Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen und Datenstrukturen

Wintersemester 2020/21
16. Vorlesung

Augmentieren von Datenstrukturen

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

/wischentest |l: Do, 21. Jan., 8:30—-10:00

Zufallsexperimente, (Indikator-) Zufallsvariable,
Erwartungswert

(Randomisiertes) QuickSort

Untere Schranke fiir WC-Laufzeit von vergleichsbasierten
Sortierverfahren

Linearzeit-Sortierverfahren
Auswahlproblem (Median): randomisiert & deterministisch
Elementare Datenstrukturen

Hashing

Bindre Suchbiaume (Rot-Schwarz-Biaume noch nicht)

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

e doppelt verkettete Liste
e Stapel

e Hashtabelle

e Heap

e bindrer Suchbaum
Allerdings gibt es viele Situationen, wo keine davon genau passt.

Herangehensweise: Augmentieren von Datenstrukturen,

d.h. wir verandern Datenstrukturen,
iIndem wir extra Information
hinzufiigen und aufrechterhalten.

Ein Beispiel

Bestimme fiir eine dynamische Menge v. Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
— Liste

2. Welche Extrainformation aufrechterhalten?

— Summe der Elemente (sum)
— Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?
— konstanter Aufwand beim Einfiigen und Loschen

4. Implementiere neue Operationen!

getMean()

return sum/size Probje,
€h S;
Ie's!

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen |6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

e das i.-kleinste Element (z.B. den Median): Select
e den Rang eines Elements: Rank

In einer dynamischen Menge bestimmen konnen.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?

4. Implementiere neue Operationen!

Select : Rank
v = Minimum() j=0
while v # nil and i > 1 do| |while v # nil do
v = Successor(Vv) v = Predecessor(v)
Li — i1 L j=j+1

return v return §

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich?
Select . O(i - h) Rank . O(rank - h)
v = Minimum() j=0
while v # nil and i > 1 do| |while v # nil do
Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem Select(7)

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbéume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit?
Select . O(il+h) Rank . O(rank + h)
v = Minimum() Jj=
while v # nil and / > 1 do| |while v # nil do
Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?

4. Implementiere! Laufzeit?

Select . O(i+h) Rank . O(rank + h)

— gar keine?!?

Problem: Wenn i € ©(n) — z.B. beim Median —,
dann ist die Laufzeit linear (wie im statischen Fall!).

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte
z.B. Rot-Schwarz-Baume)

= Baumhohe h € O(log n)

binare Suchbiumel

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select

. O(h)

r = v.left.size + 1
if / == r then return v

else

else

if /1 < r then

return Select(Vileft, i)

return Select(v.right, i — r)

Rank : O(h)

r = v.left.size + 1
u=yv

while u # root do

if u == u.p.rght then
| r=r+u.p.left.size +1
 u=u.p
return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

v

1.) Initialisierung u-Rang von v

Vor 1. Iteration gilt u = v = u-Rang(v) = v.left.size + 1. ‘/

Rank i
r = v.left.size + 1
u=yv
whi|e<u —#+ root do
if u == u.p.rght then
| r=r—+u.pleft.size+1
 u=u.p

return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

V

1.) Initialisierung of u-Rang von v

2.) Aufrechterhaltung of

Annahme: Inv. galt zu Beginn der aktuellen lteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen lter.

Uneu

1. Fall: u war linkes Kind. Rank :
Ualt = u-Rang von v bleibt gleich. |r = v.left.size + 1
74 u=yv
2. Fall: u war rechtes Kind. wh||e<u z root do

if u == u.p.rght then

tneu = u-Rang von v erhoht sich | r=r+4u.p.left.size+1
Ualt um GroBe des li. Teilbaums . u=u.p
V/;m von u plus 1 (fiir u selbst). return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

V

1.) Initialisierung of u-Rang von v
2.) Aufrechterhaltung of

3.) Terminierung of

Bei Schleifenabbruch: u = root.

= r = u-Rang(v) = Rang(v). Rank -
r = v.left.size + 1

Zusammenfassung: u=v
: _ while_u # root do
Die Methode Rank() liefert if u == u.p.right then

| r=r—+u.pleft.size+1
| u=u.p
return r

wie gewiinscht den Rang des
libergebenen Knotens.

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

'Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.

Laufzeit {F[ir alle Knoten v auf dem Weg von der Wurzel zu z:
O(h) Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
[
X y
Laufzeit O(1)
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812e = y.81z€

zusatzliche Laufzeit fiirs Einfligen: O(h)

y.size = y.left.size + y.right.size + 1

Ergebnis

Satz. Das dynamische Auswahlproblem kann man so l6sen,
dass Select() und Rank() sowie alle gewohnlichen
Operationen fiir dynamische Mengen in einer Menge
von n Elementen in O(log n) Zeit laufen.

10

11

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:

f(v) lasst sich aus Information in v, v.left, v.right
(inklusive f(v.left) und f(v.right)) berechnen.

\

Dann kann man beim Einfiigen und Loschen einzelner
Knoten den Wert von f in allen Knoten aufrechterhalten,
ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verandern.

Beweisidee. Im Prinzip wie im Spezialfall f = size.

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen (Kapitel 14.3):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

PY Insert

M
e Delete |—||—| -
| i i/
o Search —

liefert ein Element mit Interval i/ € M mit iN i’ # 0,
falls ein solches existiert, sonst nil.

Bitte lesen Sie's und
stellen Sie Fragen...

	Titel
	Zwischentest II: Do, 21.~Jan., 8:30\,--\,10:00
	Plan
	Ein Beispiel
	Neues Beispiel
	Das dynamische Auswahlproblem
	Das dynamische Auswahlproblem
	Korrektheit von Rank()
	Aufwand zur Aufrechterhaltung
	Ergebnis
	Verallgemeinerung
	Noch ein Beispiel

