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Convex Hulls in 3D
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Mixing More Things
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Complexity & Visibility

Computational Geometry
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dim w-c complexity of CH(S)
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Construction
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pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
( f1, f2)← previously incidentC(e)
P(e)← Pconflict( f1) ∪ Pconflict( f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f ) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }
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compute rand. perm. (p 5, . . . , pn) of P\P′
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pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do
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pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
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f ← C.create facet(e, pr); create vtx for f in G
( f1, f2)← previously incidentC(e)
P(e)← Pconflict( f1) ∪ Pconflict( f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f ) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

pr



5 - 13Rand3DConvexHull(P ⊂ R3)
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pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do
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pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
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pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
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P(e)← Pconflict( f1) ∪ Pconflict( f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f ) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

f1

e

f2

pr
f



5 - 21Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
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compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
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initialize conflict graph G
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delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
( f1, f2)← previously incidentC(e)
P(e)← Pconflict( f1) ∪ Pconflict( f2)
foreach p ∈ P(e) do
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foreach e ∈ L do
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can compute Vor(P) in R2
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