
1

Algorithmen und Datenstrukturen

Wintersemester 2020/21

16. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Augmentieren von Datenstrukturen

2

Zwischentest II: Do, 21. Jan., 8:30 – 10:00

• Zufallsexperimente, (Indikator-) Zufallsvariable,
Erwartungswert

• (Randomisiertes) QuickSort

• Untere Schranke für WC-Laufzeit von vergleichsbasierten
Sortierverfahren

• Linearzeit-Sortierverfahren

• Auswahlproblem (Median): randomisiert & deterministisch

• Elementare Datenstrukturen

• Hashing

• Binäre Suchbäume (Rot-Schwarz-Bäume noch nicht)

3

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

3

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

• doppelt verkettete Liste

• binärer Suchbaum

• Stapel

• Hashtabelle

• Heap

3

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

• doppelt verkettete Liste

• binärer Suchbaum

• Stapel

• Hashtabelle

Allerdings gibt es viele Situationen, wo keine davon genau passt.

• Heap

3

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

• doppelt verkettete Liste

• binärer Suchbaum

• Stapel

• Hashtabelle

Allerdings gibt es viele Situationen, wo keine davon genau passt.

Herangehensweise: Augmentieren von Datenstrukturen

• Heap

3

Plan

Wir kennen schon eine ganze Reihe von Datenstrukturen:

• doppelt verkettete Liste

• binärer Suchbaum

• Stapel

• Hashtabelle

Allerdings gibt es viele Situationen, wo keine davon genau passt.

Herangehensweise: Augmentieren von Datenstrukturen

d.h. wir verändern Datenstrukturen,
indem wir extra Information
hinzufügen und aufrechterhalten.

,

• Heap

4

Ein Beispiel

Bestimme für eine dynamische Menge v. Zahlen den Mittelwert.

4

Ein Beispiel

Bestimme für eine dynamische Menge v. Zahlen den Mittelwert.

Welche Ausgangsdatenstruktur?1.

4

Ein Beispiel

Bestimme für eine dynamische Menge v. Zahlen den Mittelwert.

– Liste
Welche Ausgangsdatenstruktur?1.

4

Ein Beispiel

Bestimme für eine dynamische Menge v. Zahlen den Mittelwert.

– Liste

Welche Extrainformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

4

Ein Beispiel

Bestimme für eine dynamische Menge v. Zahlen den Mittelwert.

– Liste

– Summe der Elemente (sum)
– Anzahl der Elemente (size)

Welche Extrainformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

4

Ein Beispiel

Bestimme für eine dynamische Menge v. Zahlen den Mittelwert.

– Liste

– Summe der Elemente (sum)
– Anzahl der Elemente (size)

Aufwand zur Aufrechterhaltung der Extrainformation?3.

Welche Extrainformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

4

Ein Beispiel

Bestimme für eine dynamische Menge v. Zahlen den Mittelwert.

– Liste

– Summe der Elemente (sum)
– Anzahl der Elemente (size)

– konstanter Aufwand beim Einfügen und Löschen
Aufwand zur Aufrechterhaltung der Extrainformation?3.

Welche Extrainformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

4

Ein Beispiel

Bestimme für eine dynamische Menge v. Zahlen den Mittelwert.

– Liste

– Summe der Elemente (sum)
– Anzahl der Elemente (size)

– konstanter Aufwand beim Einfügen und Löschen
Aufwand zur Aufrechterhaltung der Extrainformation?3.

Implementiere neue Operationen!4.

Welche Extrainformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

4

Ein Beispiel

Bestimme für eine dynamische Menge v. Zahlen den Mittelwert.

– Liste

– Summe der Elemente (sum)
– Anzahl der Elemente (size)

getMean()
return sum/size

– konstanter Aufwand beim Einfügen und Löschen
Aufwand zur Aufrechterhaltung der Extrainformation?3.

Implementiere neue Operationen!4.

Welche Extrainformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

4

Ein Beispiel

Bestimme für eine dynamische Menge v. Zahlen den Mittelwert.

– Liste

– Summe der Elemente (sum)
– Anzahl der Elemente (size)

getMean()
return sum/size

– konstanter Aufwand beim Einfügen und Löschen
Aufwand zur Aufrechterhaltung der Extrainformation?3.

