Computational Geometry

Lecture 9:
Convex Hulls in 3D

Mixing More Things

Part I
Complexity & Visibility

Philipp Kindermann Winter Semester 2020



Complexity of the Convex Hull

Given set S of n points in IR,



Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?



Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?
dim | w-c complexity of CH(S)

WO N =




Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?

L =

dim | w-c complexity of CH(S)

WO N =




Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?

dim | w-c complexity of CH(S)
2€0(1) 1t

WO N =




Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?

dim | w-c complexity of CH(S)
2€0(1) 1t

WO N =
()
( }




Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?

dim | w-c complexity of CH(S)
2 € O(1) 1t

ne(n) @

WO N =




Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?

dim | w-c complexity of CH(S)
1 2 € @(1) + oo + >
2 ne(n) -
3 Q
d . o ©®
.. .. ([ . ‘
o.: . .o ) ..
° ° o ; ’



Complexity of the Convex Hull

Given set S of n points in R? what is max. #edges on JCH(S)?
dim | w-c complexity of CH(S)

2 €0(1)

nemn)

_ LW N =




Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?
dim | w-c complexity of CH(S)
2 €0(1)
nemn)
Your task!

_ LW N =




Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?

dim | w-c complexity of CH(S)
2 €0(1)
nemn)

3n—6 € 0O(n)

_ LW N =




Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?

dim | w-c complexity of CH(S)

2 €0(1)
nemn)
3n—6 € @(n)
O(n d/2j)

_ LW N =




Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?

dim | w-c complexity of CH(S)
1 2 € 0O(1)
2 neon)
3 3n—6 € 0O(n)
d @(nLd/Zj )\

Upper Bound Theorem ~




Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?

dim | w-c complexity of CH(S)
1 2 € 0O(1)
2 neon)
3 3n—6 € 0O(n)
d @(nLd/Zj )\

Upper Bound Theorem ~

Construction?




Complexity of the Convex Hull

Given set S of n points in IR?, what is max. #edges on ICH(S)?
dim | w-c complexity of CH(S)
2 €0(1)
nemn)
3n —6 € O(n)
@(n /2] )4\
Upper Bound Theorem ~

_ LW N =

Construction

randomized-incremental!




Visibility

e




Visibility

anvb




Visibility




Visibility N




Visibility N

Face f is visible from p but not from g.



Visibility N

Face f is visible from p but not from g.



Visibility N

Face f is visible from p but not from g.



Visibility N




Visibility N




Visibility N




Visibility

-11



Visibility

Face f is visible from p but not from g.

horizon

Define conflict graph G




Visibility

Face f is visible from p but not from g.

horizon

Define conflict graph G

points

O 0000




Visibility

Face f is visible from p but not from g.

horizon

Define conflict graph G

points facets

O 0000
O 000




Visibility

Face f is visible from p but not from g.

horizon

Define conflict graph G
conflicts
(visibility)
points l facets

O




Visibility

Face f is visible from p but not from g.

horizon

Define conflict graph G

conflicts
(visibility)
points l facets

F conflict (7’)




Visibility

Face f is visible from p but not from g.

horizon

-17

Define conflict graph G

conflicts
(visibility)
points l

facets




Computational Geometry

Lecture 9:
Convex Hulls in 3D

Mixing More Things

Part II.
Randomized Incremental Algorithm

Philipp Kindermann Winter Semester 2020















Rand3DConvexHull(P C R?)

pick non-coplanar set P'={pq,..., p4 }CP
C «+ CH(P)
compute rand. perm. (ps, ..., pn) of P\P’



Rand3DConvexHull(P C R?)

pick non-coplanar set P'={pq,..., p4 }CP
C «+ CH(P)
compute rand. perm. (ps, ..., pn) of P\P’



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={pq,..., p4 }CP
C «+ CH(P)
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G : (p, f) edge <
f visible from p



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={pq,..., p4 }CP
C «+ CH(P)
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G : (p, f) edge <
f visible from p



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={pq,..., p4 }CP
C «+ CH(P)
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do

if Fconﬂict(pr) # O then { pPr Z C }

return C

9



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={pq,..., p4 }CP
C «+ CH(P)
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do

if Fconﬂict(pr) # O then { pPr Z C }

return C

9



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={pq,..., p4 }CP
C «+ CH(P)
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do

if Fconﬂict(pr) 7£ & then { Pr g C }
delete all facets in F. et (pr) from C

return C

9



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={pq,..., p4 }CP
C «+ CH(P)
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do

if Fconﬂict(pr) 7é & then { Pr g C }
delete all facets in F. et (pr) from C

return C

9



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={pq,..., p4 }CP
C «+ CH(P)
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do

if Fconﬂict(pr) 7é & then { Pr g C }
delete all facets in F. et (pr) from C

return C

9



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={pq,..., p4 }CP
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C } Y
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={pq,..., p4 }CP
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C } Y
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € £ do

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C } Y
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € £ do
f < C.create_facet(e, p); create vtx for f in G

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C } Y
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € £ do
f < C.create_facet(e, p); create vtx for f in G
(f1, f2) < previously_incident. (¢)

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C } Y
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € £ do
f < C.create_facet(e, p); create vtx for f in G
(f1, f2) < previously_incident. (¢)

P(e) < Peonflict (fl) U Peonflict (fz)

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C } Y
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € £ do
f < C.create_facet(e, p); create vtx for f in G
(f1, f2) < previously_incident. (¢)

