
1

Philipp Kindermann Winter Semester 2020

Lecture 10:
Motion Planning

Part I:
Point-Shaped Robots

Computational Geometry



2 - 1

Planning

current situation,
desired situation



2 - 2

Planning

current situation,
desired situation

⇒



2 - 3

Planning

current situation,
desired situation

⇒

sequence of steps to reach
the one from the other



3 - 1

Path Planning

current location,
desired location



3 - 2

Path Planning

⇒

current location,
desired location



3 - 3

Path Planning

⇒

current location,
desired location

path to reach the
one from the other



4 - 1

Point-Shaped
Robots

pstart

pgoal



4 - 2

Point-Shaped
Robots

� Create trapezoidal map of obstacle edges.

pstart

pgoal



4 - 3

Point-Shaped
Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

pstart

pgoal



4 - 4

Point-Shaped
Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.
� Vertices at centers of trapez. and vertical ext.

pstart

pgoal



4 - 5

Point-Shaped
Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Vertices at centers of trapez. and vertical ext.

pstart

pgoal



4 - 6

Point-Shaped
Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map

� Vertices at centers of trapez. and vertical ext.

pstart

pgoal



4 - 7

Point-Shaped
Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

pstart

pgoal



4 - 8

Point-Shaped
Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map
� Do breadth-first search in the roadmap

to find a path π from ∆start to ∆goal.

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

pstart

pgoal



4 - 9

Point-Shaped
Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map
� Do breadth-first search in the roadmap

to find a path π from ∆start to ∆goal.

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

� Connect pstart, pgoal to π by line segments.

pstart

pgoal



4 - 10

Point-Shaped
Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map
� Do breadth-first search in the roadmap

to find a path π from ∆start to ∆goal.

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

� Connect pstart, pgoal to π by line segments.

pstart

pgoal



4 - 11

Point-Shaped

O(n log n)

Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map
� Do breadth-first search in the roadmap

to find a path π from ∆start to ∆goal.

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

� Connect pstart, pgoal to π by line segments.

pstart

pgoal



4 - 12

Point-Shaped

O(n log n)
O(n)

Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map
� Do breadth-first search in the roadmap

to find a path π from ∆start to ∆goal.

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

� Connect pstart, pgoal to π by line segments.

pstart

pgoal



4 - 13

Point-Shaped

O(n log n)
O(n)
O(n)

Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map
� Do breadth-first search in the roadmap

to find a path π from ∆start to ∆goal.

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

� Connect pstart, pgoal to π by line segments.

pstart

pgoal



4 - 14

Point-Shaped

O(n log n)
O(n)
O(n)

Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map
� Do breadth-first search in the roadmap

to find a path π from ∆start to ∆goal.

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

� Connect pstart, pgoal to π by line segments.

O(n)

pstart

pgoal



4 - 15

Point-Shaped

O(n log n)
O(n)
O(n)

O(log n)

Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map
� Do breadth-first search in the roadmap

to find a path π from ∆start to ∆goal.

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

� Connect pstart, pgoal to π by line segments.

O(n)

pstart

pgoal



4 - 16

Point-Shaped

O(n log n)
O(n)
O(n)

O(log n)

O(n)

Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map
� Do breadth-first search in the roadmap

to find a path π from ∆start to ∆goal.

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

� Connect pstart, pgoal to π by line segments.

O(n)

pstart

pgoal



4 - 17

Point-Shaped

O(n log n)
O(n)
O(n)

O(log n)

O(n)

O(1)

Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map
� Do breadth-first search in the roadmap

to find a path π from ∆start to ∆goal.

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

� Connect pstart, pgoal to π by line segments.

O(n)

pstart

pgoal



4 - 18

Point-Shaped

O(n log n)
O(n)
O(n)

O(log n)

O(n)

O(1)

Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map
� Do breadth-first search in the roadmap

to find a path π from ∆start to ∆goal.

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

� Connect pstart, pgoal to π by line segments.

O(n)

pstart

pgoal



4 - 19

Point-Shaped

O(n log n)
O(n)
O(n)

O(log n)

O(n)

O(1)

Robots

� Create trapezoidal map of obstacle edges.
� Remove vertical extensions inside obstacles.

� Connect “neighboring” vertices by line segm.
� Locate pstart, pgoal in map
� Do breadth-first search in the roadmap

to find a path π from ∆start to ∆goal.

� Vertices at centers of trapez. and vertical ext.

∆start ∆goal

→ ∆start, ∆goal.

� Connect pstart, pgoal to π by line segments.