Implementiere neue Operationen!4.

Welche Extrainformation aufrechterhalten?2.

Welche Ausgangsdatenstruktur?1.

Ähnlich für Standardabweichung
√

1
n

∑n
i=1(ai − ā)2.

Probieren Sie’s!

5

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

5

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

• das i .-kleinste Element (z.B. den Median)

• den Rang eines Elements

in einer dynamischen Menge bestimmen können.

5

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

• das i .-kleinste Element (z.B. den Median)

• den Rang eines Elements

in einer dynamischen Menge bestimmen können.

Elem Select(int i)

int Rank(Elem e)

:

:

5

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

• das i .-kleinste Element (z.B. den Median)

• den Rang eines Elements

in einer dynamischen Menge bestimmen können.

Fahrplan:

Elem Select(int i)

int Rank(Elem e)

:

:

5

Neues Beispiel

Wir wollen das Auswahlproblem für dynamische Mengen lösen.

D.h. wir wollen zu jedem Zeitpunkt effizient

• das i .-kleinste Element (z.B. den Median)

• den Rang eines Elements

in einer dynamischen Menge bestimmen können.

Fahrplan: 1. Welche Ausgangsdatenstruktur?

2. Welche Extrainformation aufrechterhalten?

3. Aufwand zur Aufrechterhaltung?

4. Implementiere neue Operationen!

Elem Select(int i)

int Rank(Elem e)

:

:

6

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

6

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

6

Das dynamische Auswahlproblem

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

⇒ Baumhöhe h ∈ O(log n)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

⇒ Baumhöhe h ∈ O(log n)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

⇒ Baumhöhe h ∈ O(log n)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

liefert i .-kleinstes Element Wievieltes Element ist v?

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

Schreiben Sie Pseudocode für Select() und Rank()
unter Benutzung von Successor() u. Predecessor()!

Aufgabe

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

liefert i .-kleinstes Element Wievieltes Element ist v?

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere neue Operationen!

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere!

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h)

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere!

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere!

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich?4. Implementiere!

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere!

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere!

Select(7)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere!

Select(7)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere!

Select(7)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere!

Select(7)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere!

Select(7)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere!

Select(7)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere!

Select(7)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere!

Select(7)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere!

Select(7)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Abschätzung bestmöglich? Nein!4. Implementiere!

Select(7)

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

j = 0
while v 6= nil do

v = Predecessor(v)
j = j + 1

return j

v = Minimum()
while v 6= nil and i > 1 do

v = Successor(v)
i = i − 1

return v

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

4. Implementiere!

Select(7)

+ +

6

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten? – gar keine?!?

Select(int i): Rank(Node v):

Laufzeit?

O(i · h) O(rank · h)

⇒ Baumhöhe h ∈ O(log n)

Problem: Wenn i ∈ Θ(n) – z.B. beim Median –,
dann ist die Laufzeit linear (wie im statischen Fall!).

4. Implementiere!

+ +

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):4.

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

4.

(vorausgesetzt, dass T.nil .size = 0)

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

4.

(vorausgesetzt, dass T.nil .size = 0)

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

4.

(vorausgesetzt, dass T.nil .size = 0)

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

4.

(vorausgesetzt, dass T.nil .size = 0)

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

4.

(vorausgesetzt, dass T.nil .size = 0)

v

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

4.

(vorausgesetzt, dass T.nil .size = 0)

v

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

4.

(vorausgesetzt, dass T.nil .size = 0)

v

2

6

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

4.

(vorausgesetzt, dass T.nil .size = 0)

2

6 v

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

4.

(vorausgesetzt, dass T.nil .size = 0)

2

6

v

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

v

2

6

u=

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

v

2

6

u=

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

v

2

6 u

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

v

2

6

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

v

2

6

u

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

v

2

6

u

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

4.

(vorausgesetzt, dass T.nil .size = 0)

v

2

6

u

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

O()4.

(vorausgesetzt, dass T.nil .size = 0)

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

O()4.

(vorausgesetzt, dass T.nil .size = 0)

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

O()h4.

(vorausgesetzt, dass T.nil .size = 0)

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

O()h4.