P(e) < Peonflict (fl) U Peonflict (fz)
foreach p € P(e) do

i

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C } Y
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € £ do
f < C.create_facet(e, p); create vtx for f in G
(f1, f2) < previously_incident. (¢)
P(e) < Peontlict(f1) Y Peonflict (f2)
foreach p € P(e) do
L if f is visible from p

return C



Rand3DConvexHull(P C R?) ;
pick non-coplanar set P'={p, ..., p4}CP /_\e Dy
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C } Y /
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € L do
f < C.create_facet(e, py); create vtx for f in G
(f1, f2) < previously_incidentc(¢)
P(e) < Peonflict (fl) U Peonflict (fz)
foreach p € P(e) do
| if f is visible from p then add edge (p, f) to G

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={py,..., p4}CP A 78
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5tondo
if Fconﬂict(pr) # O then { pPr Z C } Y /
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € L do
f < C.create_facet(e, py); create vtx for f in G
(f1, f2) < previously_incidentc(¢)
P(e) < Peonflict (fl) U Peonflict (fz)
foreach p € P(e) do
| if f is visible from p then add edge (p, f) to G

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP D,
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do

if Fconﬂict(pr) # O then { pPr Z C } Y

delete all facets in F. et (pr) from C

L < list of horizon edges visible from p,

foreach ¢ € L do

f < C.create_facet(e, p); create vtx for f in G

(f1, f2) < previously_incident. (¢)

P(e) < Peontlict(f1) Y Peonflict (f2)

foreach p € P(e) do
L if f is visible from p then add edge (p, /) to G

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP D,
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do

if Fconﬂict(pr) # O then { pPr Z C } Y

delete all facets in F. et (pr) from C

L < list of horizon edges visible from p,

foreach ¢ € L do

f < C.create_facet(e, p); create vtx for f in G

(f1, f2) < previously_incident. (¢)

P(e) < Peonflict (f1) U Peonflict (f2)

foreach p € P(e) do
L if f is visible from p then add edge (p, /) to G

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP D,
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do

if Fconﬂict(pr) # O then { pPr Z C } Y

delete all facets in F. et (pr) from C

L < list of horizon edges visible from p,

foreach ¢ € L do

f < C.create_facet(e, p); create vtx for f in G

(f1, f2) < previously_incident. (¢)

P(e) < Peonflict (f1) U Peonflict (f2)

foreach p € P(e) do
L if f is visible from p then add edge (p, /) to G

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP D,
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do

if Fconﬂict(pr) # O then { pPr Z C } Y

delete all facets in F. et (pr) from C

L < list of horizon edges visible from p,

foreach ¢ € L do

f < C.create_facet(e, p); create vtx for f in G

(f1, f2) < previously_incident. (¢)

P(e) < Peonflict (f1) U Peonflict (f2)

foreach p € P(e) do
L if f is visible from p then add edge (p, /) to G

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C «+ CH(P)
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C }
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € L do
f < C.create_facet(e, p); create vtx for f in G
(f1, f2) < previously_incident. (¢)
P(e) < Peontlict(f1) Y Peonflict (f2)
foreach p € P(e) do
L if f is visible from p then add edge (p, /) to G

| delete vtc {pr} U Feonflict(pr) from G

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C «+ CH(P)
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C }
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € L do
f < C.create_facet(e, p); create vtx for f in G
(f1, f2) < previously_incident. (¢)
P(e) < Peonflict (f1) U Peonflict (f2)
foreach p € P(e) do
L if f is visible from p then add edge (p, /) to G

| delete vtc {pr} U Feonflict(pr) from G

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C «+ CH(P)
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C }
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € L do
f < C.create_facet(e, p); create vtx for f in G
(f1, f2) < previously_incident. (¢)
P(e) < Peonflict (f1) U Peonflict (f2)
foreach p € P(e) do
L if f is visible from p then add edge (p, /) to G

| delete vtc {pr} U Feonflict(pr) from G

return C



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C } Y
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € L do
f < C.create_facet(e, p); create vtx for f in G
(f1, f2) < previously_incident. (¢)
P(e) < Peontlict(f1) Y Peonflict (f2)
foreach p € P(e) do
L if f is visible from p then add edge (p, /) to G

| delete vtc {pr} U Feonflict(pr) from G

return C Worst-case running time:



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C } Y
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € L do
f < C.create_facet(e, p); create vtx for f in G
(f1, f2) < previously_incident. (¢)
P(e) < Peontlict(f1) Y Peonflict (f2)
foreach p € P(e) do
L if f is visible from p then add edge (p, /) to G

| delete vtc {pr} U Feonflict(pr) from G

return C Worst-case running time:



Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C «+ CH(P) 8
compute rand. perm. (ps, ..., pn) of P\P’
initialize conflict graph G
forr =5ton do
if Fconﬂict(pr) # O then { pPr Z C } Y
delete all facets in F. et (pr) from C
L < list of horizon edges visible from p,
foreach ¢ € L do
f < C.create_facet(e, p); create vtx for f in G
(f1, f2) < previously_incident. (¢)
P(e) < Peontlict(f1) Y Peonflict (f2)
foreach p € P(e) do
L if f is visible from p then add edge (p, /) to G

| delete vtc {pr} U Feonflict(pr) from G

— ST 3
return C Worst-case running time: O(n”)



Computational Geometry

Lecture 9:
Convex Hulls in 3D

Mixing More Things

Part 11I:
Analysis

Philipp Kindermann Winter Semester 2020



Analysis

Idea.  Bound expected structural change



Analysis

Idea.  Bound expected structural change,
that is, the total #facets created by the algorithm.



