
1

Algorithmen und Datenstrukturen

Wintersemester 2020/21

17. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Amortisierte Analyse



2

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Idee: Charles E. Leiserson
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/LectureNotes/lec13.pdf



2

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Idee: Charles E. Leiserson
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/LectureNotes/lec13.pdf



2

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Idee: Charles E. Leiserson
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/LectureNotes/lec13.pdf



2

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Verhindere, dass die Tabelle überläuft
oder dass Operationen ineffizient werden.

Idee: Charles E. Leiserson
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/LectureNotes/lec13.pdf



2

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Verhindere, dass die Tabelle überläuft
oder dass Operationen ineffizient werden.

Problem: Was tun, wenn man die maximale Anzahl zu
speichernder Elemente vorab nicht kennt?

Idee: Charles E. Leiserson
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/LectureNotes/lec13.pdf



2

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Verhindere, dass die Tabelle überläuft
oder dass Operationen ineffizient werden.

Problem:

Lösung:

Was tun, wenn man die maximale Anzahl zu
speichernder Elemente vorab nicht kennt?

Idee: Charles E. Leiserson
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/LectureNotes/lec13.pdf



2

Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Verhindere, dass die Tabelle überläuft
oder dass Operationen ineffizient werden.

Problem:

Lösung:

Was tun, wenn man die maximale Anzahl zu
speichernder Elemente vorab nicht kennt?

Dynamische Tabellen!

Idee: Charles E. Leiserson
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/LectureNotes/lec13.pdf



3

Dynamische Tabellen

Idee:



3

Dynamische Tabellen

Idee: Insert(1)



3

Dynamische Tabellen

Idee: Insert(1) 1



3

Dynamische Tabellen

Idee: Insert(1) 1
Insert(2)



3

Dynamische Tabellen

Idee: Insert(1) 1
• Wenn Tabelle voll,

fordere doppelt so große
Tabelle an (mit new).

Insert(2)



3

Dynamische Tabellen

Idee: Insert(1) 1
• Wenn Tabelle voll,

fordere doppelt so große
Tabelle an (mit new).

Insert(2)



3

Dynamische Tabellen

Idee: Insert(1) 1
• Wenn Tabelle voll,

fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

Insert(2)



3

Dynamische Tabellen

Idee: Insert(1) 11
• Wenn Tabelle voll,

fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

Insert(2)



3

Dynamische Tabellen

Idee: Insert(1) 11
• Wenn Tabelle voll,

fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)



3

Dynamische Tabellen

Idee: Insert(1) 11
• Wenn Tabelle voll,

fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)



3

Dynamische Tabellen

Idee: Insert(1)

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)



3

Dynamische Tabellen

Idee: Insert(1)

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)



3

Dynamische Tabellen

Idee: Insert(1)

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)



3

Dynamische Tabellen

Idee: Insert(1)

2
1

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)



3

Dynamische Tabellen

Idee: Insert(1)

2
1

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)



3

Dynamische Tabellen

Idee: Insert(1)

2
1

3
2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

2
1

3
2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

2
1

3
4

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

2
1

3
4

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

2
1

3
4

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

2
1

3
4

2
1

3
4

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

2
1

3
4

2
1

3
4

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

2
1

3
4
5

2
1

3
4

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

2
1

3
4
5

2
1

3
4

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

2
1

3
4

6
5

2
1

3
4

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

2
1

3
4

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse: Welche Laufzeit benötigen n Einfügeoperationen im
schlimmsten Fall?

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse: Welche Laufzeit benötigen n Einfügeoperationen im
schlimmsten Fall?

Antwort:

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse: Welche Laufzeit benötigen n Einfügeoperationen im
schlimmsten Fall?

Antwort: • Tabelle wird genau (dlog2 ne)-mal kopiert.

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse: Welche Laufzeit benötigen n Einfügeoperationen im
schlimmsten Fall?

Antwort: • Tabelle wird genau (dlog2 ne)-mal kopiert.

• Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse: Welche Laufzeit benötigen n Einfügeoperationen im
schlimmsten Fall?

Antwort: • Tabelle wird genau (dlog2 ne)-mal kopiert.

• Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

. . .