(vorausgesetzt, dass T.nil .size = 0)

O()

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

O()h4.

(vorausgesetzt, dass T.nil .size = 0)

O()

7

Das dynamische Auswahlproblem

6 19

12

3 9 14

5 8 13 17

21

1. Welche Ausgangsdatenstruktur?

– balancierte binäre Suchbäume!

z.B. Rot-Schwarz-Bäume

2. Welche Extrainformation aufrechterhalten?

⇒ Baumhöhe h ∈ O(log n)

– Größen der Teilbäume

1

2

1

2

5

1 1

3 1

5

11

: für jeden Knoten v , speichere v .size

Select(Node v = root , int i): Rank(Node v):
r = v .left .size + 1
if i == r then return v
else

if i < r then
return Select(v .left , i)

else
return Select(v .right , i − r)

r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

hO()h4.

(vorausgesetzt, dass T.nil .size = 0)

O()

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante:

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.︸ ︷︷ ︸

u-Rang von v

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

︸ ︷︷ ︸
u-Rang von v

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

Vor 1. Iteration gilt u = v ⇒ u-Rang(v) = v .left .size + 1.

︸ ︷︷ ︸
u-Rang von v

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

Vor 1. Iteration gilt u = v ⇒ u-Rang(v) = v .left .size + 1.

︸ ︷︷ ︸
u-Rang von v

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

2.) Aufrechterhaltung

︸ ︷︷ ︸
u-Rang von v

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Inv. galt zu Beginn der aktuellen Iteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen Iter.

︸ ︷︷ ︸
u-Rang von v

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Inv. galt zu Beginn der aktuellen Iteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen Iter.

1. Fall: u war linkes Kind.

︸ ︷︷ ︸
u-Rang von v

uneu

v

ualt

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Inv. galt zu Beginn der aktuellen Iteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen Iter.

1. Fall: u war linkes Kind.

⇒ u-Rang von v bleibt gleich.

︸ ︷︷ ︸
u-Rang von v

uneu

v

ualt

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Inv. galt zu Beginn der aktuellen Iteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen Iter.

1. Fall: u war linkes Kind.

⇒ u-Rang von v bleibt gleich.

2. Fall: u war rechtes Kind.

︸ ︷︷ ︸
u-Rang von v

uneu

v

ualt

uneu

v
ualt

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Inv. galt zu Beginn der aktuellen Iteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen Iter.

1. Fall: u war linkes Kind.

⇒ u-Rang von v bleibt gleich.

2. Fall: u war rechtes Kind.

⇒ u-Rang von v erhöht sich
um Größe des li. Teilbaums
von u plus 1 (für u selbst).

︸ ︷︷ ︸
u-Rang von v

uneu

v

ualt

uneu

v
ualt

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

2.) Aufrechterhaltung

Annahme: Inv. galt zu Beginn der aktuellen Iteration.
Zu zeigen: Inv. gilt dann auch am Ende der aktuellen Iter.

1. Fall: u war linkes Kind.

⇒ u-Rang von v bleibt gleich.

2. Fall: u war rechtes Kind.

⇒ u-Rang von v erhöht sich
um Größe des li. Teilbaums
von u plus 1 (für u selbst).

︸ ︷︷ ︸
u-Rang von v

uneu

v

ualt

uneu

v
ualt

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

2.) Aufrechterhaltung

︸ ︷︷ ︸
u-Rang von v

3.) Terminierung

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

2.) Aufrechterhaltung

︸ ︷︷ ︸
u-Rang von v

3.) Terminierung

Bei Schleifenabbruch: u = root .
⇒ r = u-Rang(v) = Rang(v).

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

2.) Aufrechterhaltung

︸ ︷︷ ︸
u-Rang von v

3.) Terminierung

Bei Schleifenabbruch: u = root .
⇒ r = u-Rang(v) = Rang(v).

(vorausgesetzt, dass T.nil .size = 0)

8

Korrektheit von Rank()

Rank(Node v):
r = v .left .size + 1
u = v
while u 6= root do

if u == u.p.right then
r = r +u.p.left .size+1

u = u.p

return r

Invariante: Zu Beginn jeder Iteration der while-Schleife
ist r der Rang von v im Teilbaum mit Wurzel u.