Analysis

Idea.  Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma. The expected #tacets created is at most 61 — 20. ]




Analysis

Idea.  Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma. The expected #tacets created is at most 61 — 20. ]

Proof. El[#facets created| =



Analysis

Idea.  Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma. The expected #tacets created is at most 61 — 20. ]

Proof. El[#facets created| =
=4+ Y" . E[#facets incident to p, in CH(P;)]



Analysis

Idea.  Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma. The expected #tacets created is at most 61 — 20. ]

Proof. E|#facets created| = _
=4+ Y " - E|#facets incident to p, in CH(P,)]




Analysis

Idea.  Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma. The expected #tacets created is at most 61 — 20. ]

#edges
Proof. E|#facets created| = _J

=4+Y" . E [#facets‘gcident to py in CH(P,)]




Analysis

Idea.  Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma. The expected #tacets created is at most 61 — 20. ]

#edges
Proof. E|#facets created| = _J

—
=4+ Y" . E[#facets incident to p, in CH(P;)]

A\ J

deg(Pr/EH(Pr))




Analysis

Idea.  Bound expected structural change,
that is, the total #facets created by the algorithm.
[Lemma. The expected #facets created is at most 61 — 20. ]
#edges
Proof. E|#facets created| = _
=4+ Y " - E|#facets incident to p, in CH(P,)]
For r > 4: deg(pr, CH(FP))

E|deg(pr, CH(Pr))] =



Analysis

Idea.

Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma.

The expected #facets created is at most 6n — 20. ]

Proof.

#edges
E [#facets created| = _J

—
=4+ Y" . E[#facets incident to p, in CH(P;)]

A\ J

For r > 4: deg(Pr/EH(Pr))
E[deg(pr, CH(P))] = ;23 L5 deg(p;, CH(P,))




Analysis

Idea.

Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma.

The expected #facets created is at most 6n — 20. ]

Proof.

#edges
E [#facets created| = _J

—
=4+ Y" . E[#facets incident to p, in CH(P;)]

A\ J

For r > 4: deg(Pr/EH(Pr))
E[deg(pr, CH(P))] = ;23 L5 deg(p;, CH(P,))

< 27 [(Xf_; deg(pi)) — 12]




Analysis

Idea.

Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma.

The expected #facets created is at most 6n — 20. ]

Proof.

#edges
E [#facets created| = _J

—
=4+ Y" . E[#facets incident to p, in CH(P;)]

A\ J

For r > 4: deg(Pr/EH(Pr))
E[deg(pr, CH(P))] = ;23 L5 deg(p;, CH(P,))

< L [(Xi= deg(pi)) — 12]

7




Analysis

Idea.

Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma.

The expected #facets created is at most 6n — 20. ]

Proof.

#edges
E [#facets created| = _J

—
=4+ Y" . E[#facets incident to p, in CH(P;)]

A\ J

For r > 4: deg(Pr/EH(Pr))
E[deg(pr, CH(P))] = ;23 L5 deg(p;, CH(P,))

< L [(Xi= deg(pi)) — 12]

7

2 - # edgesvof CH(P)




Analysis

Idea.

Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma.

The expected #facets created is at most 6n — 20. ]

Proof.

#edges
E [#facets created| = _J

—
=4+ Y" . E[#facets incident to p, in CH(P;)]

A\ J

For r > 4: deg(Pr/EH(Pr))
E[deg(pr, CH(P))] = ;23 L5 deg(p;, CH(P,))

< L [(Xi= deg(pi)) — 12]

2 - # edgesvof CH(P)
L. [2-(3r—6) —12]

VAN



Analysis

Idea.

Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma.

The expected #facets created is at most 6n — 20. ]

Proof.

#edges
E [#facets created| = _J

—
=4+ Y" . E[#facets incident to p, in CH(P;)]

A\ J

For r > 4: deg(Pr/EH(Pr))
E[deg(pr, CH(P))] = ;23 L5 deg(p;, CH(P,))

< L [(Xi= deg(pi)) — 12]

2 - # edgesvof CH(P)
L2 (3r—6)—12] <6

VAN

- 15



Analysis

Idea.  Bound expected structural change,
that is, the total #facets created by the algorithm.

[Lemma. The expected #tacets created is at most 61 — 20. ]

#edges
Proof. E|#facets created| =
=4 +Y" - E[#facets incident to p, in CH(P,)] <
For r > 4: deg(pr, CH(P)) \

Eldeg(p,, CH(P,))] = ;23 Yi_5 deg(p;, CH(P;))
< 23 [(Xi= deg(pi)) — 12]

7

2 - # edgesvof CH(P)
L2 (3r—6)—12] <6

VAN



Analysis

Idea.  Bound expected structural change,
that is, the total #facets created by the algorithm.
[Lemma. The expected #facets created is at most 61 — 20. ]
#edges
Proof. E|#facets created| = _
=44 Y " - E[#facets incident to p, in CH(P,)| < _61;0
For r > 4: deg(pr, CH(FP)) \

Eldeg(p,, CH(P,))] = ;23 Yi_5 deg(p;, CH(P;))
< 23 [(Xi= deg(pi)) — 12]

7

2 - # edgesvof CH(P)
L2 (3r—6)—12] <6

VAN



Running Time

‘Theorem. The convex hull of a set of 7 pts in R® can be
computed in O( ) expected time.