O(n)

pstart

pgoal

pr
ep

ro
ce

ss
in

g
qu

er
yi

ng



5 - 1

A First Result
Theorem. We can preprocess a set of polygonal obstacles

with a total of n edges in O(n log n) expected
time such that, given a start and a goal position,
we can find a collision-free path for a point
robot in O(n) time if it exists.



5 - 2

A First Result
Theorem. We can preprocess a set of polygonal obstacles

with a total of n edges in O(n log n) expected
time such that, given a start and a goal position,
we can find a collision-free path for a point
robot in O(n) time if it exists.



5 - 3

A First Result

What about, say, polygonal robots?

Theorem. We can preprocess a set of polygonal obstacles
with a total of n edges in O(n log n) expected
time such that, given a start and a goal position,
we can find a collision-free path for a point
robot in O(n) time if it exists.



6

Philipp Kindermann Winter Semester 2020

Lecture 10:
Motion Planning

Part II:
Configuration Space

Computational Geometry



7 - 1

Degrees of Freedom
Every robot has some number d of degrees of freedom,
meaning that its configuration with respect to the world can
be specified by d parameters.



7 - 2

Degrees of Freedom
Every robot has some number d of degrees of freedom,
meaning that its configuration with respect to the world can
be specified by d parameters.

2D translating robot



7 - 3

Degrees of Freedom
Every robot has some number d of degrees of freedom,
meaning that its configuration with respect to the world can
be specified by d parameters.

2D translating robot 2D translating, rotating robot



7 - 4

Degrees of Freedom
Every robot has some number d of degrees of freedom,
meaning that its configuration with respect to the world can
be specified by d parameters.

2D translating robot 2D translating, rotating robot

3D translating robot



7 - 5

Degrees of Freedom
Every robot has some number d of degrees of freedom,
meaning that its configuration with respect to the world can
be specified by d parameters.

2D translating robot 2D translating, rotating robot

3D translating robot 3D translating, rotating robot



8 - 1

Configuration Space

robotic arm



8 - 2

Configuration Space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

robotic arm



8 - 3

Configuration Space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

robotic arm

robot

obstacle

work space



8 - 4

Configuration Space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

robotic arm

robot

obstacle

work spacereference
point



8 - 5

Configuration Space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

robotic arm

robot

obstacle

work space configuration spacereference
point



8 - 6

Configuration Space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

robotic arm

robot

obstacle

work space configuration spacereference
point



8 - 7

Configuration Space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

robotic arm

robot

obstacle

work space configuration spacereference
point



8 - 8

Configuration Space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.

robotic arm

robot

obstacle

work space configuration spacereference
point



8 - 9

Configuration Space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.
Path for a point through configuration space

robotic arm

robot

obstacle

work space configuration spacereference
point



8 - 10

Configuration Space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.
Path for a point through configuration space

⇓

robotic arm

robot

obstacle

work space configuration spacereference
point



8 - 11

Configuration Space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.
Path for a point through configuration space

path for the robot in the original space.

⇓

robotic arm

robot

obstacle

work space configuration spacereference
point



9 - 1

Example: Translating 2D Polygonal Robots

R(0, 0)

R(x, y)

x

y′
P1

x′

R(x′, y′)

y

P2

work space

(0, 0) xx′

(x, y)

configuration space

(x′, y′)



9 - 2

Example: Translating 2D Polygonal Robots

R(0, 0)

R(x, y)

x

y′
P1

x′

R(x′, y′)

y

P2

work space

� Compute CP i = {(x, y) : R(x, y) ∩ Pi 6= ∅} for each Pi.

(0, 0) xx′

(x, y)

configuration space

(x′, y′)



9 - 3

Example: Translating 2D Polygonal Robots

R(0, 0)

R(x, y)

x

y′
P1

x′

R(x′, y′)

y

P2

work space

� Compute CP i = {(x, y) : R(x, y) ∩ Pi 6= ∅} for each Pi.

(0, 0) xx′

(x, y)

configuration space

CP1
(x′, y′)

CP2



9 - 4

Example: Translating 2D Polygonal Robots

R(0, 0)

R(x, y)

x

y′
P1

x′

R(x′, y′)

y

P2

work space

� Compute their union Cforb =
⋃

i CP i.
� Compute CP i = {(x, y) : R(x, y) ∩ Pi 6= ∅} for each Pi.