1.) Initialisierung

2.) Aufrechterhaltung

︸ ︷︷ ︸
u-Rang von v

3.) Terminierung

Bei Schleifenabbruch: u = root .
⇒ r = u-Rang(v) = Rang(v).

Zusammenfassung:

Die Methode Rank() liefert
wie gewünscht den Rang des
übergebenen Knotens.

(vorausgesetzt, dass T.nil .size = 0)

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RBInsert() geht in zwei Phasen vor:

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RightRotate(y)

LeftRotate(x)

RBInsert() geht in zwei Phasen vor:

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

x

xy

y

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RightRotate(y)

LeftRotate(x)

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

x

xy

y

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RightRotate(y)

LeftRotate(x)

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

x

xy

y

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RightRotate(y)

LeftRotate(x)

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

x

xy

y

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RightRotate(y)

LeftRotate(x)

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

x

xy

y

(vorausgesetzt, dass T.nil .size = 0)

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RightRotate(y)

LeftRotate(x)

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

x

xy

y

(vorausgesetzt, dass T.nil .size = 0)

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RightRotate(y)

LeftRotate(x)

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

x

xy

y

(vorausgesetzt, dass T.nil .size = 0)

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RightRotate(y)

LeftRotate(x)

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

x

xy

y

Laufzeit
{

(vorausgesetzt, dass T.nil .size = 0)

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RightRotate(y)

LeftRotate(x)

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

x

xy

y

Laufzeit
O(h)

{

(vorausgesetzt, dass T.nil .size = 0)

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RightRotate(y)

LeftRotate(x)

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

x

xy

y

Laufzeit
O(h)

{

zu
sä

tz
lic

h
e

L
au

fz
ei

t
fü

rs
E

in
fü

ge
n

:

(vorausgesetzt, dass T.nil .size = 0)

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RightRotate(y)

LeftRotate(x)

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

x

xy

y

Laufzeit
O(h)

{

zu
sä

tz
lic

h
e

L
au

fz
ei

t
fü

rs
E

in
fü

ge
n

:
O

(h
)

(vorausgesetzt, dass T.nil .size = 0)

9

3. Aufwand zur Aufrechterhaltung der Extrainformation?

RightRotate(y)

LeftRotate(x)

RBInsert() geht in zwei Phasen vor:

Welche Befehle müssen wir an RightRotate(Node y) anhängen,
damit nach der Rotation alle size-Einträge wieder stimmen?

x .size =

y .size =

y .size

y .left .size + y .right .size + 1

Laufzeit O(1)

Phase I: Suche der Stelle, wo der neue Knoten z eingefügt wird.

Phase II (RBInsertFixup): Strukturänderung nur in ≤ 2 Rotationen:

Für alle Knoten v auf dem Weg von der Wurzel zu z :
Erhöhe v .size um 1.

x

xy

y

Laufzeit
O(h)

{

zu
sä

tz
lic

h
e

L
au

fz
ei

t
fü

rs
E

in
fü

ge
n

:
O

(h
)

RBDelete() kann man
analog

”
upgraden“.

(vorausgesetzt, dass T.nil .size = 0)

10

Ergebnis

Satz. Das dynamische Auswahlproblem kann man so lösen,
dass Select() und Rank() sowie alle gewöhnlichen
Operationen für dynamische Mengen in einer Menge
von n Elementen in O(log n) Zeit laufen.

11

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right
(inklusive f (v .left) und f (v .right)) berechnen.

⇓

11

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right
(inklusive f (v .left) und f (v .right)) berechnen.

Dann kann man beim Einfügen und Löschen einzelner
Knoten den Wert von f in allen Knoten aufrechterhalten,
ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

11

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right
(inklusive f (v .left) und f (v .right)) berechnen.

Dann kann man beim Einfügen und Löschen einzelner
Knoten den Wert von f in allen Knoten aufrechterhalten,
ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

Beweisidee.

11

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right
(inklusive f (v .left) und f (v .right)) berechnen.

Dann kann man beim Einfügen und Löschen einzelner
Knoten den Wert von f in allen Knoten aufrechterhalten,
ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

Beweisidee. Im Prinzip wie im Spezialfall f ≡ size.

