Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen und Datenstrukturen

Wintersemester 2020/21
16. Vorlesung

Augmentieren von Datenstrukturen

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

/wischentest |l: Do, 21. Jan., 8:30—-10:00

Zufallsexperimente, (Indikator-) Zufallsvariable,
Erwartungswert

(Randomisiertes) QuickSort

Untere Schranke fiir WC-Laufzeit von vergleichsbasierten
Sortierverfahren

Linearzeit-Sortierverfahren
Auswahlproblem (Median): randomisiert & deterministisch
Elementare Datenstrukturen

Hashing

Bindre Suchbiaume (Rot-Schwarz-Biaume noch nicht)

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

e doppelt verkettete Liste
e Stapel

e Hashtabelle

e Heap

e binarer Suchbaum

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

e doppelt verkettete Liste
e Stapel

e Hashtabelle

e Heap

e binarer Suchbaum

Allerdings gibt es viele Situationen, wo keine davon genau passt.

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

e doppelt verkettete Liste
e Stapel

e Hashtabelle

e Heap

e binarer Suchbaum

Allerdings gibt es viele Situationen, wo keine davon genau passt.

Herangehensweise: Augmentieren von Datenstrukturen

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

e doppelt verkettete Liste
e Stapel

e Hashtabelle

e Heap

e bindrer Suchbaum
Allerdings gibt es viele Situationen, wo keine davon genau passt.

Herangehensweise: Augmentieren von Datenstrukturen,

d.h. wir verandern Datenstrukturen,
iIndem wir extra Information
hinzufiigen und aufrechterhalten.

Ein Beispiel

Bestimme fiir eine dynamische Menge v. Zahlen den Mittelwert.

Ein Beispiel

Bestimme fiir eine dynamische Menge v. Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?

Ein Beispiel

Bestimme fiir eine dynamische Menge v. Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
— Liste

Ein Beispiel
Bestimme fiir eine dynamische Menge v. Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
— Liste

2. Welche Extrainformation aufrechterhalten?

Ein Beispiel

Bestimme fiir eine dynamische Menge v. Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
— Liste

2. Welche Extrainformation aufrechterhalten?

— Summe der Elemente (sum)
— Anzahl der Elemente (size)

Ein Beispiel
Bestimme fiir eine dynamische Menge v. Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
— Liste

2. Welche Extrainformation aufrechterhalten?

— Summe der Elemente (sum)
— Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?

Ein Beispiel
Bestimme fiir eine dynamische Menge v. Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
— Liste

2. Welche Extrainformation aufrechterhalten?

— Summe der Elemente (sum)
— Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?
— konstanter Aufwand beim Einfiigen und Loschen

Ein Beispiel

Bestimme fiir eine dynamische Menge v. Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
— Liste

2. Welche Extrainformation aufrechterhalten?

— Summe der Elemente (sum)
— Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?
— konstanter Aufwand beim Einfiigen und Loschen

4. Implementiere neue Operationen!

Ein Beispiel

Bestimme fiir eine dynamische Menge v. Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
— Liste

2. Welche Extrainformation aufrechterhalten?

— Summe der Elemente (sum)
— Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?
— konstanter Aufwand beim Einfiigen und Loschen

4. Implementiere neue Operationen!

getMean()
return sum/size

Ein Beispiel

Bestimme fiir eine dynamische Menge v. Zahlen den Mittelwert.

1. Welche Ausgangsdatenstruktur?
— Liste

2. Welche Extrainformation aufrechterhalten?

— Summe der Elemente (sum)
— Anzahl der Elemente (size)

3. Aufwand zur Aufrechterhaltung der Extrainformation?
— konstanter Aufwand beim Einfiigen und Loschen

4. Implementiere neue Operationen!

getMean()

return sum/size Probje,
€h S;
Ie's!

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen |6sen.

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen |6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

e das i.-kleinste Element (z.B. den Median)

e den Rang eines Elements

In einer dynamischen Menge bestimmen konnen.

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen |6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

e das i.-kleinste Element (z.B. den Median): Select

e den Rang eines Elements: Rank

In einer dynamischen Menge bestimmen konnen.

