

9th Exercise Sheet

Advanced Algorithms (WS20)

Exercise 1 – Rank structure

Suppose we want to build the rank structure for a bit string of length $n = 256$. Let A be the array that stores the cumulative rank of chunks and let B be the array that stores the cumulative rank of subchunks. Compute the lengths of A and B ; show your calculations.

2 Points

Explicitly write the first 10 rows of the lookup table for the bitstrings of length $\frac{1}{2} \log n$. One row may be build up like this:

[bitstring] [rank(0)] [rank(1)] [rank(2)] ...

You may write the query answers $\text{rank}(j)$ in decimal notation.

2 Points

Give pseudocode for the following methods:

- $\text{predecessor}(i)$, which returns the index of the predecessor of the element indexed by i ;
- $\text{successor}(i)$, which returns the index of the successor of the element index by i .

3 Points

Exercise 2 – The child operation on succinct binary trees

Consider the succinct representation of binary trees from the lecture. Let i be the index (position of its representative 1 in the bitstring) of a vertex v that has two children. Prove that the indices of the children of v are then given by $2\text{rank}(i)$ and $2\text{rank}(i) + 1$.

6 Points

Exercise 3 – Operations on LOUDS

Consider the LOUDS representation of a tree from the lecture. Let i be the index of a vertex v (i.e. the position of its "1" in the LOUDS bitstring). Give pseudocode for the following methods, which should run in constant time:

- $\text{outDegree}(i)$, which returns the outdegree of v ;
- $\text{childNum}(i, j)$, which returns the index of the j -th child of v if it exists and otherwise -1;
- $\text{isRoot}(i)$, which returns whether vertex v is the (real) root; and
- $\text{isLeaf}(i)$, which returns whether vertex v is a leaf.

Your pseudocode should not only contain the calculation, but also make sure the input is valid; for example, does i even have j children? **7 Points**

This assignment is due on January 18 at 10 am. Please submit your solutions via WueCampus. The exercises will be discussed in the tutorial session on January 18.