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse: Welche Laufzeit benötigen n Einfügeoperationen im
schlimmsten Fall?

Antwort: • Tabelle wird genau (dlog2 ne)-mal kopiert.

• Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

. . .

Lüge!

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse: Welche Laufzeit benötigen n Einfügeoperationen im
schlimmsten Fall?

Antwort: • Tabelle wird genau (dlog2 ne)-mal kopiert.

• Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

. . .

Lüge!
O

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse: Welche Laufzeit benötigen n Einfügeoperationen im
schlimmsten Fall?

Antwort: • Tabelle wird genau (dlog2 ne)-mal kopiert.

• Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

. . .

Lüge!
O

Insert(2)

Insert(3)

Insert(5)

, genauer



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse: Welche Laufzeit benötigen n Einfügeoperationen im
schlimmsten Fall?

Antwort: • Tabelle wird genau (dlog2 ne)-mal kopiert.

• Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

. . .

Lüge!
O

Insert(2)

Insert(3)

Insert(5)

Θ(n)., genauer



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse: Welche Laufzeit benötigen n Einfügeoperationen im
schlimmsten Fall?

Antwort: • Tabelle wird genau (dlog2 ne)-mal kopiert.

• Im schlimmsten (letzten!) Fall ist der Aufwand Θ(n).

Also ist der Gesamtaufwand Θ(n log n).

• Wenn Tabelle voll,
fordere doppelt so große
Tabelle an (mit new).

• Kopiere alle Einträge
von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

. . .

Lüge!
O Let’s see why...

Insert(2)

Insert(3)

Insert(5)

Θ(n)., genauer



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =

blog2(n−1)c∑
j=0

2j+



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =

blog2(n−1)c∑
j=0

2jn +



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =

blog2(n−1)c∑
j=0

2jn +



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =

blog2(n−1)c∑
j=0

2jn +



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =

blog2(n−1)c∑
j=0

2jn + ≤



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =

blog2(n−1)c∑
j=0

2jn + ≤

k∑
j=0

qj =
endl.
geom.
Reihe



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =

blog2(n−1)c∑
j=0

2jn + ≤

k∑
j=0

qj =
endl.
geom.
Reihe

qk+1 − 1

q − 1



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =

blog2(n−1)c∑
j=0

2jn + ≤ n +
2log2(n−1)+1 − 1

2− 1

k∑
j=0

qj =
endl.
geom.
Reihe

qk+1 − 1

q − 1



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =

blog2(n−1)c∑
j=0

2jn + ≤ n +
2log2(n−1)+1 − 1

2− 1

k∑
j=0

qj =
= n + 2(n − 1)− 1 endl.

geom.
Reihe

qk+1 − 1

q − 1



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =

blog2(n−1)c∑
j=0

2jn + ≤ n +
2log2(n−1)+1 − 1

2− 1

k∑
j=0

qj =
= n + 2(n − 1)− 1

< 3n

endl.
geom.
Reihe

qk+1 − 1

q − 1



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =

blog2(n−1)c∑
j=0

2jn + ≤ n +
2log2(n−1)+1 − 1

2− 1

k∑
j=0

qj =
= n + 2(n − 1)− 1

< 3n ∈ Θ(n)

endl.
geom.
Reihe

qk+1 − 1

q − 1



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei

ci = Kosten fürs i-te Einfügen.

i 1 2 3 4 5 6 7 8 9
size i 1 2 4 4 8 8 8 8 16

ci 1 1 1 1 1 1 1 1 1
1 2 4 8

← Einfügen
← Kopieren

Also betragen die Kosten für n Einfügeoperationen
n∑
1

ci =

blog2(n−1)c∑
j=0

2jn + ≤ n +
2log2(n−1)+1 − 1

2− 1

k∑
j=0

qj =
= n + 2(n − 1)− 1

< 3n ∈ Θ(n)

D.h. die durchschnittlichen (
”
amortisierten“) Kosten sind Θ(1).

endl.
geom.
Reihe

qk+1 − 1

q − 1



5

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen
Folge kleine durchschnittliche Kosten haben



5

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen
Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–



5

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen
Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–

Auch randomisierte Analyse kann man als Durchschnittsbildung
(über alle mögl. Ergebnisse, gewichtet nach Wahrscheinlichkeit)
betrachten.