.

\

[ i i il
1
1

Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C + CH(P)
compute rand. perm. (ps, ..., py) of P\P’/
initialize conflict graph G
forr = 5ton do
if F, conﬂict(pi’) # © then
delete all facets in F.ongict(pr) from C
L < list of horizon edges visible from p;
foreach ¢ € £ do
f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incidentc(¢)
P(e) < Peonflict (fl) U Peonflict (fZ)
foreach p € P(¢) do
| if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

return C



Running Time

‘Theorem. The convex hull of a set of 7 pts in R® can be
computed in O( ) expected time.

\

plck non-coplanar set P'={p,..., p4}CP
Jce CH(P')
compute rand. perm. (ps, ..., py) of P\P’/

: 1n1t1a11ze conflict graph G

E forr = 5ton do

: if F, COl‘lﬂlCt(p 7’) # © then

: delete all facets in F.ongict(pr) from C

: L < list of horizon edges visible from p;

E foreach ¢ € £ do

: f < C.create_facet(e, pr); create vtx for f in G
: (f1, f2) « previously_incidentc ()

E P(e) < Peonflict (fl) U Peonflict (fZ)

! foreach p € P(¢) do

: | if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

return C



Running Time

if F conﬂict(pi’) 7& O then
delete all facets in F.ongict(pr) from C

: L < list of horizon edges visible from p;

E foreach ¢ € £ do

: f < C.create_facet(e, p;); create vtx for f in G

: (f1, f2) « previously_incidentc ()

E P(e) < Peonflict (fl) U Peonflict (fZ)

! foreach p € P(¢) do

: | if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

return C

( )
Theorem. The convex hull of a set of n pts in R® can be
computed in O( ) expected time.
\. J
Sé Rand3DConvexHull(P cR%)
. E pick non-coplanar set P'={py, ..., ps}CP
- Jce CH(P')
/Q ') compute rand. perm. (ps, ..., py) of P\P’/
~— | initialize conflict graph G
O Morr=5tondo



Running Time

if Pconﬂict(pr) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;

foreach ¢ € £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incidentc(¢)

P(e) <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

| delete vtc {pr} U Fongiice(pr) from G

return C

L if f visible from p then add edge (p, /) to G !

( )
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O( ) expected time.

\. J
e, Stage r of for-loo foreach 1

Sé 'Rand3DConvexHull(P C R?) 5 |2 67/ fencatialosr)

. E rpick non-coplanar set P'={p,..., p4}CP

- Jce CH(P')

/Q: compute rand. perm. (ps, ..., py) of P\P’/

~—" | initialize conflict graph G

QE forr = 5ton do



Running Time

( )
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O( ) expected time.
\. J
e, Stage r of for-loo foreach 1
Sé 'Rand3DConvexHull(P C R?) : 5 . |2 67/ fencaia o)
R E rpick non-coplanar set P'={py,..., p4}CP :takes time O( | FCOI’IﬂiCt (pr) |) —
- Jce CH(P') |
/Q: compute rand. perm. (ps, ..., pn) of P\P’
\Q-/ | initialize conflict graph G

E forr =5ton do

if Pconﬂict(pr) # © then

delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;

foreach ¢ € £ do

f < C.create_facet(e, p;); create vtx for f in G

(f1, f2) < previously_incidentc(¢)

P(e) < Peonflict (fl) U Peonflict (f2)

foreach p € P(¢) do :
L if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

. return C



Running Time

( )
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O( ) expected time.
. J
O Stage r of for-loo foreach 1
Sé 'Rand3DConvexHull(P C R3) : S : o7 o ol )
= E rpick non-coplanar set P'={p,..., p4}CP :takes time O( | FCOI’IﬂiCt (PT’) |) —
) C« CH(P) : :
/QS compute rand. perm. (ps, ..., py) of P\P’ EO(#facetS del When addlng p 1’)
\D-/ | initialize conflict graph G :

E forr =5ton do

if Pconflict(pr) # © then

delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;

foreach ¢ € £ do

f < C.create_facet(e, p;); create vtx for f in G

(f1, f2) < previously_incidentc(¢)

P(e) < Peonflict (fl) U Peonflict (fZ)

foreach p € P(¢) do :
L if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

. return C



Running Time

if Pconflict(pr) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;

foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incidentc(¢)

P(e) <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

| delete vtc {pr} U Fongiice(pr) from G

. return C

‘Theorem. The convex hull of a set of 7 pts in R® can be )
\ computed in O( ) expected time. )
% papcomedta(r R Stage T o fgr('?;op e
5 [ piknoncoplnar et P~ - prker takes time O(|Feongtict (Pr)
’§< compute rand. perm. (s, .., pu) of P\P' O(#facets del. when adding p;)
S N er—ctondo ;This part of for-loop in total:

L if f visible from p then add edge (p, /) to G E



Running Time

‘Theorem. The convex hull of a set of 7 pts in R® can be )
\ computed in O( ) expected time. )
% papcomedta(r R Stage T o fgr('?;op e
5 | ek nemcopianas ot P ... kP takes time O(|Feonflict (Pr)
’§< compute rand. perm. (s, .., pu) of P\P' O(#facets del. when adding p;)
S N er—ctondo This part of for-loop in total:

delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;

foreach ¢ € £ do

f < C.create_facet(e, p;); create vtx for f in G

(f1, f2) < previously_incidentc(¢)

P(e) < Peonflict (fl) U Peonflict (fZ)

foreach p € P(¢) do :
L if f visible from p then add edge (p, /) to G

if Feontiet(pr) 7 © then E[#facets deleted] =

| delete vtc {pr} U Fongiice(pr) from G

. return C



Running Time

( )
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O ) expected time.
. J
N Stage r of for-loo foreach 1
Sé 'Rand3DConvexHull(P C R?) : S . | (70 o L)
£ ot mmapns .. takes time O(|Frongict (pr)]) =
) C « CH(P - :
/QS compute rand. perm. (ps, ..., py) of P\P’ EO(#facetS del When addlng p 7’)
~—| initiali flict graph G o :
Q Morr=5t0ndo ‘This part of for-loop in total:
' if Feonflic (Pr) 7£ @ then E —
deilette all facets in Fgpgict(pr) from C :E [#facets deleted]
L < list of horizon edges visible from p; E S E [#facets cre ated] —

foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G

(f1, f2) < previously_incidentc(¢)

P(e) < Peonflict (fl) U Peonflict (fZ)

foreach p € P(¢) do :
L if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

. return C

___________________________________________________



8-10

Running Time

( )
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O ) expected time.
. J
N Stage r of for-loo foreach 1
Sé 'Rand3DConvexHull(P C R?) : S . | (70 o L)
£ ot mmapns .. takes time O(|Frongict (pr)]) =
) C « cH(P i :
/QS compute rand. perm. (ps, ..., py) of P\P’ EO(#facetS del When addlng p 7’)
~—| initiali flict graph G o :
Q Morr=5t0ndo ‘This part of for-loop in total:
' if Feonflic (Pr) 7£ @ then E —
deilette all facets in Fgpgict(pr) from C :E [#facets deleted]
L < list of horizon edges visible from p; E S E [#facets cre ated] —

foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G

(f1, f2) < previously_incidentc(¢)

P(e) < Peonflict (fl) U Peonflict (fZ)

foreach p € P(¢) do :
L if f visible from p then add edge (p, /) to G

Lemma

| delete vtc {pr} U Fongiice(pr) from G

. return C

___________________________________________________



Running Time

( )
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O( ) expected time.
\. J
e, Stage r of for-loo foreach 1
Sé 'Rand3DConvexHull(P C R?) : 5 . |2 67/ fencaia o)
£ e e takes time O(|Feonice (1)) —
') C < CH(P - .
/QS compute rand. perm. (ps, ..., py) of P\P’ EO(#facetS del When addlng p 7’)
~— | initiali flict graph G : . :
Q. S ‘This part of for-loop in total:
' if Feonflic (Pr) 7£ @ then E —
deilette all facets in Fgpgict(pr) from C :E [#facets deleted]
L < list of horizon edges visible from p, i S E [#facets cre ated] —0) (n) :

foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G

(f1, f2) < previously_incidentc(¢)

P(e) < Peonflict (fl) U Peonflict (fZ)

foreach p € P(¢) do :
L if f visible from p then add edge (p, /) to G

Lemma

| delete vtc {pr} U Fongiice(pr) from G

. return C

___________________________________________________



Running Time

e “
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O ) expected time.
\ J
Stage r of for-loop w/o foreach
(qé R(andBDConvexHull(P C R3) 5 . | (e ot o)
B [ pick roncoplanar st P {p1.....pi)CP takes time O(|Feonfiict(pr)|) =
- .
€< compute rand. perm. (ps, ..., py) of P\P’ O(#facets del When addlng P 7)
~— | initiali flict h G . -
O Morr—Stondo This part of for-loop in total:
if Feonflic (Pr) 7& @ then —
deilette all facets in Fgpgict(pr) from C E [#facets deleted]
L < list of horizon edges visible from p, S E [#facets Created] —0) (n) )

foreach ¢ ¢ £ do
f < C.create_facet(e, p;); create vtx for f in G

(f1, f2)  previously incidentc (¢) Outer foreach-loop:

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

L if f visible from p then add edge (p, /) to G

Lemma

| delete vtc {pr} U Fongiice(pr) from G

return C



Running Time

return C

if Pconﬂict<p7’) # O then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)
P(€> — Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do
L if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O( ) expected time. )
£ Band3DConvexHull(P C ) tStlige : of fgl‘('lll(_zop <.W/ ( fore;cr)loozw
B Iélcirc‘:olr{‘;‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)



Running Time

return C

if Pconﬂict<p7’) # O then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O( ) expected time. )
£ Band3DConvexHull(P C ) tStlige : of fgl‘('lll(_zop <.W/ ( fore;cr)loozw
B Iélcirc‘:olr{‘;‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

L if f visible from p then add edge (p, /) to G '— ln totak

| delete vtc {pr} U Fongiice(pr) from G



Running Time

return C

if Pconﬂict(pi’) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O( ) expected time. )
£ Band3DConvexHull(P C ) tSt1a<ge : of fg)r(_|11(-20p <.W/ ( fore;cr)loozw
B Iélcirc‘:olr{‘z‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

L if f visible from p then add edge (p, /) to G '— ln totak

| delete vtc {pr} U Fongiice(pr) from G

O > |P(e)]

e on horizon at some time



Running Time

return C

if Pconﬂict(pi’) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O( ) expected time. )
£ Band3DConvexHull(P C ) tSt1a<ge : of fg)r(_|11(-20p <.W/ ( fore;cr)loozw
B Iélcirc‘:olr{‘z‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

L if f visible from p then add edge (p, /) to G '— ln totak

| delete vtc {pr} U Fongiice(pr) from G

O > |P(e)]

e on horizon at some time

= O(n?)



