Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT  Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen und Datenstrukturen

Wintersemester 2020/21
16. Vorlesung

Augmentieren von Datenstrukturen

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |



/wischentest |l: Do, 21. Jan., 8:30—-10:00

Zufallsexperimente, (Indikator-) Zufallsvariable,
Erwartungswert

(Randomisiertes) QuickSort

Untere Schranke fiir WC-Laufzeit von vergleichsbasierten
Sortierverfahren

Linearzeit-Sortierverfahren
Auswahlproblem (Median): randomisiert & deterministisch
Elementare Datenstrukturen

Hashing

Bindre Suchbiaume (Rot-Schwarz-Biaume noch nicht)
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Wir kennen schon eine ganze Reihe von Datenstrukturen:

e doppelt verkettete Liste
e Stapel

e Hashtabelle

e Heap

e bindrer Suchbaum
Allerdings gibt es viele Situationen, wo keine davon genau passt.

Herangehensweise: Augmentieren von Datenstrukturen,

d.h. wir verandern Datenstrukturen,
iIndem wir extra Information
hinzufiigen und aufrechterhalten.
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— Liste

2. Welche Extrainformation aufrechterhalten?

— Summe der Elemente (sum)
— Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?
— konstanter Aufwand beim Einfiigen und Loschen

4. Implementiere neue Operationen!

getMean()

return sum/size Probje,
€h S;
Ie's!
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Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen |6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

e das i.-kleinste Element (z.B. den Median): Select
e den Rang eines Elements: Rank

In einer dynamischen Menge bestimmen konnen.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!
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Aufgabe

Schreiben Sie Pseudocode fiir Select() und Rank()
unter Benutzung von Successor() u. Predecessor()!
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Problem: Wenn i € ©(n) — z.B. beim Median —,
dann ist die Laufzeit linear (wie im statischen Fall!).
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libergebenen Knotens.
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O(h) Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
[
X y
Laufzeit O(1)
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812e = y.81z€

zusatzliche Laufzeit fiirs Einfligen: O(h)

y.size = y.left.size + y.right.size + 1
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Ergebnis

Satz. Das dynamische Auswahlproblem kann man so l6sen,
dass Select() und Rank() sowie alle gewohnlichen
Operationen fiir dynamische Mengen in einer Menge
von n Elementen in O(log n) Zeit laufen.
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Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:

f(v) lasst sich aus Information in v, v.left, v.right
(inklusive f(v.left) und f(v.right)) berechnen.

\
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Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen (Kapitel 14.3):

Intervall-Baum
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Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen (Kapitel 14.3):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

PY Insert

M
e Delete |—||—| -
| i i/
o Search —

liefert ein Element mit Interval i/ € M mit iN i’ # 0,
falls ein solches existiert, sonst nil.

Bitte lesen Sie's und
stellen Sie Fragen...
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