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen |6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

e das i.-kleinste Element (z.B. den Median): Select
e den Rang eines Elements: Rank

In einer dynamischen Menge bestimmen konnen.

Fahrplan:

Neues Beispiel

Wir wollen das Auswahlproblem fiir dynamische Mengen |6sen.

D.h. wir wollen zu jedem Zeitpunkt effizient

e das i.-kleinste Element (z.B. den Median): Select
e den Rang eines Elements: Rank

In einer dynamischen Menge bestimmen konnen.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiume!
z.B. Rot-Schwarz-Baume

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte
z.B. Rot-Sc

= Baumho

binare Suchbiumel
hwarz-Baume

ne h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?

4. Implementiere neue Operationen!

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?

4. Implementiere neue Operationen!
Select : Rank

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?

4. Implementiere neue Operationen!
Select : Rank

Aufgabe

Schreiben Sie Pseudocode fiir Select() und Rank()
unter Benutzung von Successor() u. Predecessor()!

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?

4. Implementiere neue Operationen!
Select : Rank
v = Minimum()
while v £ nil and / > 1 do
v = Successor(Vv)
Li =/ —1

return v

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?

4. Implementiere neue Operationen!

Select : Rank
v = Minimum() j=0
while v # nil and i > 1 do| |while v # nil do
v = Successor(Vv) v = Predecessor(v)
Li — i1 L j=j+1

return v return §

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?

4. Implementiere! Laufzeit?

Select : Rank
v = Minimum() Jj=
while v # nil and i > 1 do| |while v # nil do
v = Successor(Vv) v = Predecessor(v)
Li — i1 L j=j+1

return v return §

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?

4. Implementiere! Laufzeit?

Select . O(i - h) Rank
v = Minimum() Jj=
while v # nil and i > 1 do| |while v # nil do
v = Successor(Vv) v = Predecessor(v)
Li — i1 L j=j+1

return v return §

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit?
Select . O(i - h) Rank . O(rank - h)
v = Minimum() Jj=
while v # nil and i > 1 do| |while v # nil do
Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich?
Select . O(i - h) Rank . O(rank - h)
v = Minimum() j=0
while v # nil and i > 1 do| |while v # nil do
Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich? Nein!
Select . O(i - h) Rank . O(rank - h)

v = Minimum() j=0

while v # nil and / > 1 do| |while v # nil do

Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem Select(7)

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich? Nein!
Select . O(i - h) Rank . O(rank - h)

v = Minimum() j=0

while v # nil and / > 1 do| |while v # nil do

Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem Select(7)

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich? Nein!
Select . O(i - h) Rank . O(rank - h)

v = Minimum() j=0

while v # nil and / > 1 do| |while v # nil do

Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem Select(7)

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchb'éume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich? Nein!
Select . O(i - h) Rank . O(rank - h)

v = Minimum() j=0

while v # nil and / > 1 do| |while v # nil do

Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem Select(7)

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchb'éume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich? Nein!
Select . O(i - h) Rank . O(rank - h)

v = Minimum() j=0

while v # nil and / > 1 do| |while v # nil do

Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem Select(7)

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbéume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich? Nein!
Select . O(i - h) Rank . O(rank - h)

v = Minimum() j=0

while v # nil and / > 1 do| |while v # nil do

Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem Select(7)

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbéume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich? Nein!
Select . O(i - h) Rank . O(rank - h)

v = Minimum() j=0

while v # nil and / > 1 do| |while v # nil do

Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem Select(7)

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbéume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich? Nein!
Select . O(i - h) Rank . O(rank - h)

v = Minimum() j=0

while v # nil and / > 1 do| |while v # nil do

Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem Select(7)

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbéume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich? Nein!
Select . O(i - h) Rank . O(rank - h)

v = Minimum() j=0

while v # nil and / > 1 do| |while v # nil do

Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem Select(7)

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbéume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich? Nein!
Select . O(i - h) Rank . O(rank - h)

v = Minimum() j=0

while v # nil and / > 1 do| |while v # nil do

Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem Select(7)

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbéume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit? Abschatzung bestmoglich? Nein!
Select . O(i - h) Rank . O(rank - h)

v = Minimum() j=0

while v # nil and / > 1 do| |while v # nil do

Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem Select(7)

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbéume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten? — gar keine?!?
4. Implementiere! Laufzeit?
Select . O(il+h) Rank . O(rank + h)
v = Minimum() Jj=
while v # nil and / > 1 do| |while v # nil do
Lv = Successor(Vv) Lv = Predecessor(v)
i=1i—1 J=J+1

return v return §

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?