Running Time

return C

if Pconﬂict(pi’) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O( ) expected time. )
£ Band3DConvexHull(P C ) tSt1a<ge : of fg)r(_|11(-20p <.W/ ( fore;cr)loozw
B Iélcirc‘:olr{‘z‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

L if f visible from p then add edge (p, /) to G '— ln totak

| delete vtc {pr} U Fongiice(pr) from G

O > |P(e)]

e on horizon at some time

= O(n?)



Running Time

return C

if Pconﬂict(pi’) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O( ) expected time. )
£ Band3DConvexHull(P C ) tSt1a<ge : of fg)r(_|11(-20p <.W/ ( fore;cr)loozw
B Iélcirc‘:olr{‘z‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

L if f visible from p then add edge (p, /) to G '— ln totak

| delete vtc {pr} U Fongiice(pr) from G

O > |P(e)]

e on horizon at some time

= Of2) O(nlogn)



Running Time

if Pconﬂict(pi’) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;

foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

| delete vtc {pr} U Fongiice(pr) from G

return C

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O(nlogn) expected time. )
¥ Kand3DConvexHull(P ¢ R tStlige: of fgr(-|1;019 {w/o( f)r)li
B Iélcirc‘:olr{‘z‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

> |P(e)]

e on horizon at some time

= Of2) O(nlogn)

L if f visible from p then add edge (p, /) to G '— ln totak

O



Running Time

if Pconﬂict<p7’) # O then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

| delete vtc {pr} U Fongiice(pr) from G

return C

f < C.create_facet(e, p;); create vtx for f in G

RY,d > 3
‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O(nlogn) expected time. )
c DD Gty € 20 ts;igs ;sze fgr(—|1;op <.W/ 0( forefscr)loozw
B Iélir(‘:o;l‘ (‘1331)’ anar set P'={p1,..., ps}CP conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

L if f visible from p then add edge (p, /) to G '— ln totak

O > |P(e)]

e on horizon at some time

= Of2) O(nlogn)



Running Time

R d >3

‘Theorem. The convex hull of a set of 7 pts in R® can be

\

computed in O(nlogn) expected time.

return C

| delete vtc {pr} U Fongiice(pr) from G

. J

Q O (n Ld/ZJ ) Stage r of fOT'lOOp (w/o foreach loop)

E R(andBDConvexHull(P C R3) .

£ et e takes time O(|Feongice (1)) —

C « CH(P' :

€< compute rand. perm. (ps, ..., py) of P\P’ O(#facets del When addlng P 7)
~— | initialize conflict graph G . -

@) \fort S tomn d(t,g F This part of for-loop in total:

if Feonlict (pr) 7 © then E [#facets deleted] =

delete all facets in F.ongict(pr) from C
L < list of horizon edges visible from p;
foreach ¢ € £ do

< El[#facets created| =0O(n).

f < C.create_facet(e, p;); create vtx for f in G Lemma
(f1. f2) previou)sly-inciderztc §e) Outer foreach-loop:

P(€> — Pconﬂict(fl U Peonflict f2 . .

foreach p € P(¢) do —1n Stage r. O(ZBE,C ‘P(e) |)

L if f visible from p then add edge (p, /) to G '— ln totak

O ( > |P(e)]

e on horizon at some time

= Of2) O(nlogn)



Computational Geometry

Lecture 9:
Convex Hulls in 3D

Mixing More Things

Part IV:
Half-Space Intersections

Philipp Kindermann Winter Semester 2020



Convex Hulls and Half-Space Intersections



Convex Hulls and Half-Spaece Intersections
Plane



10-3

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:



10-4

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py),



10-5

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py),
A

p

» primal




10-6

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A
%

» primal




10-7

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A
%

» primal dual >




10-8

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.

A A
d %
» primal dual /4

—




10-9

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.

A A
d %
» primal dual /4

—

For (: y = mx + D,



10 -10

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

\< .
» primal dual ’@

N -

For (: y = mx + D,




10-11

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

\< .
» primal dual ’@

N -

For ¢: y = mx + b, define £* to be the pt g with g* =/




10-12

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

\< .
» primal dual ’@

N -

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).




10-13

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

\< .
» primal dual ’@

X r

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).




10- 14

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

\< .
p

» primal <> dual >
> f*'/

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).




10-15

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

\< .
p

» primal <> dual >
> f*./

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe.



10 - 16

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

p
\\ > primal e dual '@
X v

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.



10-17

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

p
\\ > primal = dual ﬁ
> e

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* 1s incidence-preserving:



10 - 18

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

p
\\ > primal e dual ﬁ
} v

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*



10-19

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

% *
// X > primal = dual /ﬁ
8 > v* /

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*



10 - 20

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

X *
// > primal e dual /'g/*ﬁ
8 > v* /

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*



10-21

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

X *
// > primal e dual /'g/*ﬁ
8 > v* /

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
% is order-preserving:



10 - 22

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

X *
// > primal e dual /'g/*ﬁ
8 } v* /

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 23

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.