(0, 0) xx′

(x, y)

configuration space

CP1
(x′, y′)

CP2



9 - 5

Example: Translating 2D Polygonal Robots

R(0, 0)

R(x, y)

x

y′
P1

x′

R(x′, y′)

y

P2

work space

� Compute their union Cforb =
⋃

i CP i.
� Compute CP i = {(x, y) : R(x, y) ∩ Pi 6= ∅} for each Pi.

(0, 0) xx′

(x, y)

configuration space

CP1
(x′, y′)

CP2

Cforb



9 - 6

Example: Translating 2D Polygonal Robots

R(0, 0)

R(x, y)

x

y′
P1

x′

R(x′, y′)

y

P2

work space

� Compute their union Cforb =
⋃

i CP i.
� Find a path for a point in the complement Cfree of Cforb.

� Compute CP i = {(x, y) : R(x, y) ∩ Pi 6= ∅} for each Pi.

(0, 0) xx′

(x, y)

configuration space

CP1
(x′, y′)

CP2
Cfree

Cforb



9 - 7

Example: Translating 2D Polygonal Robots

R(0, 0)

R(x, y)

x

y′
P1

x′

R(x′, y′)

y

P2

work space

� Compute their union Cforb =
⋃

i CP i.
� Find a path for a point in the complement Cfree of Cforb.

� Compute CP i = {(x, y) : R(x, y) ∩ Pi 6= ∅} for each Pi.

(0, 0) xx′

(x, y)

configuration space

CP1
(x′, y′)

CP2
Cfree

Cforb



9 - 8

Example: Translating 2D Polygonal Robots

R(0, 0)

R(x, y)

x

y′
P1

x′

R(x′, y′)

y

P2

work space

� Compute their union Cforb =
⋃

i CP i.
� Find a path for a point in the complement Cfree of Cforb.
⇒ collision-free path for the robot in work space

� Compute CP i = {(x, y) : R(x, y) ∩ Pi 6= ∅} for each Pi.

(0, 0) xx′

(x, y)

configuration space

CP1
(x′, y′)

CP2
Cfree

Cforb



9 - 9

Example: Translating 2D Polygonal Robots

R(0, 0)

R(x, y)

x

y′
P1

x′

R(x′, y′)

y

P2

work space

� Compute their union Cforb =
⋃

i CP i.
� Find a path for a point in the complement Cfree of Cforb.
⇒ collision-free path for the robot in work space

� Compute CP i = {(x, y) : R(x, y) ∩ Pi 6= ∅} for each Pi.

(0, 0) xx′

(x, y)

configuration space

CP1
(x′, y′)

CP2
Cfree

Cforb



10

Philipp Kindermann Winter Semester 2020

Lecture 10:
Motion Planning

Part III:
Characterizing Configuration Spaces

Computational Geometry



11 - 1

Some Linear Algebra
Vector sums p

q



11 - 2

Some Linear Algebra
Vector sums p

q

p + q



11 - 3

Some Linear Algebra
Vector sums
Algebra: (px, py) + (qx, qy) = (px + qx, py + qy)

p
q

p + q



11 - 4

Some Linear Algebra
Vector sums
Algebra:
Geometry:

(px, py) + (qx, qy) = (px + qx, py + qy)
place vectors head to tail

p
q

p + q



11 - 5

Some Linear Algebra
Vector sums

Minkowski sums

Algebra:
Geometry:

(px, py) + (qx, qy) = (px + qx, py + qy)
place vectors head to tail

p
q

p + q

⊕ ==



11 - 6

Some Linear Algebra
Vector sums

Minkowski sums

Algebra:
Geometry:

(px, py) + (qx, qy) = (px + qx, py + qy)
place vectors head to tail

p
q

p + q

⊕ ==



11 - 7

Some Linear Algebra
Vector sums

Minkowski sums

Algebra:
Geometry:

(px, py) + (qx, qy) = (px + qx, py + qy)
place vectors head to tail

p
q

p + q

Algebra: S1 ⊕ S2 = {p + q | p ∈ S1, q ∈ S2}

⊕ ==



11 - 8

Some Linear Algebra
Vector sums

Minkowski sums

Algebra:
Geometry:

(px, py) + (qx, qy) = (px + qx, py + qy)
place vectors head to tail

p
q

p + q

Algebra:
Geometry:

S1 ⊕ S2 = {p + q | p ∈ S1, q ∈ S2}
place copy of one shape
at every point of the other

⊕ ==



11 - 9

Some Linear Algebra
Vector sums

Minkowski sums

Algebra:
Geometry:

(px, py) + (qx, qy) = (px + qx, py + qy)
place vectors head to tail

p
q

p + q

Algebra:
Geometry:

S1 ⊕ S2 = {p + q | p ∈ S1, q ∈ S2}
place copy of one shape
at every point of the other

⊕ =

Inversion

− =

=



11 - 10

Some Linear Algebra
Vector sums

Minkowski sums

Algebra:
Geometry:

(px, py) + (qx, qy) = (px + qx, py + qy)
place vectors head to tail

p
q

p + q

Algebra:
Geometry:

S1 ⊕ S2 = {p + q | p ∈ S1, q ∈ S2}
place copy of one shape
at every point of the other

⊕ =

Inversion

− =

=



11 - 11

Some Linear Algebra
Vector sums

Minkowski sums

Algebra:
Geometry:

(px, py) + (qx, qy) = (px + qx, py + qy)
place vectors head to tail

p
q

p + q

Algebra:
Geometry:

S1 ⊕ S2 = {p + q | p ∈ S1, q ∈ S2}
place copy of one shape
at every point of the other

⊕ =

Inversion
Algebra: −S = {−p | p ∈ S}

− =

=



11 - 12

Some Linear Algebra
Vector sums

Minkowski sums

Algebra:
Geometry:

(px, py) + (qx, qy) = (px + qx, py + qy)
place vectors head to tail

p
q

p + q

Algebra:
Geometry:

S1 ⊕ S2 = {p + q | p ∈ S1, q ∈ S2}
place copy of one shape
at every point of the other

⊕ =

Inversion
Algebra:
Geometry:

−S = {−p | p ∈ S}
rotate 180◦ (point-mirror)
around reference point

− =

=



12 - 1

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

CP



12 - 2

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP



12 - 3

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

CP = P ⊕ (−R(0, 0))Theorem.



12 - 4

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof.

CP = P ⊕ (−R(0, 0))Theorem.



12 - 5

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof. Show: R(x, y) intersects P ⇔ (x, y) ∈ P ⊕ (−R(0, 0)).

CP = P ⊕ (−R(0, 0))Theorem.



12 - 6

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof.

“⇒”

Show: R(x, y) intersects P ⇔ (x, y) ∈ P ⊕ (−R(0, 0)).

“⇐”

CP = P ⊕ (−R(0, 0))Theorem.



12 - 7

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof.

Suppose R(x, y) intersects P .“⇒”

Show: R(x, y) intersects P ⇔ (x, y) ∈ P ⊕ (−R(0, 0)).

“⇐”

CP = P ⊕ (−R(0, 0))Theorem.



12 - 8

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof.

Suppose R(x, y) intersects P .
Let q ∈ R(x, y) ∩ P . Then...

“⇒”

Show: R(x, y) intersects P ⇔ (x, y) ∈ P ⊕ (−R(0, 0)).

“⇐”

q

CP = P ⊕ (−R(0, 0))Theorem.



12 - 9

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof.

Suppose R(x, y) intersects P .
Let q ∈ R(x, y) ∩ P . Then...

“⇒”

Show: R(x, y) intersects P ⇔ (x, y) ∈ P ⊕ (−R(0, 0)).

“⇐”

q

CP = P ⊕ (−R(0, 0))Theorem.



12 - 10

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof.

Suppose R(x, y) intersects P .
Let q ∈ R(x, y) ∩ P . Then...

“⇒”

Show: R(x, y) intersects P ⇔ (x, y) ∈ P ⊕ (−R(0, 0)).

“⇐”

q

CP = P ⊕ (−R(0, 0))Theorem.



12 - 11

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof.

Suppose R(x, y) intersects P .
Let q ∈ R(x, y) ∩ P . Then...

“⇒”

Show: R(x, y) intersects P ⇔ (x, y) ∈ P ⊕ (−R(0, 0)).

“⇐” Let (x, y) ∈ P ⊕ (−R(0, 0)).

CP = P ⊕ (−R(0, 0))Theorem.



12 - 12

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof.

Suppose R(x, y) intersects P .
Let q ∈ R(x, y) ∩ P . Then...

“⇒”

Show: R(x, y) intersects P ⇔ (x, y) ∈ P ⊕ (−R(0, 0)).

“⇐” Let (x, y) ∈ P ⊕ (−R(0, 0)).
Then there are points
q ∈ P and r ∈ R(0, 0)
such that . . .

q

CP = P ⊕ (−R(0, 0))Theorem.



12 - 13

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof.

Suppose R(x, y) intersects P .
Let q ∈ R(x, y) ∩ P . Then...