4. Implementiere! Laufzeit?

Select . O(i+h) Rank . O(rank + h)

— gar keine?!?

Problem: Wenn i € ©(n) — z.B. beim Median —,
dann ist die Laufzeit linear (wie im statischen Fall!).

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiumel
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiaume!
z.B. Rot-Schwarz-Baume)

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiaume!
z.B. Rot-Schwarz-Baume)

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiaume!
z.B. Rot-Schwarz-Baume)

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank
r = v.left.size + 1
if i == r then return
else

if /| < r then

return

else

return

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiaume!
z.B. Rot-Schwarz-Baume)

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank
r = v.left.size + 1
if i == r then return v
else

if /| < r then

return

else

return

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiaume!
z.B. Rot-Schwarz-Baume)

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank
r = v.left.size + 1
if i == r then return v
else

if / < r then
return Select(v.left, i)

else

return

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiaume!
z.B. Rot-Schwarz-Baume)

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank
r = v.left.size + 1
if i == r then return v
else

if / < r then
return Select(v.left, i)

else

return Select(v.right, i — r)

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiaume!
z.B. Rot-Schwarz-Baume)

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank
r = v.left.size + 1
if i == r then return v
else

if / < r then
return Select(v.left, i)

else

return Select(v.right, i — r)

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiaume!
z.B. Rot-Schwarz-Baume)

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank
r = v.left.size + 1
if i == r then return v
else

if / < r then
return Select(v.left, i)

else

return Select(v.right, i — r)

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank
r = v.left.size + 1
if i == r then return v
else

if / < r then
return Select(v.left, i)

else

return Select(v.right, i — r)

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank
r = v.left.size + 1
if i == r then return v
else

if / < r then
return Select(v.left, i)

else

return Select(v.right, i — r)

— balancierte
z.B. Rot-Sc

= Baumho

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank
r = v.left.size + 1
if i == r then return v
else

if / < r then
return Select(v.left, i)

else

return Select(v.right, i — r)

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank .

r = v.left.size + 1 r = v.left.size + 1
if / == r then return v u=v
else while u # root do

if / < r then

return Select(v.left, i)
else | u=u.p
| return Select(v.right, i — r) return r

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank .

r = v.left.size + 1 r = v.left.size + 1
if / == r then return v u=v
else while u # root do

if / < r then

return Select(v.left, i)
else | u=u.p
| return Select(v.right, i — r) return r

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank .

r = v.left.size + 1 r = v.left.size + 1
if / == r then return v u=v
else while u # root do

if / < r then

return Select(v.left, i)
else | u=u.p
| return Select(v.right, i — r) return r

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte binare Suchbiume
z.B. Rot-Schwarz-Baume

= Baumhohe h € O(log n)

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank .

r = v.left.size + 1 r = v.left.size + 1
if / == r then return v u=v
else while u # root do

if / < r then

return Select(v.left, i)
else | u=u.p
| return Select(v.right, i — r) return r

— balancierte
z.B. Rot-Sc

= Baumho

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank .

r = v.left.size + 1 r = v.left.size + 1
if / == r then return v u=v
else while u # root do

if / < r then

return Select(v.left, i)
else | u=u.p
| return Select(v.right, i — r) return r

— balancierte
z.B. Rot-Sc

= Baumho

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank .

r = v.left.size + 1 r = v.left.size + 1

if / == r then return v u=v

else while u # root do
if i < r then if u == u.p.rght then

return Select(v.left, i) N 7
else | u=u.p
| return Select(v.right, i — r) return r

— balancierte
z.B. Rot-Sc

= Baumho

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : Rank .

r = v.left.size + 1 r = v.left.size + 1

if / == r then return v u=v

else while u # root do
if i < r then if u == u.p.rght then

return Select(v.left, i) | r=r+u.p.left.size+1
else | u=u.p
| return Select(v.right, i — r) return r

Das dynami

1. Welche Ausgangsdatenstruktur?

— balancierte
z.B. Rot-Sc

= Baumho

2. Welche Extrai

sche Auswahlproblem

binare Suchbiumel

hwarz-Baume 5

ne h € O(log n)

nformation aufrechterhalten?

— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : O() Rank :

r = v.left.size + 1 r = v.left.size + 1

if / == r then return v u=v

else while u # root do
if i < r then if u == u.p.rght then

return Select(v.left, i) | r=r+u.p.left.size+1
else | u=u.p
| return Select(v.right, i — r) return r

Das dynami

1. Welche Ausgangsdatenstruktur?

— balancierte
z.B. Rot-Sc

= Baumho

2. Welche Extrai

sche Auswahlproblem

binare Suchbiumel

hwarz-Baume 5

ne h € O(log n)

nformation aufrechterhalten?

— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select : O() Rank :

r = v.left.size + 1 r = v.left.size + 1

if / == r then return v u=v

else while u # root do
if i < r then if u == u.p.rght then

return Select(Vileft, i) | r=r+u.p.left.size+1
else | u=u.p
| return Select(viright, i — r) return r

Das dynami

1. Welche Ausgangsdatenstruktur?

— balancierte
z.B. Rot-Sc

= Baumho

2. Welche Extrai

sche Auswahlproblem

binare Suchbiumel

hwarz-Baume 5

ne h € O(log n)

nformation aufrechterhalten?

— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select . O(h) Rank .

r = v.left.size + 1 r = v.left.size + 1

if / == r then return v u=v

else while u # root do
if i < r then if u == u.p.rght then

return Select(Vileft, i) | r=r+u.p.left.size+1
else | u=u.p
| return Select(viright, i — r) return r

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte
z.B. Rot-Schwarz-Baume)

= Baumhohe h € O(log n)

binare Suchbiumel

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select

. O(h)

r = v.left.size + 1
if / == r then return v

else

else

if /1 < r then

return Select(Vileft, i)

return Select(v.right, i — r)

Rank ; O()

r = v.left.size + 1
u=yv

while u # root do

if u == u.p.rght then
| r=r+u.p.left.size +1
| u=u.p
return r

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte
z.B. Rot-Schwarz-Baume)

= Baumhohe h € O(log n)

binare Suchbiumel

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select

. O(h)

r = v.left.size + 1
if / == r then return v

else

else

if /1 < r then

return Select(Vileft, i)

return Select(v.right, i — r)

Rank ; O()

r = v.left.size + 1
u=yv

while u # root do

if u == u.p.rght then
| r=r+u.p.left.size +1
 u=u.p
return r

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

— balancierte
z.B. Rot-Schwarz-Baume)

= Baumhohe h € O(log n)

binare Suchbiumel

2. Welche Extrainformation aufrechterhalten?
— GroBen der Teilbaume: fiir jeden Knoten v, speichere v.size

4. Select

. O(h)

r = v.left.size + 1
if / == r then return v

else

else

if /1 < r then

return Select(Vileft, i)

return Select(v.right, i — r)

Rank : O(h)

r = v.left.size + 1
u=yv

while u # root do

if u == u.p.rght then
| r=r+u.p.left.size +1
 u=u.p
return r

Korrektheit von Rank()

Invariante:

Rank i
r = v.left.size + 1
u=yv

while u # root do
if u == u.p.rght then
| r=r—+u.pleft.size+1
| u=u.p
return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
Ist

Rank i
r = v.left.size + 1
u=yv
whi|e<u #+ root do
if u == u.p.rght then
| r=r—+u.pleft.size+1
 u=u.p

return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

Rank i
r = v.left.size + 1
u=yv
whi|e<u —#+ root do
if u == u.p.rght then
| r=r—+u.pleft.size+1
 u=u.p

return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

v

u-Rang von v

Rank i
r = v.left.size + 1
u=yv
whi|e<u —#+ root do
if u == u.p.rght then
| r=r—+u.pleft.size+1
 u=u.p

return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

v

1.) Initialisierung u-Rang von v

Rank i
r = v.left.size + 1
u=yv
whi|e<u —#+ root do
if u == u.p.rght then
| r=r—+u.pleft.size+1
 u=u.p

return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

v

1.) Initialisierung u-Rang von v

Vor 1. Iteration gilt u = v = u-Rang(v) = v.left.size + 1.