A A

4 ,
/ » primal e dual

/ g AT

8 / 0 /

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 24

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A
" h

// > primal e dual /‘g/*
8 / r

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 25

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A

» primal T dual >

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 26

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py.

o o » primal ~—@e—» dual
o O

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 27

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py.

— » primal ~—@e—» dual
o O

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 28

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py.

7—0T> primal ~—<e—» dual
o ®

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 29

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py.

7—0T> primal ~—<e—» dual
o ®

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 30

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py.

7—0T> primal ~—<e—» dual
o ®

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 31

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py.

primal < dual

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 32

Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py.

primal < dual

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 33

Convex Hulls and Halt-Spaece Intersections
Plane

Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = prx —
A

primal < dual

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 34

Convex Hulls and Halt-Spaece Intersections
Plane

Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = prx —
A

(‘#V primal 4> dual
o

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 35

Convex Hulls and Halt-Spaece Intersections
Plane

Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = prx —
A

(‘#V primal 4> dual
o

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. Let p € R? and let £ be a non-vertical line.
* is incidence-preserving: p € { & (* € p*
x is order-preserving: p above { < (* above p*



10 - 36

Convex Hulls and Halt-Spaece Intersections
Plane

Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = prx —

primal < dual

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe.m upper convex hulls of pts <+ lower env. of lines



10 - 37

Convex Hulls and Halt-Spaece Intersections
Plane

Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = prx —
A

o

For ¢: y = mx + b, define £* to be the pt g with g* = ¢,
that is, £* = (m, —Db).

Observe. m upper convex hulls of pts <+ lower env. of lines

B can compute inters. of “lower/upper” halt
planes (spaces) via upper/lower convex hulls



Computational Geometry

Lecture 9:
Convex Hulls in 3D

Mixing More Things

Part V:
Voronoi Diagrams Revisited

Philipp Kindermann Winter Semester 2020



Voronoi Diagrams Revisited

Let U: z = x? + y* be the unit paraboloid in IR3.

12 -



ronoi Diagrams Revisited

e unit paraboloid in R>.

12 -



ronoi Diagrams Revisited

@
p = (px, py,0)

e unit paraboloid in R>.

12 -



ronoi Diagrams Revisited

p = (px, py,0)

e unit paraboloid in R>.

12 -



ronoi Diagrams Revisited

P’ = (px, Py, Px + 1Py)

p = (px, py,0)

e unit paraboloid in R>.

12 -



ronoi Diagrams Revisited

12 -



12-7

ronoi Diagrams Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

p' = (px, Py, Px + Py)

p = (px, py,0)



12 -8

ronoi Diagrams Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

p' = (px, Py, Px + Py)

q p = (px, py,0)



12-9

ronoi Diagrams Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).




12 - 10

ronoi Diagrams Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

P = (Px Py, 0)
pal=\/(@x = p)? + (4y — py)?




12 -11

ronoi Diagrams Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

p' = (px, Py, Px + Py)

P = (Px Py, 0)
pal=\/(@x = p)? + (4y — py)?




12 -12

ronoi Diagrams Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

P = (Px Py, 0)
pal=\/(@x = p)? + (4y — py)?




12 -13

ronoi Diagrams Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

P = (Px Py, 0)
pal=\/(@x = p)? + (4y — py)?




12 -14

ronoi Diagrams Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

P = (Px Py, 0)
pal=\/(@x = p)? + (4y — py)?

q(p) = (92, 9y, 2Pxqx + 2pyqy — (p3 + 15))



12 -15

ronoi Diagrams Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

P = (Px Py, 0)
pal=\/(@x = p)? + (4y — py)?




12 -16

ronoi Diagrams Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

P = (Px Py, 0)
pal=\/(@x = p)? + (4y — py)?

q(p) = (92, 9y, 2Pxqx + 2pyqy — (p3 + 15))
9% + 4y — 2pxqx — 2pydqy + (px + py)



12-17

ronoi Diagranis Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

P = (Px Py, 0)
pal=\/(@x = p)? + (4y — py)?

q(p) = (92, 9y, 2Pxqx + 2pyqy — (p3 + 15))
9% + 4y — 2pxqx — 2pydqy + (px + py)
(9% — 2pxqx + py) + (@5 — 2pyqy + py)



12 -18

ronoi Diagrams Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

P = (Px Py, 0)
pal=\/(@x = p)? + (4y — py)?

q(p) = (92, 9y, 2Pxqx + 2pyqy — (p3 + 15))
9% + 4y — 2pxqx — 2pydqy + (px + py)
(9% — 2pxqx + py) + (@5 — 2pyqy + py)



12-19

ronoi Diagrams Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

P = (Px Py, 0)
pal=\/(@x = p)? + (4y — py)?

q(p) = (92, 9y, 2Pxqx + 2pyqy — (p3 + 15))
= h(p) and U encode dist. betw. p and any other pt in z=0.



12 - 20

ronoi Diagranis Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

P = (Px Py, 0)
pal=\/(@x = p)? + (4y — py)?

q(p) = (92, 9y, 2Pxqx + 2pyqy — (p3 + 15))
= h(p) and U encode dist. betw. p and any other pt in z=0.