5

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen
Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–

Auch randomisierte Analyse kann man als Durchschnittsbildung
(über alle mögl. Ergebnisse, gewichtet nach Wahrscheinlichkeit)
betrachten.

Bei amortisierter Analyse geht es jedoch um die
durchschnittliche Laufzeit im schlechtesten Fall –
nicht im Erwartungswert!



5

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen
Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–

Auch randomisierte Analyse kann man als Durchschnittsbildung
(über alle mögl. Ergebnisse, gewichtet nach Wahrscheinlichkeit)
betrachten.

Bei amortisierter Analyse geht es jedoch um die
durchschnittliche Laufzeit im schlechtesten Fall –
nicht im Erwartungswert!

Wir betrachten 3 verschiedene Typen von amortisierter Analyse:



5

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen
Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–

Auch randomisierte Analyse kann man als Durchschnittsbildung
(über alle mögl. Ergebnisse, gewichtet nach Wahrscheinlichkeit)
betrachten.

Bei amortisierter Analyse geht es jedoch um die
durchschnittliche Laufzeit im schlechtesten Fall –
nicht im Erwartungswert!

Wir betrachten 3 verschiedene Typen von amortisierter Analyse:

– Aggregationsmethode
– Buchhaltermethode
– Potentialmethode



5

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen
Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–

Auch randomisierte Analyse kann man als Durchschnittsbildung
(über alle mögl. Ergebnisse, gewichtet nach Wahrscheinlichkeit)
betrachten.

Bei amortisierter Analyse geht es jedoch um die
durchschnittliche Laufzeit im schlechtesten Fall –
nicht im Erwartungswert!

Wir betrachten 3 verschiedene Typen von amortisierter Analyse:

– Aggregationsmethode
– Buchhaltermethode
– Potentialmethode

X



5

Amortisierte Analyse...

...bedeutet zu zeigen, dass die Operationen einer gegebenen
Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–

Auch randomisierte Analyse kann man als Durchschnittsbildung
(über alle mögl. Ergebnisse, gewichtet nach Wahrscheinlichkeit)
betrachten.

Bei amortisierter Analyse geht es jedoch um die
durchschnittliche Laufzeit im schlechtesten Fall –
nicht im Erwartungswert!

Wir betrachten 3 verschiedene Typen von amortisierter Analyse:

– Aggregationsmethode
– Buchhaltermethode
– Potentialmethode

X



6

Buchhaltermethode



6

Buchhaltermethode

• Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,



6

Buchhaltermethode

• Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.



6

Buchhaltermethode

• Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ĉi > ci ⇒



6

Buchhaltermethode

• Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ĉi > ci ⇒ Wir legen etwas beiseite.



6

Buchhaltermethode

• Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ci > ĉi

ĉi > ci ⇒ Wir legen etwas beiseite.

⇒



6

Buchhaltermethode

• Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ci > ĉi

ĉi > ci ⇒ Wir legen etwas beiseite.

Wir bezahlen teure Operationen mit vorher
Beiseitegelegtem.

⇒



6

Buchhaltermethode

• Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ci > ĉi

ĉi > ci ⇒ Wir legen etwas beiseite.

Wir bezahlen teure Operationen mit vorher
Beiseitegelegtem.

⇒

• Damit’s klappt: wir dürfen nie in die Miesen kommen –



6

Buchhaltermethode

• Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ci > ĉi

ĉi > ci ⇒ Wir legen etwas beiseite.

Wir bezahlen teure Operationen mit vorher
Beiseitegelegtem.

⇒

• Damit’s klappt: wir dürfen nie in die Miesen kommen –

Guthaben
n∑

i=1

ĉi −
n∑

i=1

ci darf nicht negativ werden!



6

Buchhaltermethode

• Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ci > ĉi

ĉi > ci ⇒ Wir legen etwas beiseite.

Wir bezahlen teure Operationen mit vorher
Beiseitegelegtem.

⇒

• Damit’s klappt: wir dürfen nie in die Miesen kommen –

Dann gilt

Guthaben
n∑

i=1

ĉi −
n∑

i=1

ci darf nicht negativ werden!

n∑
i=1

ĉi ≥
n∑

i=1

ci .