Rank i
r = v.left.size + 1
u=yv
whi|e<u —#+ root do
if u == u.p.rght then
| r=r—+u.pleft.size+1
 u=u.p

return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

v

1.) Initialisierung u-Rang von v

Vor 1. Iteration gilt u = v = u-Rang(v) = v.left.size + 1. ‘/

Rank i
r = v.left.size + 1
u=yv
whi|e<u —#+ root do
if u == u.p.rght then
| r=r—+u.pleft.size+1
 u=u.p

return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

v

1.) Initialisierung of u-Rang von v

2.) Aufrechterhaltung

Rank i
r = v.left.size + 1
u=yv
whi|e<u —#+ root do
if u == u.p.rght then
| r=r—+u.pleft.size+1
 u=u.p

return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

v

1.) Initialisierung of u-Rang von v

2.) Aufrechterhaltung

Annahme: Inv. galt zu Beginn der aktuellen lteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen lter.

Rank i
r = v.left.size + 1
u=yv
whi|e<u —#+ root do
if u == u.p.rght then
| r=r—+u.pleft.size+1
 u=u.p

return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

V

1.) Initialisierung of u-Rang von v

2.) Aufrechterhaltung

Annahme: Inv. galt zu Beginn der aktuellen lteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen lter.

u

S
/% 1. Fall: u war linkes Kind. Rank :
Ualt r = v.left.size +1
u=v

74
wh|Ie<u —#+ root do

if u == u.p.rght then
| r=r—+u.pleft.size+1
| u=u.p

return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

V

1.) Initialisierung of u-Rang von v

2.) Aufrechterhaltung

Annahme: Inv. galt zu Beginn der aktuellen lteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen lter.

Uneu

1. Fall: u war linkes Kind. Rank :
Ualt = u-Rang von v bleibt gleich. |r = v.left.size + 1
v u=v
wh|Ie<u —#+ root do

if u == u.p.rght then
| r=r—+u.pleft.size+1
| u=u.p
return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

V

1.) Initialisierung of u-Rang von v

2.) Aufrechterhaltung

Annahme: Inv. galt zu Beginn der aktuellen lteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen lter.

Uneu

1. Fall: u war linkes Kind. Rank :
Ualt = u-Rang von v bleibt gleich. |r = v.left.size + 1
74 u=yv
2. Fall: u war rechtes Kind. wh||e<u z root do

if u == u.p.rght then

Uneu | r=r—+u.pleft.size+1
Uyt _ Y= P
V/a return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

V

1.) Initialisierung of u-Rang von v

2.) Aufrechterhaltung

Annahme: Inv. galt zu Beginn der aktuellen lteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen lter.

Uneu

1. Fall: u war linkes Kind. Rank :
Ualt = u-Rang von v bleibt gleich. |r = v.left.size + 1
74 u=yv
2. Fall: u war rechtes Kind. wh||e<u z root do

if u == u.p.rght then

tneu = u-Rang von v erhoht sich | r=r+4u.p.left.size+1
Ualt um GroBe des li. Teilbaums . u=u.p
V/;m von u plus 1 (fiir u selbst). return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

V

1.) Initialisierung of u-Rang von v

2.) Aufrechterhaltung of

Annahme: Inv. galt zu Beginn der aktuellen lteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen lter.

Uneu

1. Fall: u war linkes Kind. Rank :
Ualt = u-Rang von v bleibt gleich. |r = v.left.size + 1
74 u=yv
2. Fall: u war rechtes Kind. wh||e<u z root do

if u == u.p.rght then

tneu = u-Rang von v erhoht sich | r=r+4u.p.left.size+1
Ualt um GroBe des li. Teilbaums . u=u.p
V/;m von u plus 1 (fiir u selbst). return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

v

1.) Initialisierung of u-Rang von v
2.) Aufrechterhaltung of

3.) Terminierung

Rank i
r = v.left.size + 1
u=yv
whi|e<u —#+ root do
if u == u.p.rght then
| r=r—+u.pleft.size+1
 u=u.p

return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

v

1.) Initialisierung of u-Rang von v

2.) Aufrechterhaltung of

3.) Terminierung

Bei Schleifenabbruch: u = root.

