inzident
Zahle alle Knoten-Kanten-Inzidenzen: ., .o Kanten deren

Endknoten er ist.
Aus Sicht der Knoten: [}/

Aus Sicht der Kanten: 2 - | E|

deg v



16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade 2 |E|.

Eine Kante ist inzident

Beweis. Technik des zweifachen Abzahlens: ~ #% hren Endknoten.

. : Ein Knoten ist inzident
Zahle alle Knoten-Kanten-Inzidenzen: ., .o Kanten deren

Endknoten er ist.
Aus Sicht der Knoten: [}/

Aus Sicht der Kanten: 2 - |E|—Jalso gleich!

deg v



Grad eines Knotens

Def.

Beob.

O deg(w) = Adil]
%‘Kz outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E| Ve

16



Grad eines Knotens

Def.

Beob.

Satzle.

O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Die Anzahl der Knoten ungeraden Grades ist gerade.

16



Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ., degv

16



16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =3, cydegv =) o\ degv+) .\ degv



16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.

Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =), cydegv =) o\ degv+) .\ degv
gerade!



16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K: outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ,cydegv =) ., degv+) ., degv

ger ung

gerade! gerade!



16

Grad eines Knotens

Def.
O deg(w) = Adil]
% outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ,cydegv =5 ., degv+ ) _, degyv

ger ung

gerade! gerade! gerade!



16

Grad eines Knotens

Def.
O deg(w) = Adil]
% outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ,cydegv =) .\ degv -+ ., degv

ger ung

gerade! gerade! gerade!



16

Grad eines Knotens

Def.
O deg(w) = Adil]
% outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ,cydegv =) .\ degv -+ ., degv

ger ung

gerade! gerade! gerade! = gerade!



16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ,cydegv =) .\ degv -+ ., degv

ger ung

gerade! gerade! gerade! = gerade!
Zvevung degv gerade =



16

Grad eines Knotens

Def.
O deg(w) = Adil]
%‘K outdeg(v) = |Adj[v]|
indeg(v) ={ve V:(uv) e E}

Beob. Sei G = (V, E) ein ungerichteter Graph.
Dann ist die Summe aller Knotengrade = 2 - |E]| .

Satzle. Die Anzahl der Knoten ungeraden Grades ist gerade.

Beweis. 2-|E| =) ,cydegv =) .\ degv -+ ., degv

ger ung

gerade! gerade! gerade! = gerade!

D vevi, 968V gerade = |Ving| ist gerade!



17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.



17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?



17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?



17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?
Konstruktion: Wie (und in welcher Zeit) finde ich

einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,
so dass jeder Knoten genau einmal durchlaufen wird.



17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?
Konstruktion: Wie (und in welcher Zeit) finde ich

einen solchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,
so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?



17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei raphen geht das (nicht)?

Konstruktion: Wie (ulid j@’welcher Zeit) finde ich
einen olchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,
so dass jeder Knoten genau einmal durchlaufen wird.

Charakterisierung: Bei welchen Graphen geht das (nicht)?

Konstruktion: Wie (und in welcher Zeit) finde ich
einen solchen Rundlauf, falls er existiert?



17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei raphen geht das (nicht)?

Konstruktion: Wie (ulid j@’welcher Zeit) finde ich
einen olchen Rundlauf, falls er existiert?

2. Durchlaufe einen Graphen auf einem Kreis,
so dass jeder Knoten genau einmal durchlaufen wird.

harakteriiefing’ PBei welchen Graplien geht das (nicht)?
ruktio \dbia ! welcler eW er
einen h ulld|f, W IsWr uadderll?




17

Rundlaufstrategien fiir ungerichtete Graphen

1. Durchlaufe einen Graphen auf einem Kreis,
so dass jede Kante genau einmal durchlaufen wird.

Charakterisierung: Bei raphen geht das (nicht)?
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— Vorlesung Algorithmische Graphentheorie (nichstes Semester!)
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F: Wie durchlaufe ich einen Graphen?

Ideen?

G

1. wellenformige Ausbreitung ab einem gegebenen Startknoten s

Breitensuche (breadth-first search, BFS) <—— jetzt!

2. vom Startknoten s moglichst schnell weit weg

CTiefensuche (depth-first search, DFS)

nachstes Mal!
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Definition.

Ziel:

Lemma 1.

Bewels.

Sei G = (V, E) (un)gerichteter Graph, u,v € V.
0(u, v) := Lange eines kiirzesten u-v-Wegs,
(falls v von u erreichbar; sonst d(u, v) := 00).

Zeige, dass nach BFS(G, s) fiir alle v € V gilt:

berechneter L tatsachlicher
Abstand von s v.d = 5(5’ V)' Abstand von s

(Eigenschaft kiirzester Wege)
Sei G = (V/, E) ein (un)gerichteter Graph, s € V.
Dann gilt fiir jede Kante (u, v) € E:

o(s,v) < d(s,u) + 1.

1. Fall: u ist von s erreichbar (d.h. 3 s-u-Weg)

4 Dieser s-v-Weg hat Lange (s, u) + 1.
U
S 5(5' u U Kiirzester s-v-Weg hat Lange < 4(s, u) + 1.
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BFS(Graph G, Vertex s)
Initialize(G, s)
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Lemma 1.

Lemma 2.

Bewels.
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Nach BFS(G, s) gilt fiir alle v € V: v.d > 4(s, v).\/
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Also d-Werte der Knoten in Q z.B. (3,3,4,4,4).
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Lemma 2. Sei G = (V, E) ein (un)gerichteter Graph, s € V.

Nach BFS(G, s) gilt fiir alle v € V: v.d > (s, v).\/

Lemma 3. Sei Q = (v, v»,...,Vv,) wahrend BFS. Dann gilt:
(A) v,.d < wvp.d+1 und
(B) vid < vji1.d furi=1,..., r—1.

Korollar. Angenommen u wird friither als v in Q eingefiigt,
dann gilt u.d < v.d, wenn v in Q eingefiigt wird.

Bewels. Folgt aus Lemma 3 und der Tatsache, dass jeder
Knoten < 1x einen endlichen d-Wert bekommt.



Korrektheit von BFS — Hauptsatz

Satz. Sei G ein (un)gerichteter Graph, s ein Knoten von G.
Nach BFS(G, s) gilt:

(i) Fiir alle Knoten v € V gilt v.d = 4(s, v).
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(ii) Jeder von s erreichbare Knoten wird entdeckt.
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Widerspruchsbeweis mit Wahl des ,, kleinsten Schurken®.
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Klar: G, ist ein Baum (da zshg. und |E;| = |V,| — 1).

Beh.: G ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.
e V. ={v € V: v erreichbar von s}
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Bew.:
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Betrachte den Vorgdnger-Graphen G, = (V,, E;) von G:

o |V |={veV:vr#£nil}U{s} %>.;>0\~: °
o |E.|[={(v.mr,v):ve V. \{s}}} — ..

Klar: G, ist ein Baum (da zshg. und |E;| = |V,| — 1).

Beh.: G ist ein Kiirzeste-Wege-Baum (oder BFS-Baum), d.h.
e V. ={v € V: v erreichbar von s}

o fiir alle v € V. enthalt G, einen eindeutigen Weg
von s nach v, der ein kiirzester s-v-Weg ist.

Bew.: Folgt aus (ii) und (iii) im Hauptsatz.
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