6

Buchhaltermethode

• Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ci > ĉi

ĉi > ci ⇒ Wir legen etwas beiseite.

Wir bezahlen teure Operationen mit vorher
Beiseitegelegtem.

⇒

• Damit’s klappt: wir dürfen nie in die Miesen kommen –

Dann gilt

Guthaben
n∑

i=1

ĉi −
n∑

i=1

ci darf nicht negativ werden!

n∑
i=1

ĉi ≥
n∑

i=1

ci .
D.h. amortisierte Kosten
sind obere Schranke für
tatsächliche Kosten!



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e

0e
0e
0e
0e



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e

0e
0e
0e
0e
2e



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e

0e
0e
0e
0e
2e
2e
2e
2e



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e

0e
0e
0e
0e
2e
2e
2e
2e



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e

0e
0e
0e
0e
2e
2e
2e
2e

Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e

0e
0e
0e
0e
2e
2e
2e
2e

Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.

Damit wird deutlich, dass die DS nie Miese macht.



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e

0e
0e
0e
0e
2e
2e
2e
2e

Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.

Damit wird deutlich, dass die DS nie Miese macht.

n∑
i=1

ci ≤
n∑

i=1

ĉi

⇓
Also sind amortisierte
Kosten obere Schranke
für tatsächliche Kosten!



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e

0e
0e
0e
0e
2e
2e
2e
2e

Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.

Damit wird deutlich, dass die DS nie Miese macht.

n∑
i=1

ci ≤
n∑

i=1

ĉi

⇓

= 3n
Also sind amortisierte
Kosten obere Schranke
für tatsächliche Kosten!



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e

0e
0e
0e
0e
2e
2e
2e
2e

Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.

Damit wird deutlich, dass die DS nie Miese macht.

n∑
i=1

ci ≤
n∑

i=1

ĉi

⇓

= 3n = Θ(n)
Also sind amortisierte
Kosten obere Schranke
für tatsächliche Kosten!



7

Buchhaltermethode für dynamische Tabellen

Jede Einfügeoperation op i bezahlt ĉi = 3e:

– 1e fürs tatsächliche Einfügen
– 2e für die nächste Tabellenvergrößerung

0e
0e
2e
2e

0e
0e
0e
0e
2e
2e
2e
2e

Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.

Damit wird deutlich, dass die DS nie Miese macht.

n∑
i=1

ci ≤
n∑

i=1

ĉi

⇓

D.h. die (tats.) Kosten für n Einfügeoperationen betragen Θ(n).

= 3n = Θ(n)
Also sind amortisierte
Kosten obere Schranke
für tatsächliche Kosten!



8

Buchhaltermethode: noch’n Beispiel

Stapel

Abs. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

verwaltet sich ändernde Menge nach LIFO-Prinzip



8

Buchhaltermethode: noch’n Beispiel

Stapel

Abs. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Multipop(int k)

neu!

verwaltet sich ändernde Menge nach LIFO-Prinzip



8

Buchhaltermethode: noch’n Beispiel

Stapel

Abs. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Multipop(int k) while not Empty() and k > 0 do
Pop()
k = k − 1neu!

verwaltet sich ändernde Menge nach LIFO-Prinzip



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0

Geht das gut???



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0

Geht das gut???

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die echten!



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0

Geht das gut???

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die echten!

• Jede Push-Operation legt einen Teller auf den Stapel.



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0

Geht das gut???

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die echten!

• Jede Push-Operation legt einen Teller auf den Stapel.

Dafür bezahlt sie 1e und legt noch 1e auf den Teller.



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0

Geht das gut???

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die echten!

• Jede Push-Operation legt einen Teller auf den Stapel.

Dafür bezahlt sie 1e und legt noch 1e auf den Teller.

• Jede (Multi-)Pop-Operation wird mit den Euros auf
den Tellern, die sie wegnimmt, komplett bezahlt.



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0

Geht das gut???

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die echten!

• Jede Push-Operation legt einen Teller auf den Stapel.

Dafür bezahlt sie 1e und legt noch 1e auf den Teller.