“⇒”

Show: R(x, y) intersects P ⇔ (x, y) ∈ P ⊕ (−R(0, 0)).

“⇐” Let (x, y) ∈ P ⊕ (−R(0, 0)).
Then there are points
q ∈ P and r ∈ R(0, 0)
such that . . .

q

CP = P ⊕ (−R(0, 0))Theorem.



12 - 14

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof.

Suppose R(x, y) intersects P .
Let q ∈ R(x, y) ∩ P . Then...

“⇒”

Show: R(x, y) intersects P ⇔ (x, y) ∈ P ⊕ (−R(0, 0)).

“⇐” Let (x, y) ∈ P ⊕ (−R(0, 0)).
Then there are points
q ∈ P and r ∈ R(0, 0)
such that . . .

q

CP = P ⊕ (−R(0, 0))Theorem.



12 - 15

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof.

Suppose R(x, y) intersects P .
Let q ∈ R(x, y) ∩ P . Then...

“⇒”

Show: R(x, y) intersects P ⇔ (x, y) ∈ P ⊕ (−R(0, 0)).

“⇐” Let (x, y) ∈ P ⊕ (−R(0, 0)).
Then there are points
q ∈ P and r ∈ R(0, 0)
such that . . .

q

CP = P ⊕ (−R(0, 0))Theorem.



12 - 16

Characterizing CP

R(0, 0)
R(x, y)

P

Recall that CP = {(x, y) : R(x, y) ∩ P 6= ∅} for an obstacle P .

R(x, y) intersects P ⇔ (x, y) ∈ CP .In other words:

CP

Proof.

Suppose R(x, y) intersects P .
Let q ∈ R(x, y) ∩ P . Then...

“⇒”

Show: R(x, y) intersects P ⇔ (x, y) ∈ P ⊕ (−R(0, 0)).

“⇐” Let (x, y) ∈ P ⊕ (−R(0, 0)).
Then there are points
q ∈ P and r ∈ R(0, 0)
such that . . .

q
r

CP = P ⊕ (−R(0, 0))Theorem.



13

Philipp Kindermann Winter Semester 2020

Lecture 10:
Motion Planning

Part IV:
Minkowski Sum: Complexity & Computation

Computational Geometry



14 - 1

Minkowski Sums: Complexity

PR

P ⊕R

r
p

p + r

0

If P and R are convex polygons with n and m
edges, respectively, then P ⊕R is a convex
polygon with at most n + m edges.

Theorem.



14 - 2

Minkowski Sums: Complexity

PR

P ⊕R

r
p

p + r

e

0

If P and R are convex polygons with n and m
edges, respectively, then P ⊕R is a convex
polygon with at most n + m edges.

Theorem.



14 - 3

Minkowski Sums: Complexity

PR

P ⊕R

r
p

p + r

d

e

0

If P and R are convex polygons with n and m
edges, respectively, then P ⊕R is a convex
polygon with at most n + m edges.

Theorem.



14 - 4

Minkowski Sums: Complexity

PR

P ⊕R

r
p

p + r

d

e

0

If P and R are convex polygons with n and m
edges, respectively, then P ⊕R is a convex
polygon with at most n + m edges.

Theorem.



14 - 5

Minkowski Sums: Complexity

PR

P ⊕R

r
p

p + r

d

e

0

If P and R are convex polygons with n and m
edges, respectively, then P ⊕R is a convex
polygon with at most n + m edges.

Theorem.



14 - 6

Minkowski Sums: Complexity

PR

P ⊕R

r
p

p + r

d

e

0

If P and R are convex polygons with n and m
edges, respectively, then P ⊕R is a convex
polygon with at most n + m edges.

Theorem.



14 - 7

Minkowski Sums: Complexity

PR

P ⊕R

r
p

p + r

d

e

0

If P and R are convex polygons with n and m
edges, respectively, then P ⊕R is a convex
polygon with at most n + m edges.

Theorem.



14 - 8

Minkowski Sums: Complexity

PR

P ⊕R

r
p

p + r

d

e

0
...

If P and R are convex polygons with n and m
edges, respectively, then P ⊕R is a convex
polygon with at most n + m edges.

Theorem.



15 - 1

Minkowski Sums: Computation

P

R

P ⊕R



15 - 2

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.



15 - 3

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea.



15 - 4

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)



15 - 5

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)



15 - 6

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.



15 - 7

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )



15 - 8

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(



15 - 9

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(

Theorem. The Minkowski sum of two convex
polygons P and R can be computed in
O(|P|+ |R|) time.