= h(p)NU = {p'}



12 -21

ronoi Diagranis Revisited

h(p): z= (2px)x + (2py)y — (px + ry)
Note that p" € h(p).

P = (Px Py, 0)
pal=\/(@x = p)? + (4y — py)?

q(p) = (92, 9y, 2Pxqx + 2pyqy — (p3 + 15))
= h(p) and U encode dist. betw. p and any other pt in z=0.
= h(p)NU = {p’'} = h(p) is tangent to U (in p’)



12 -22

oronoi Diagranjs Revisited

Let\U : z = x? + y? be the unit paraboloid in R>.

h(p): z= (2px)x + (2py)y — (px + ry)

h(q) Note that p" € h(p).
7 p' = (px Py, P3 + Py)
Y
2 ~Zg(p) 1 rP= (Px, Py, 0)
=|pq|* pq| = \/(qx—iﬂx)2+(qy—z9y)2
9 S

q(p) = (92, 9y, 2Pxqx + 2pyqy — (p3 + 15))
= h(p) and U encode dist. betw. p and any other pt in z=0.
= h(p)NU = {p’'} = h(p) is tangent to U (in p’)



12 -23

oronoi Diagranjs Revisited

Let\U : z = x? + y? be the unit paraboloid in R>.

h(p): z= (2px)x + (2py)y — (px + ry)

h(q) Note that p" € h(p).
7 p' = (px Py, P3 + Py)
Y
2 =Zqp) TN/ P = (Px, Py, 0)
=|pq|* pq| = \/(qx—iﬂx)2+(qy—z9y)2
9 S

q(p) = (92, 9y, 2Pxqx + 2pyqy — (p3 + 15))
= h(p) and U encode dist. betw. p and any other pt in z=0.
= h(p)NU = {p’'} = h(p) is tangent to U (in p’)



12 -24

oronoi Diagranys Revisited

Let\LI: z = x? + y? be the unit paraboloid in R>.

h(p): z= (2px)x + (2py)y — (px + pry)

h(q) Note that p" € h(p).
7 p' = (px Py, P3 + Py)
Y
2y —Zq(p) 1 P = (Px, Py, 0)
=|pq|* pq| = \/(qx—iﬂx)2+(qy—z9y)2
9 S

q(p) = (92, 9y, 2Pxqx + 2pyqy — (p3 + 15))
= h(p) and U encode dist. betw. p and any other pt in z=0.
= h(p)NU = {p’'} = h(p) is tangent to U (in p’)



The Upper Envelope Strikes Back




The Upper Envelope Strikes Back




The Upper Envelope Strikes Back




The Upper Envelope Strikes Back




The Upper Envelope Strikes Back




The Upper Envelope Strikes Back




The Upper Envelope Strikes Back




The Upper Envelope Strikes Back




The Upper Envelope Strikes Back




The Upper Envelope Strikes Back




13-11

The Upper Envelope Strikes Back

‘Theorem. Let P C R? x {0}and H = {h(p) | p € P}.
Let £(H) be the upper envelope of H.
The projection of £(H) on z =0 is




13-12

The Upper Envelope Strikes Back

‘Theorem. Let P C R? x {0}and H = {h(p) | p € P}.
Let £(H) be the upper envelope of H.
The projection of £(H) on z = 0 is Vor(P).




13-13

The Upper Envelope Strikes Back

‘Theorem. Let P C R? x {0}and H = {h(p) | p € P}.
Let £(H) be the upper envelope of H.
The projection of £(H) on z = 0 is Vor(P).

'

can compute Vor(P) in R?
via upper envelope in R’




13-14

The Upper Envelope Strikes Back

‘Theorem. Let P C R? x {0}and H = {h(p) | p € P}.
Let £(H) be the upper envelope of H.
The projection of £(H) on z = 0 is Vor(P).

'

can compute Vor(P) in R?
via upper envelope in R’

'




The Upper Envelope Strikes Back

13-15

‘Theorem. Let P C R? x {0}and H = {h(p) | p € P}.
Let £(H) be the upper envelope of H.
The projection of £(H) on z = 0 is Vor(P).

v

can compute Vor(P) in R?
via upper envelope in R’

'

upper envelope in R® is in
one-to-one correspondence to
lower convex hull of pt set H*




The Upper Envelope Strikes Back

13-16

‘Theorem. Let P C R? x {0}and H = {h(p) | p € P}.
Let £(H) be the upper envelope of H.
The projection of £(H) on z = 0 is Vor(P).

v

can compute Vor(P) in R?
via upper envelope in R’

'

upper envelope in R® is in
one-to-one correspondence to
lower convex hull of pt set H*

v




13-17

The Upper Envelope Strikes Back

‘Theorem. Let P C R? x {0}and H = {h(p) | p € P}.
Let £(H) be the upper envelope of H.
The projection of £(H) on z = 0 is Vor(P).

v

can compute Vor(P) in R?
via upper envelope in R’

'

upper envelope in R® is in
one-to-one correspondence to
lower convex hull of pt set H*

v

use algorithm Rand3DConvexHull!




	Complexity & Visibility
	Complexity of the Convex Hull
	Visibility

	Randomized Incremental Algorithm
	Analysis
	Running Time

	Half-Space Intersections
	Voronoi Diagrams Revisited
	The Upper Envelope Strikes Back