• Jede (Multi-)Pop-Operation wird mit den Euros auf
den Tellern, die sie wegnimmt, komplett bezahlt.

– Ja!



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0

Geht das gut???

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die echten!

• Jede Push-Operation legt einen Teller auf den Stapel.

Dafür bezahlt sie 1e und legt noch 1e auf den Teller.

• Jede (Multi-)Pop-Operation wird mit den Euros auf
den Tellern, die sie wegnimmt, komplett bezahlt.

– Ja! D.h. Folge von n Op. dauert Θ(n) Zeit.



10

Amortisierte Analyse

– Aggregationsmethode

– Buchhaltermethode

– Potentialmethode



10

Amortisierte Analyse

– Aggregationsmethode

– Buchhaltermethode

– Potentialmethode

X
X



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn

Wähle Potential Φ : Di → R.



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel: Bank macht keine Miesen.



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel:

Also fordern wir Φ(Di ) ≥ 0 für i = 1, . . . , n.

Bank macht keine Miesen.



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel:

Also fordern wir Φ(Di ) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci + ∆Φ(Di )

Bank macht keine Miesen.



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel:

Also fordern wir Φ(Di ) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci + ∆Φ(Di )

Bank macht keine Miesen.

amortisierte Kosten echte Kosten



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel:

Also fordern wir Φ(Di ) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci + ∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)
Potentialdifferenz

Bank macht keine Miesen.

amortisierte Kosten echte Kosten



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel:

Also fordern wir Φ(Di ) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci + ∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)
Potentialdifferenz

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di )− Φ(Di−1)

)

Bank macht keine Miesen.

amortisierte Kosten echte Kosten



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel:

Also fordern wir Φ(Di ) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci + ∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)
Potentialdifferenz

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di )− Φ(Di−1)

)

Bank macht keine Miesen.

teleskopierende
Summe

amortisierte Kosten echte Kosten



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel:

Also fordern wir Φ(Di ) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci + ∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)
Potentialdifferenz

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di )− Φ(Di−1)

)
=
∑n

i=1 ci + Φ(Dn)− Φ(D0)

Bank macht keine Miesen.

teleskopierende
Summe

amortisierte Kosten echte Kosten



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel:

Also fordern wir Φ(Di ) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci + ∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)
Potentialdifferenz

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di )− Φ(Di−1)

)
=
∑n

i=1 ci + Φ(Dn)− Φ(D0) ≥
∑n

i=1 ci

Bank macht keine Miesen.

teleskopierende
Summe

amortisierte Kosten echte Kosten



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,

die den augenblicklichen Zustand der DS beschreibt.

Datenstruktur D0 −→ D1 −→ · · · −→ Dn

op1 op2 opn

Wähle Potential Φ : Di → R. O.B.d.A. Φ(D0) = 0

Ziel:

Also fordern wir Φ(Di ) ≥ 0 für i = 1, . . . , n.

Def. ĉi = ci + ∆Φ(Di ), wobei ∆Φ(Di ) = Φ(Di )− Φ(Di−1)
Potentialdifferenz

Folge:
∑n

i=1 ĉi =
∑n

i=1

(
ci + Φ(Di )− Φ(Di−1)

)
=
∑n

i=1 ci + Φ(Dn)− Φ(D0) ≥
∑n

i=1 ci

D.h. amortisierte Kosten
”
bezahlen“ für echte Kosten.

Bank macht keine Miesen.

teleskopierende
Summe

amortisierte Kosten echte Kosten



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee:



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0. X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Prüfe:

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:Prüfe:

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1

Prüfe:

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi

Prüfe:

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi = 1 + 1 = 2

Prüfe:

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine Multipop-Operation ist:

Prüfe:

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine Multipop-Operation ist:

⇒ ∆Φ(Di ) = −min{ki , size i}

Prüfe:

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine Multipop-Operation ist:

⇒ ∆Φ(Di ) = −min{ki , size i}

Prüfe:

ci = + min{ki , size i}

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine Multipop-Operation ist:

⇒ ∆Φ(Di ) = −min{ki , size i}

Prüfe:

ci = + min{ki , size i}

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine Multipop-Operation ist:

⇒ ∆Φ(Di ) = −min{ki , size i}

Prüfe:

ci = + min{ki , size i}
ĉi = ci + ∆ΦDi

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine Multipop-Operation ist:

⇒ ∆Φ(Di ) = −min{ki , size i}

Prüfe:

ci = + min{ki , size i}
ĉi = ci + ∆ΦDi = 0

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine Multipop-Operation ist:

⇒ ∆Φ(Di ) = −min{ki , size i}

Prüfe:

ci = + min{ki , size i}
ĉi = ci + ∆ΦDi = 0, dito mit Pop (ki = 1).