15 - 10

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(

Theorem. The Minkowski sum of two convex
polygons P and R can be computed in
O(|P|+ |R|) time.



15 - 11

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(

Theorem. The Minkowski sum of two convex
polygons P and R can be computed in
O(|P|+ |R|) time.



15 - 12

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(

Theorem. The Minkowski sum of two convex
polygons P and R can be computed in
O(|P|+ |R|) time.



15 - 13

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(

Theorem. The Minkowski sum of two convex
polygons P and R can be computed in
O(|P|+ |R|) time.



15 - 14

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(

Theorem. The Minkowski sum of two convex
polygons P and R can be computed in
O(|P|+ |R|) time.



15 - 15

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(

Theorem. The Minkowski sum of two convex
polygons P and R can be computed in
O(|P|+ |R|) time.



15 - 16

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(

Theorem. The Minkowski sum of two convex
polygons P and R can be computed in
O(|P|+ |R|) time.



15 - 17

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(

Theorem. The Minkowski sum of two convex
polygons P and R can be computed in
O(|P|+ |R|) time.



15 - 18

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(

Theorem. The Minkowski sum of two convex
polygons P and R can be computed in
O(|P|+ |R|) time.



15 - 19

Minkowski Sums: Computation

P

R

P ⊕R

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(

Theorem. The Minkowski sum of two convex
polygons P and R can be computed in
O(|P|+ |R|) time.



15 - 20

Minkowski Sums: Computation

P

R

P ⊕R

. . .

How would you compute P ⊕R given P and R?Task.

Idea. P ⊕R = CH
(
{p + r | p ∈ P , r ∈ R}

)
(Proof?)

Problem.
︸ ︷︷ ︸

complexity ∈ Θ( )|P| · |R| :-(

Theorem. The Minkowski sum of two convex
polygons P and R can be computed in
O(|P|+ |R|) time.



16

Philipp Kindermann Winter Semester 2020

Lecture 10:
Motion Planning

Part V:
Pseudodisks

Computational Geometry



17 - 1

Pseudodisks

A pair of planar objects o1 and o2 is a pair of
pseudodisks if:
� ∂o1 ∩ int(o2) is connected, and
� ∂o2 ∩ int(o1) is connected.

Definition.

o1 o2



17 - 2

Pseudodisks

A pair of planar objects o1 and o2 is a pair of
pseudodisks if:
� ∂o1 ∩ int(o2) is connected, and
� ∂o2 ∩ int(o1) is connected.

Definition.

o1 o2



17 - 3

Pseudodisks

A pair of planar objects o1 and o2 is a pair of
pseudodisks if:
� ∂o1 ∩ int(o2) is connected, and
� ∂o2 ∩ int(o1) is connected.

Definition.

p ∈ ∂o1 ∩ ∂o2 is a boundary crossing if ∂o1 crosses at p from
the interior to the exterior of o2.

o1 o2



17 - 4

Pseudodisks

A pair of planar objects o1 and o2 is a pair of
pseudodisks if:
� ∂o1 ∩ int(o2) is connected, and
� ∂o2 ∩ int(o1) is connected.

Definition.

p ∈ ∂o1 ∩ ∂o2 is a boundary crossing if ∂o1 crosses at p from
the interior to the exterior of o2.

Observation. A pair of polygonal pseudodisks defines at
most two boundary crossings.

o1 o2



18 - 1

Extreme Directions
Observation. Let P1, P2 be interior-disjoint convex polygons

P2P2

P1



18 - 2

Extreme Directions
Observation. Let P1, P2 be interior-disjoint convex polygons

P2P2

P1

Let d1 and d2 be directions in which P1 is
more extreme than P2.

d1



18 - 3

Extreme Directions
Observation. Let P1, P2 be interior-disjoint convex polygons

P2P2

P1

Let d1 and d2 be directions in which P1 is
more extreme than P2.

d1

d2



18 - 4

Extreme Directions
Observation. Let P1, P2 be interior-disjoint convex polygons

P2P2

P1

Let d1 and d2 be directions in which P1 is
more extreme than P2.
Then P1 is more extreme than P2 either in
[d1, d2] or in [d2, d1].

d1

d2

d1

d2



18 - 5

Extreme Directions
Observation. Let P1, P2 be interior-disjoint convex polygons

d′

d′′

d′′′

P2P2

P1

Let d1 and d2 be directions in which P1 is
more extreme than P2.
Then P1 is more extreme than P2 either in
[d1, d2] or in [d2, d1].