11

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right
(inklusive f (v .left) und f (v .right)) berechnen.

Dann kann man beim Einfügen und Löschen einzelner
Knoten den Wert von f in allen Knoten aufrechterhalten,
ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

Beweisidee. Im Prinzip wie im Spezialfall f ≡ size.

Allerdings ist es im Prinzip möglich, dass sich die
Veränderungen von einem gewissen veränderten Knoten
bis in die Wurzel hochpropagieren.

11

Verallgemeinerung

Satz. Sei f Knotenattribut eines R-S-Baums mit n Knoten.

Falls für jeden Knoten v gilt:
f (v) lässt sich aus Information in v , v .left , v .right
(inklusive f (v .left) und f (v .right)) berechnen.

Dann kann man beim Einfügen und Löschen einzelner
Knoten den Wert von f in allen Knoten aufrechterhalten,
ohne die asymptotischen Laufzeit O(log n) der
Update-Operationen zu verändern.

⇓

Beweisidee. Im Prinzip wie im Spezialfall f ≡ size.

Allerdings ist es im Prinzip möglich, dass sich die
Veränderungen von einem gewissen veränderten Knoten
bis in die Wurzel hochpropagieren. [Details Kapitel 14.2, CLRS]

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen (Kapitel 14.3):

Intervall-Baum

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen (Kapitel 14.3):

Intervall-Baum
verwaltet eine Menge M von Intervallen und bietet Operationen:

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen (Kapitel 14.3):

Intervall-Baum

• Element Insert(Interval i)

• Delete(Element e)

• Element Search(Interval i)

verwaltet eine Menge M von Intervallen und bietet Operationen:

neu!

M

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen (Kapitel 14.3):

Intervall-Baum

• Element Insert(Interval i)

• Delete(Element e)

• Element Search(Interval i)

liefert ein Element mit Interval i ′ ∈ M mit i ∩ i ′ 6= ∅,
falls ein solches existiert, sonst ni l .

verwaltet eine Menge M von Intervallen und bietet Operationen:

neu!

M

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen (Kapitel 14.3):

Intervall-Baum

• Element Insert(Interval i)

• Delete(Element e)

• Element Search(Interval i)

liefert ein Element mit Interval i ′ ∈ M mit i ∩ i ′ 6= ∅,
falls ein solches existiert, sonst ni l .

verwaltet eine Menge M von Intervallen und bietet Operationen:

neu!

M

i

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen (Kapitel 14.3):

Intervall-Baum

• Element Insert(Interval i)

• Delete(Element e)

• Element Search(Interval i)

liefert ein Element mit Interval i ′ ∈ M mit i ∩ i ′ 6= ∅,
falls ein solches existiert, sonst ni l .

verwaltet eine Menge M von Intervallen und bietet Operationen:

neu!

M

i

i ′

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen (Kapitel 14.3):

Intervall-Baum

• Element Insert(Interval i)

• Delete(Element e)

• Element Search(Interval i)

liefert ein Element mit Interval i ′ ∈ M mit i ∩ i ′ 6= ∅,
falls ein solches existiert, sonst ni l .

verwaltet eine Menge M von Intervallen und bietet Operationen:

neu!

M

i
i ′

12

Noch ein Beispiel

zur Augmentierung von Rot-Schwarz-Bäumen (Kapitel 14.3):

Bitte lesen Sie’s und

stellen Sie Fragen...

Intervall-Baum

• Element Insert(Interval i)

• Delete(Element e)

• Element Search(Interval i)

liefert ein Element mit Interval i ′ ∈ M mit i ∩ i ′ 6= ∅,
falls ein solches existiert, sonst ni l .

verwaltet eine Menge M von Intervallen und bietet Operationen:

neu!

M

i
i ′

	Titel
	Zwischentest II: Do, 21.~Jan., 8:30\,--\,10:00
	Plan
	Ein Beispiel
	Neues Beispiel
	Das dynamische Auswahlproblem
	Das dynamische Auswahlproblem
	Korrektheit von Rank()
	Aufwand zur Aufrechterhaltung
	Ergebnis
	Verallgemeinerung
	Noch ein Beispiel