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine Multipop-Operation ist:

⇒ ∆Φ(Di ) = −min{ki , size i}

Prüfe:

ci = + min{ki , size i}
ĉi = ci + ∆ΦDi = 0, dito mit Pop (ki = 1).

Also:

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine Multipop-Operation ist:

⇒ ∆Φ(Di ) = −min{ki , size i}

Prüfe:

ci = + min{ki , size i}
ĉi = ci + ∆ΦDi = 0, dito mit Pop (ki = 1).

Also: Amortisierte Kosten pro Operation O(1).

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.

⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:

⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine Multipop-Operation ist:

⇒ ∆Φ(Di ) = −min{ki , size i}

Prüfe:

ci = + min{ki , size i}
ĉi = ci + ∆ΦDi = 0, dito mit Pop (ki = 1).

Also: Amortisierte Kosten pro Operation O(1).

⇒ Echte Kosten für n Oper. im worst case O(n).

Was
sind die
amort.
Kosten?

X



13

Zusammenfassung

Zeige mit amortisierter Analyse, dass die Operationen einer
gegebenen Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–



13

Zusammenfassung

Drei Typen von amortisierter Analyse:

Zeige mit amortisierter Analyse, dass die Operationen einer
gegebenen Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–

– Aggregationsmethode

– Buchhaltermethode

– Potentialmethode



13

Zusammenfassung

Drei Typen von amortisierter Analyse:

Zeige mit amortisierter Analyse, dass die Operationen einer
gegebenen Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–

– Aggregationsmethode

– Buchhaltermethode

– Potentialmethode

X
Summiere tatsächliche Kosten (oder obere Schranken dafür) auf.



13

Zusammenfassung

Drei Typen von amortisierter Analyse:

Zeige mit amortisierter Analyse, dass die Operationen einer
gegebenen Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–

– Aggregationsmethode

– Buchhaltermethode

– Potentialmethode

X

X
Summiere tatsächliche Kosten (oder obere Schranken dafür) auf.

Verbinde Extrakosten mit konkreten Objekten der DS und bezahle
damit teure Operationen.



13

Zusammenfassung

Drei Typen von amortisierter Analyse:

Zeige mit amortisierter Analyse, dass die Operationen einer
gegebenen Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–

– Aggregationsmethode

– Buchhaltermethode

– Potentialmethode

X

X

X

Summiere tatsächliche Kosten (oder obere Schranken dafür) auf.

Verbinde Extrakosten mit konkreten Objekten der DS und bezahle
damit teure Operationen.

Definiere Potential der gesamten DS, so dass mit der Potentialdifferenz
teure Operationen bezahlt werden können.



14

Übungsaufgaben zur amortisierten Analyse (I)

Gegeben sei ein gewöhnlicher MinHeap, dessen Methoden
Insert und ExtractMin im schlechtesten Fall O(log n) Zeit
brauchen.

Zeigen Sie mit der Potentialmethode, dass Insert amortisiert
O(log n) Zeit und ExtractMin amortisiert O(1) Zeit benötigt.



14

Übungsaufgaben zur amortisierten Analyse (I)

Gegeben sei ein gewöhnlicher MinHeap, dessen Methoden
Insert und ExtractMin im schlechtesten Fall O(log n) Zeit
brauchen.

Zeigen Sie mit der Potentialmethode, dass Insert amortisiert
O(log n) Zeit und ExtractMin amortisiert O(1) Zeit benötigt.

