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A First Result
Theorem. We can preprocess a set of polygonal obstacles

with a total of n edges in O(n log n) expected
time such that, given a start and a goal position,
we can find a collision-free path for a point
robot in O(n) time if it exists.
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A First Result

What about, say, polygonal robots?

Theorem. We can preprocess a set of polygonal obstacles
with a total of n edges in O(n log n) expected
time such that, given a start and a goal position,
we can find a collision-free path for a point
robot in O(n) time if it exists.
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Configuration Space

The configuration space is the d-dimensional space of
all possible (i.e., obstacle avoiding) parameter value
combinations.
Path for a point through configuration space

path for the robot in the original space.

⇓
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obstacle

work space configuration spacereference
point
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