d1

d2

d1

d2



18 - 6

Extreme Directions
Observation. Let P1, P2 be interior-disjoint convex polygons

d′

d′′

d′′′

d′
d′′

d′′′
P2P2

P1

Let d1 and d2 be directions in which P1 is
more extreme than P2.
Then P1 is more extreme than P2 either in
[d1, d2] or in [d2, d1].

d1

d2

d1

d2



18 - 7

Extreme Directions
Observation. Let P1, P2 be interior-disjoint convex polygons

d′

d′′

d′′′

d′
d′′

d′′′

P2 and P1
equally
extreme

P2 more
extreme

P1 more
extremeP2P2

P1

Let d1 and d2 be directions in which P1 is
more extreme than P2.
Then P1 is more extreme than P2 either in
[d1, d2] or in [d2, d1].

d1

d2

d1

d2



19 - 1

Polygonal Pseudodisks
If P1 and P2 are convex polygons with
disjoint interiors, and R is another convex
polygon, then P1 ⊕R and P2 ⊕R is a pair of
pseudodisks.

Theorem.



19 - 2

Polygonal Pseudodisks
If P1 and P2 are convex polygons with
disjoint interiors, and R is another convex
polygon, then P1 ⊕R and P2 ⊕R is a pair of
pseudodisks.

Theorem.

CP1 CP2

︸ ︷︷ ︸ ︸ ︷︷ ︸



19 - 3

Polygonal Pseudodisks
If P1 and P2 are convex polygons with
disjoint interiors, and R is another convex
polygon, then P1 ⊕R and P2 ⊕R is a pair of
pseudodisks.

Theorem.

CP1 CP2

︸ ︷︷ ︸ ︸ ︷︷ ︸
Proof. It suffices to show: CP1 \ CP2 is connected.



19 - 4

Polygonal Pseudodisks
If P1 and P2 are convex polygons with
disjoint interiors, and R is another convex
polygon, then P1 ⊕R and P2 ⊕R is a pair of
pseudodisks.

Theorem.

CP1 CP2

︸ ︷︷ ︸ ︸ ︷︷ ︸
Proof. It suffices to show: CP1 \ CP2 is connected.

Suppose CP1 \ CP2 is not connected...

CP1

CP2



19 - 5

Polygonal Pseudodisks
If P1 and P2 are convex polygons with
disjoint interiors, and R is another convex
polygon, then P1 ⊕R and P2 ⊕R is a pair of
pseudodisks.

Theorem.

s

q

CP1 CP2

︸ ︷︷ ︸ ︸ ︷︷ ︸
Proof. It suffices to show: CP1 \ CP2 is connected.

Suppose CP1 \ CP2 is not connected...

CP1

CP2



19 - 6

Polygonal Pseudodisks
If P1 and P2 are convex polygons with
disjoint interiors, and R is another convex
polygon, then P1 ⊕R and P2 ⊕R is a pair of
pseudodisks.

Theorem.

s
ds

q
dq

CP1 CP2

︸ ︷︷ ︸ ︸ ︷︷ ︸
Proof. It suffices to show: CP1 \ CP2 is connected.

Suppose CP1 \ CP2 is not connected...

CP1

CP2



19 - 7

Polygonal Pseudodisks
If P1 and P2 are convex polygons with
disjoint interiors, and R is another convex
polygon, then P1 ⊕R and P2 ⊕R is a pair of
pseudodisks.

Theorem.

s
ds

q
dq

CP1 CP2

︸ ︷︷ ︸ ︸ ︷︷ ︸
Proof. It suffices to show: CP1 \ CP2 is connected.

Suppose CP1 \ CP2 is not connected...

CP1

CP2
to previous observation!



20

Philipp Kindermann Winter Semester 2020

Lecture 10:
Motion Planning

Part VI:
Union Complexity

Computational Geometry



21 - 1

Union Complexity
A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 2

Union Complexity

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 3

Union Complexity

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 4

Union Complexity

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

boundary crossing

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 5

Union Complexity

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

boundary crossing

adjacent vtx
in the interior
of the union

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 6

Union Complexity

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

boundary crossing

adjacent vtx
in the interior
of the union

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 7

Union Complexity

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

boundary crossing

adjacent vtx
in the interior
of the union

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 8

Union Complexity

v

P

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

boundary crossing

adjacent vtx
in the interior
of the union

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 9

Union Complexity

v

P

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

boundary crossing

adjacent vtx
in the interior
of the union

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 10

Union Complexity

v

P

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

boundary crossing

adjacent vtx
in the interior
of the union

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 11

Union Complexity

v

P

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

boundary crossing

adjacent vtx
in the interior
of the union

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 12

Union Complexity

v

P

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

boundary crossing

adjacent vtx
in the interior
of the union

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 13

Union Complexity

v

P

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

boundary crossing

adjacent vtx
in the interior
of the union

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 14

Union Complexity

v

P

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

boundary crossing

adjacent vtx
in the interior
of the union

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



21 - 15

Union Complexity

v

P

Proof. Charge every vtx of the union to a polygon vtx
s.t. every polygon vtx is charged at most twice.