Insert



14

Übungsaufgaben zur amortisierten Analyse (I)

Gegeben sei ein gewöhnlicher MinHeap, dessen Methoden
Insert und ExtractMin im schlechtesten Fall O(log n) Zeit
brauchen.

Zeigen Sie mit der Potentialmethode, dass Insert amortisiert
O(log n) Zeit und ExtractMin amortisiert O(1) Zeit benötigt.

Insert



14

Übungsaufgaben zur amortisierten Analyse (I)

Gegeben sei ein gewöhnlicher MinHeap, dessen Methoden
Insert und ExtractMin im schlechtesten Fall O(log n) Zeit
brauchen.

Zeigen Sie mit der Potentialmethode, dass Insert amortisiert
O(log n) Zeit und ExtractMin amortisiert O(1) Zeit benötigt.

Insert

ExtractMin



14

Übungsaufgaben zur amortisierten Analyse (I)

Gegeben sei ein gewöhnlicher MinHeap, dessen Methoden
Insert und ExtractMin im schlechtesten Fall O(log n) Zeit
brauchen.

Zeigen Sie mit der Potentialmethode, dass Insert amortisiert
O(log n) Zeit und ExtractMin amortisiert O(1) Zeit benötigt.

Insert

ExtractMin



15

Übungsaufgaben zur amortisierten Analyse (II)

Entwerfen Sie eine Datenstruktur zum Verwalten einer
dynamischen Menge von Zahlen. Die DS soll 2 Methoden haben:
• Insert zum Einfügen einer Zahl und
• DeleteLargerHalf zum Löschen aller Zahlen aus der

Datenstruktur, die größer oder gleich dem aktuellen Median
der Zahlenmenge sind.



15

Übungsaufgaben zur amortisierten Analyse (II)

Entwerfen Sie eine Datenstruktur zum Verwalten einer
dynamischen Menge von Zahlen. Die DS soll 2 Methoden haben:
• Insert zum Einfügen einer Zahl und
• DeleteLargerHalf zum Löschen aller Zahlen aus der

Datenstruktur, die größer oder gleich dem aktuellen Median
der Zahlenmenge sind.

Beide Methoden sollen amortisiert O(1) Zeit benötigen.



15

Übungsaufgaben zur amortisierten Analyse (II)

Entwerfen Sie eine Datenstruktur zum Verwalten einer
dynamischen Menge von Zahlen. Die DS soll 2 Methoden haben:
• Insert zum Einfügen einer Zahl und
• DeleteLargerHalf zum Löschen aller Zahlen aus der

Datenstruktur, die größer oder gleich dem aktuellen Median
der Zahlenmenge sind.

Beide Methoden sollen amortisiert O(1) Zeit benötigen.

Tipp: Verwenden Sie eine Liste!



15

Übungsaufgaben zur amortisierten Analyse (II)

Entwerfen Sie eine Datenstruktur zum Verwalten einer
dynamischen Menge von Zahlen. Die DS soll 2 Methoden haben:
• Insert zum Einfügen einer Zahl und
• DeleteLargerHalf zum Löschen aller Zahlen aus der

Datenstruktur, die größer oder gleich dem aktuellen Median
der Zahlenmenge sind.

Beide Methoden sollen amortisiert O(1) Zeit benötigen.

1. Beschreiben Sie Ihren Entwurf der Datenstruktur
einschließlich der beiden Methoden in Worten.

2. Analysieren Sie mithilfe der Buchhaltermethode.
Geben Sie die amortisierten Kosten, die Sie mit Insert und
DeleteLargerHalf verbinden, exakt an.

Tipp: Verwenden Sie eine Liste!


	Titel
	Einstiegsbeispiel: Hash-Tabellen
	Dynamische Tabellen
	Genauere Abschätzung: Aggregationsmethode
	Amortisierte Analyse...
	Buchhaltermethode
	Buchhaltermethode für dynamische Tabellen
	Buchhaltermethode: noch'n Beispiel
	Buchhaltermethode: Stapel mit Multipop
	Amortisierte Analyse
	Potentialmethode
	Potentialmethode: Stapel mit Multipop
	Zusammenfassung
	Übungsaufgaben zur amortisierten Analyse (I)
	Übungsaufgaben zur amortisierten Analyse (II)