= r = u-Rang(v) = Rang(v). Rank -
r = v.left.size + 1

u=—=yv
whlle<u —#+ root do

if u == u.p.rght then
| r=r—+u.pleft.size+1
| u=u.p
return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

v

1.) Initialisierung of u-Rang von v

2.) Aufrechterhaltung of

3.) Terminierung of

Bei Schleifenabbruch: u = root.

= r = u-Rang(v) = Rang(v). Rank -
r = v.left.size + 1

u=—=yv
whlle<u —#+ root do

if u == u.p.rght then
| r=r—+u.pleft.size+1
| u=u.p
return r

Korrektheit von Rank()

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

V

1.) Initialisierung of u-Rang von v
2.) Aufrechterhaltung of

3.) Terminierung of

Bei Schleifenabbruch: u = root.

= r = u-Rang(v) = Rang(v). Rank -
r = v.left.size + 1

Zusammenfassung: u=v
: _ while_u # root do
Die Methode Rank() liefert if u == u.p.right then

| r=r—+u.pleft.size+1
| u=u.p
return r

wie gewiinscht den Rang des
libergebenen Knotens.

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten v auf dem Weg von der Wurzel zu z:
Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten v auf dem Weg von der Wurzel zu z:
Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
-

<
LeftRotate(x)

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten v auf dem Weg von der Wurzel zu z:
Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
X > y
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812€6 =

y.S1ze =

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten v auf dem Weg von der Wurzel zu z:
Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
X > y
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812e = y.81z€

y.S1ze =

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten v auf dem Weg von der Wurzel zu z:
Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
X > y
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812e = y.81z€

y.size = y.left.size + y.right.size + 1

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten v auf dem Weg von der Wurzel zu z:
Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
X > y
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812e = y.81z€

y.size = y.left.size + y.right.size + 1

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten v auf dem Weg von der Wurzel zu z:
Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
X > y
Laufzeit
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812e = y.81z€

y.size = y.left.size + y.right.size + 1

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.
Fiir alle Knoten v auf dem Weg von der Wurzel zu z:
Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
[
X y
Laufzeit O(1)
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812e = y.81z€

y.size = y.left.size + y.right.size + 1

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.
L aufzeit {F[ir alle Knoten v auf dem Weg von der Wurzel zu z:
Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
[
X y
Laufzeit O(1)
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812e = y.81z€

y.size = y.left.size + y.right.size + 1

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.

Laufzeit {F[ir alle Knoten v auf dem Weg von der Wurzel zu z:
O(h) Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
[
X y
Laufzeit O(1)
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812e = y.81z€

y.size = y.left.size + y.right.size + 1

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

'Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.

Laufzeit {F[ir alle Knoten v auf dem Weg von der Wurzel zu z:
O(h) Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
[
X y
Laufzeit O(1)
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812e = y.81z€

zusatzliche Laufzeit fiirs Einfligen:

y.size = y.left.size + y.right.size + 1

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

'Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.

Laufzeit {F[ir alle Knoten v auf dem Weg von der Wurzel zu z:
O(h) Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
[
X y
Laufzeit O(1)
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812e = y.81z€

zusatzliche Laufzeit fiirs Einfligen: O(h)

y.size = y.left.size + y.right.size + 1

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

'Phase |: Suche der Stelle, wo der neue Knoten z eingefiigt wird.

Laufzeit {F[ir alle Knoten v auf dem Weg von der Wurzel zu z:
O(h) Erhohe v.size um 1.

Phase Il (RBInsertFixup): Strukturanderung nur in < 2 Rotationen:

Y RightRotate(y) X
[
X y
Laufzeit O(1)
=
LeftRotate(x)
Welche Befehle miissen wir an RightRotate anhangen,

damit nach der Rotation alle size-Eintrage wieder stimmen?