boundary crossing

adjacent vtx
in the interior
of the union

A collection S of convex polygonal pseudodisks
with n vtc in total has a union with ≤ 2n vtc.

Theorem.



22 - 1

Summary and Main Result
Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 2

Summary and Main Result

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 3

Summary and Main Result

Proof.

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 4

Summary and Main Result

Proof.
� Triangulate the obstacles if not convex.

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 5

Summary and Main Result

Proof.
� Triangulate the obstacles if not convex. Lec. 3

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 6

Summary and Main Result

Proof.
� Triangulate the obstacles if not convex. Lec. 3O(n log n)

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 7

Summary and Main Result

Proof.

� Compute CP i for every convex obstacle Pi.

� Triangulate the obstacles if not convex. Lec. 3O(n log n)

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 8

Summary and Main Result

Proof.

� Compute CP i for every convex obstacle Pi.

� Triangulate the obstacles if not convex. Lec. 3O(n log n)
O(n)

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 9

Summary and Main Result

� Compute their union Cforb =
⋃

i CP i
using div. and conq. (merge by sweeping – Lec. 2)

Proof.

� Compute CP i for every convex obstacle Pi.

� Triangulate the obstacles if not convex.

. . . ?

Lec. 3O(n log n)
O(n)

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 10

Summary and Main Result

� Compute their union Cforb =
⋃

i CP i
using div. and conq. (merge by sweeping – Lec. 2)

Proof.

� Compute CP i for every convex obstacle Pi.

� Triangulate the obstacles if not convex. Lec. 3O(n log n)
O(n)

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 11

Summary and Main Result

� Compute their union Cforb =
⋃

i CP i
using div. and conq. (merge by sweeping – Lec. 2)

Proof.

� Compute CP i for every convex obstacle Pi.

� Triangulate the obstacles if not convex. Lec. 3O(n log n)
O(n)
O(n log2 n)

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 12

Summary and Main Result

� Compute their union Cforb =
⋃

i CP i
using div. and conq. (merge by sweeping – Lec. 2)

Proof.

� Compute CP i for every convex obstacle Pi.

� Triangulate the obstacles if not convex.

[Argue carefully about the number of intersection pts!]

Lec. 3O(n log n)
O(n)
O(n log2 n)

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 13

Summary and Main Result

� Compute their union Cforb =
⋃

i CP i
using div. and conq. (merge by sweeping – Lec. 2)

� Find a path for a point in the complement Cfree.

Proof.

� Compute CP i for every convex obstacle Pi.

� Triangulate the obstacles if not convex.

[Argue carefully about the number of intersection pts!]

Lec. 3O(n log n)
O(n)
O(n log2 n)

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.



22 - 14

Summary and Main Result

� Compute their union Cforb =
⋃

i CP i
using div. and conq. (merge by sweeping – Lec. 2)

� Find a path for a point in the complement Cfree.

Proof.

� Compute CP i for every convex obstacle Pi.

� Triangulate the obstacles if not convex.

[Argue carefully about the number of intersection pts!]

Lec. 3O(n log n)
O(n)
O(n log2 n)

O(n)

We can preprocess S in O(n log2 n) time such
that, given any start and goal position, we
can compute in O(n) time a collision-free
path for R if it exists.

Let R be a constant-complexity convex
robot, translating among a set S of disjoint
polygonal obstacles with n edges in total.

Theorem.


	Point-Shaped Robots
	Planning
	Path Planning
	Point-Shaped Robots
	A First Result

	Configuration Space
	Degrees of Freedom
	Configuration Space
	Example: Translating 2D Polygonal Robots

	Characterizing Configuration Spaces
	Some Linear Algebra
	Characterizing CP

	Minkowski Sum: Complexity & Computation
	Minkowski Sums: Complexity
	Minkowski Sums: Computation

	Pseudodisks
	Extreme Directions
	Polygonal Pseudodisks

	Union Complexity
	Summary and Main Result

