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Einstiegsbeispiel: Hash-Tabellen

Frage: Wie groß macht man eine Hash-Tabelle?

Idee: Charles E. Leiserson
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/LectureNotes/lec13.pdf
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Frage: Wie groß macht man eine Hash-Tabelle?

Ziel: So groß wie nötig, so klein wie möglich...

Verhindere, dass die Tabelle überläuft
oder dass Operationen ineffizient werden.

Problem:

Lösung:

Was tun, wenn man die maximale Anzahl zu
speichernder Elemente vorab nicht kennt?

Dynamische Tabellen!

Idee: Charles E. Leiserson
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Lüge!

Insert(2)

Insert(3)

Insert(5)



3

Dynamische Tabellen

Idee: Insert(1)

Insert(4)

Insert(6)

Insert(7)

2
1

3
4

6
5

7

2
1

3
4

2
11

Analyse: Welche Laufzeit benötigen n Einfügeoperationen im
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von alter in neue Tabelle.

• Gib Speicher für alte
Tabelle frei.

. . .
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← Kopieren



4

Genauere Abschätzung: Aggregationsmethode

2
1

3
4

6
5

7

2
1

3
4

2
11Für i = 1, . . . , n sei
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• Verbindet mit jeder Operation opi amortisierte Kosten ĉi ,

die oft nicht mit den tatsächlichen Kosten ci übereinstimmen.

ci > ĉi

ĉi > ci ⇒ Wir legen etwas beiseite.

Wir bezahlen teure Operationen mit vorher
Beiseitegelegtem.

⇒

• Damit’s klappt: wir dürfen nie in die Miesen kommen –

Dann gilt

Guthaben
n∑

i=1

ĉi −
n∑

i=1

ci darf nicht negativ werden!

n∑
i=1

ĉi ≥
n∑

i=1

ci .
D.h. amortisierte Kosten
sind obere Schranke für
tatsächliche Kosten!
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7

Buchhaltermethode für dynamische Tabellen
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0e
0e
2e
2e



7

Buchhaltermethode für dynamische Tabellen
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Jede Einfügeoperation op i bezahlt ĉi = 3e:
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ĉi

⇓
Also sind amortisierte
Kosten obere Schranke
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– 2e für die nächste Tabellenvergrößerung

0e
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0e
0e
0e
0e
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2e
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Wir verknüpfen die Teilguthaben mit konkreten
Objekten der Datenstruktur.

Damit wird deutlich, dass die DS nie Miese macht.

n∑
i=1

ci ≤
n∑

i=1

ĉi

⇓

D.h. die (tats.) Kosten für n Einfügeoperationen betragen Θ(n).

= 3n = Θ(n)
Also sind amortisierte
Kosten obere Schranke
für tatsächliche Kosten!
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Buchhaltermethode: noch’n Beispiel

Stapel

Abs. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Multipop(int k) while not Empty() and k > 0 do
Pop()
k = k − 1neu!

verwaltet sich ändernde Menge nach LIFO-Prinzip
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Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0

Geht das gut???



9

Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.
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Operationi tatsächliche Kosten ci amortisierte Kosten ĉi
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Buchhaltermethode: Stapel mit Multipop

Betrachte Folge von Push-, Pop- und Multipop-Operationen.

Operationi tatsächliche Kosten ci amortisierte Kosten ĉi

Push 1 2
Pop 1 0
Multipop(ki ) min{ki , size i} 0

Geht das gut???

Zeige: Amortisierte Kosten
”
bezahlen“ immer für die echten!

• Jede Push-Operation legt einen Teller auf den Stapel.

Dafür bezahlt sie 1e und legt noch 1e auf den Teller.

• Jede (Multi-)Pop-Operation wird mit den Euros auf
den Tellern, die sie wegnimmt, komplett bezahlt.

– Ja! D.h. Folge von n Op. dauert Θ(n) Zeit.
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i=1 ĉi =
∑n

i=1

(
ci + Φ(Di )− Φ(Di−1)

)
=
∑n

i=1 ci + Φ(Dn)− Φ(D0) ≥
∑n

i=1 ci

Bank macht keine Miesen.

teleskopierende
Summe

amortisierte Kosten echte Kosten



11

Potentialmethode

Idee: Betrachte Bankguthaben (siehe Buchhaltermethode)
als physikalische Größe,
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(
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Prüfe:

Was
sind die
amort.
Kosten?

X



12

Potentialmethode: Stapel mit Multipop

To do: Definiere Potentialfunktion –
in Abhängigkeit vom aktuellen Zustand des Stapels!

Idee: Nimm Φ(Di ) = size i , also aktuelle Stapelgröße.
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⇒ Φ(D0) = 0 und Φ(D1), . . . , Φ(Dn) ≥ 0.

Falls die i-te Operation eine Push-Operation ist:
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⇒ ∆Φ(Di ) = +1 und ĉi = ci + ∆ΦDi = 1 + 1 = 2

Falls die i-te Operation eine Multipop-Operation ist:

⇒ ∆Φ(Di ) = −min{ki , size i}

Prüfe:
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auch wenn einzelne Operationen in der Folge teuer sind!
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gegebenen Folge kleine durchschnittliche Kosten haben
auch wenn einzelne Operationen in der Folge teuer sind!

–

– Aggregationsmethode

– Buchhaltermethode

– Potentialmethode

X

X

X

Summiere tatsächliche Kosten (oder obere Schranken dafür) auf.

Verbinde Extrakosten mit konkreten Objekten der DS und bezahle
damit teure Operationen.

Definiere Potential der gesamten DS, so dass mit der Potentialdifferenz
teure Operationen bezahlt werden können.
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Übungsaufgaben zur amortisierten Analyse (I)

Gegeben sei ein gewöhnlicher MinHeap, dessen Methoden
Insert und ExtractMin im schlechtesten Fall O(log n) Zeit
brauchen.

Zeigen Sie mit der Potentialmethode, dass Insert amortisiert
O(log n) Zeit und ExtractMin amortisiert O(1) Zeit benötigt.
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Übungsaufgaben zur amortisierten Analyse (II)

Entwerfen Sie eine Datenstruktur zum Verwalten einer
dynamischen Menge von Zahlen. Die DS soll 2 Methoden haben:
• Insert zum Einfügen einer Zahl und
• DeleteLargerHalf zum Löschen aller Zahlen aus der

Datenstruktur, die größer oder gleich dem aktuellen Median
der Zahlenmenge sind.
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Übungsaufgaben zur amortisierten Analyse (II)

Entwerfen Sie eine Datenstruktur zum Verwalten einer
dynamischen Menge von Zahlen. Die DS soll 2 Methoden haben:
• Insert zum Einfügen einer Zahl und
• DeleteLargerHalf zum Löschen aller Zahlen aus der

Datenstruktur, die größer oder gleich dem aktuellen Median
der Zahlenmenge sind.

Beide Methoden sollen amortisiert O(1) Zeit benötigen.

1. Beschreiben Sie Ihren Entwurf der Datenstruktur
einschließlich der beiden Methoden in Worten.

2. Analysieren Sie mithilfe der Buchhaltermethode.
Geben Sie die amortisierten Kosten, die Sie mit Insert und
DeleteLargerHalf verbinden, exakt an.

Tipp: Verwenden Sie eine Liste!
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