X.812e = y.81z€

zusatzliche Laufzeit fiirs Einfligen: O(h)

y.size = y.left.size + y.right.size + 1

Ergebnis

Satz. Das dynamische Auswahlproblem kann man so l6sen,
dass Select() und Rank() sowie alle gewohnlichen
Operationen fiir dynamische Mengen in einer Menge
von n Elementen in O(log n) Zeit laufen.

10

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:

f(v) lasst sich aus Information in v, v.left, v.right
(inklusive f(v.left) und f(v.right)) berechnen.

\

11

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:

f(v) lasst sich aus Information in v, v.left, v.right
(inklusive f(v.left) und f(v.right)) berechnen.

\

Dann kann man beim Einfiigen und Loschen einzelner
Knoten den Wert von f in allen Knoten aufrechterhalten,
ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verandern.

11

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:

f(v) lasst sich aus Information in v, v.left, v.right
(inklusive f(v.left) und f(v.right)) berechnen.

\

Dann kann man beim Einfiigen und Loschen einzelner
Knoten den Wert von f in allen Knoten aufrechterhalten,
ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verandern.

Beweisidee.

11

11

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:

f(v) lasst sich aus Information in v, v.left, v.right
(inklusive f(v.left) und f(v.right)) berechnen.

\

Dann kann man beim Einfiigen und Loschen einzelner
Knoten den Wert von f in allen Knoten aufrechterhalten,
ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verandern.

Beweisidee. Im Prinzip wie im Spezialfall f = size.

11

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:

f(v) lasst sich aus Information in v, v.left, v.right
(inklusive f(v.left) und f(v.right)) berechnen.

\

Dann kann man beim Einfiigen und Loschen einzelner
Knoten den Wert von f in allen Knoten aufrechterhalten,
ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verandern.

Beweisidee. Im Prinzip wie im Spezialfall f = size.

11

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls fiir jeden Knoten v gilt:

f(v) lasst sich aus Information in v, v.left, v.right
(inklusive f(v.left) und f(v.right)) berechnen.

\

Dann kann man beim Einfiigen und Loschen einzelner
Knoten den Wert von f in allen Knoten aufrechterhalten,
ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verandern.

Beweisidee. Im Prinzip wie im Spezialfall f = size.

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen (Kapitel 14.3):

Intervall-Baum

12

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen (Kapitel 14.3):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen (Kapitel 14.3):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

PY Insert

M

M
e Delete |—||—| -
o Search —— >

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen (Kapitel 14.3):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

PY Insert

M

M
e Delete |—||—| -
o Search —— >

liefert ein Element mit Interval i/ € M mit iN i’ # 0,
falls ein solches existiert, sonst nil.

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen (Kapitel 14.3):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

PY Insert

M
o Delete |—||—|I_||—| .
° Search —

liefert ein Element mit Interval i/ € M mit iN i’ # 0,
falls ein solches existiert, sonst nil.

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen (Kapitel 14.3):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

PY Insert

./

M
e Delete ._..—.'_'.—.]
° Search f >

liefert ein Element mit Interval i/ € M mit iN i’ # 0,
falls ein solches existiert, sonst nil.

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen (Kapitel 14.3):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

PY Insert

M
e Delete |—||—| -
| i i/
o Search —

liefert ein Element mit Interval i/ € M mit iN i’ # 0,
falls ein solches existiert, sonst nil.

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Baumen (Kapitel 14.3):

Intervall-Baum

verwaltet eine Menge M von Intervallen und bietet Operationen:

PY Insert

M
e Delete |—||—| -
| i i/
o Search —

liefert ein Element mit Interval i/ € M mit iN i’ # 0,
falls ein solches existiert, sonst nil.

Bitte lesen Sie's und
stellen Sie Fragen...

	Titel
	Zwischentest II: Do, 21.~Jan., 8:30\,--\,10:00
	Plan
	Ein Beispiel
	Neues Beispiel
	Das dynamische Auswahlproblem
	Das dynamische Auswahlproblem
	Korrektheit von Rank()
	Aufwand zur Aufrechterhaltung
	Ergebnis
	Verallgemeinerung
	Noch ein Beispiel

