
1

Philipp Kindermann Winter Semester 2020

Lecture 9:
Convex Hulls in 3D

or
Mixing More Things

Part I:
Complexity & Visibility

Computational Geometry

2 - 1

Complexity of the Convex Hull

Given set S of n points in Rd,

2 - 2

Complexity of the Convex Hull

Given set S of n points in Rd, what is max. #edges on ∂CH(S)?

2 - 3

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

what is max. #edges on ∂CH(S)?

2 - 4

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

what is max. #edges on ∂CH(S)?

2 - 5

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

2 ∈ Θ(1)

what is max. #edges on ∂CH(S)?

2 - 6

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

2 ∈ Θ(1)

what is max. #edges on ∂CH(S)?

2 - 7

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

2 ∈ Θ(1)
n ∈ Θ(n)

what is max. #edges on ∂CH(S)?

2 - 8

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

2 ∈ Θ(1)
n ∈ Θ(n)

what is max. #edges on ∂CH(S)?

2 - 9

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

2 ∈ Θ(1)
n ∈ Θ(n)

what is max. #edges on ∂CH(S)?

2 - 10

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

2 ∈ Θ(1)
n ∈ Θ(n)

Your task!

what is max. #edges on ∂CH(S)?

2 - 11

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

2 ∈ Θ(1)
n ∈ Θ(n)

3n− 6 ∈ Θ(n)

what is max. #edges on ∂CH(S)?

2 - 12

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

2 ∈ Θ(1)
n ∈ Θ(n)

3n− 6 ∈ Θ(n)
Θ(nbd/2c)

what is max. #edges on ∂CH(S)?

2 - 13

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

2 ∈ Θ(1)
n ∈ Θ(n)

3n− 6 ∈ Θ(n)
Θ(nbd/2c)

Upper Bound Theorem

what is max. #edges on ∂CH(S)?

2 - 14

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

2 ∈ Θ(1)
n ∈ Θ(n)

3n− 6 ∈ Θ(n)
Θ(nbd/2c)

Upper Bound Theorem

Construction ?

what is max. #edges on ∂CH(S)?

2 - 15

Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

2 ∈ Θ(1)
n ∈ Θ(n)

3n− 6 ∈ Θ(n)
Θ(nbd/2c)

Upper Bound Theorem

Construction
randomized-incremental!

what is max. #edges on ∂CH(S)?

3 - 1

Visibility

3 - 2

Visibility

f

3 - 3

Visibility

q

p

f

3 - 4

Visibility

q

p

h f
f

3 - 5

Visibility

q

p

h f

Face f is visible from p but not from q.

f

3 - 6

Visibility

q

p

h f

Face f is visible from p but not from q.

f

3 - 7

Visibility

q

r

p

h f

Face f is visible from p but not from q.

f

3 - 8

Visibility

q

r

p

h f

Face f is visible from p but not from q.

f

3 - 9

Visibility

q

r

p

h f

Face f is visible from p but not from q.

f

3 - 10

Visibility

q

r

p

h f

Face f is visible from p but not from q.

f

3 - 11

Visibility

q

horizon

r

p

h f

Face f is visible from p but not from q.

f

3 - 12

Visibility

q

horizon

r

p

h f

Face f is visible from p but not from q.

f

Define conflict graph G:

f

3 - 13

Visibility

q

horizon

r

p

h f

Face f is visible from p but not from q.

points

r

f

Define conflict graph G:

f

3 - 14

Visibility

q

horizon

r

p

h f

Face f is visible from p but not from q.

points facets

r

f

f

Define conflict graph G:

f

3 - 15

Visibility

q

horizon

r

p

h f

Face f is visible from p but not from q.

points facets

r

f

f

(visibility)
conflicts

Define conflict graph G:

f

3 - 16

Visibility

q

horizon

r

p

h f

Face f is visible from p but not from q.

points facets

r

f

Fconflict(r)

f

(visibility)
conflicts

Define conflict graph G:

f

3 - 17

Visibility

q

horizon

r

p

h f

Face f is visible from p but not from q.

points facets

r

f

Fconflict(r)
Pconflict(f)

f

(visibility)
conflicts

Define conflict graph G:

f

4

Philipp Kindermann Winter Semester 2020

Lecture 9:
Convex Hulls in 3D

or
Mixing More Things

Part II:
Randomized Incremental Algorithm

Computational Geometry

5 - 1Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

5 - 2Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

5 - 3Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

5 - 4Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

5 - 5Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

5 - 6Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

5

5 - 7Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

:
5

(p, f) edge ⇔
f visible from p

5 - 8Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

:
5

(p, f) edge ⇔
f visible from p

5 - 9Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

5
pr

5 - 10Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

pr

5 - 11Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

pr

5 - 12Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

pr

5 - 13Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

pr

5 - 14Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

pr

5 - 15Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

pr

5 - 16Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

e pr
f

5 - 17Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

f1

e

f2

pr
f

5 - 18Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

f1

e

f2

pr
f

5 - 19Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

f1

e

f2

pr
f

5 - 20Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

f1

e

f2

pr
f

5 - 21Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

f1

e

f2

pr
f

5 - 22Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

e pr

5 - 23Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

e pr

5 - 24Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

e pr

5 - 25Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

e pr

5 - 26Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C }

6

7

8

9

e pr

5 - 27Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C } 7

8

9

e

5 - 28Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C } 7

8

9

e

5 - 29Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C } 7

8

9

e

5 - 30Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C } 7

8

9

e

Worst-case running time:

5 - 31Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C } 7

8

9

e

Worst-case running time:

5 - 32Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C } 7

8

9

e

Worst-case running time: O(n3)

6

Philipp Kindermann Winter Semester 2020

Lecture 9:
Convex Hulls in 3D

or
Mixing More Things

Part III:
Analysis

Computational Geometry

7 - 1

Analysis
Idea. Bound expected structural change

7 - 2

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

7 - 3

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Lemma. The expected #facets created is at most 6n− 20.

7 - 4

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =

Lemma. The expected #facets created is at most 6n− 20.

7 - 5

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]

Lemma. The expected #facets created is at most 6n− 20.

7 - 6

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]

Lemma. The expected #facets created is at most 6n− 20.

7 - 7

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]

#edges

Lemma. The expected #facets created is at most 6n− 20.

7 - 8

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]︸ ︷︷ ︸
#edges

deg(pr, CH(Pr))

Lemma. The expected #facets created is at most 6n− 20.

7 - 9

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]︸ ︷︷ ︸
#edges

deg(pr, CH(Pr))For r > 4:
E[deg(pr, CH(Pr))] =

Lemma. The expected #facets created is at most 6n− 20.

7 - 10

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]︸ ︷︷ ︸
#edges

deg(pr, CH(Pr))For r > 4:
E[deg(pr, CH(Pr))] =

1
r−4 ∑r

i=5 deg(pi, CH(Pr))

Lemma. The expected #facets created is at most 6n− 20.

7 - 11

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]︸ ︷︷ ︸
#edges

deg(pr, CH(Pr))For r > 4:
E[deg(pr, CH(Pr))] =

1
r−4 ∑r

i=5 deg(pi, CH(Pr))

≤ 1
r−4 [(∑

r
i=1 deg(pi))− 12]

Lemma. The expected #facets created is at most 6n− 20.

7 - 12

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]︸ ︷︷ ︸
#edges

deg(pr, CH(Pr))For r > 4:
E[deg(pr, CH(Pr))] =

1
r−4 ∑r

i=5 deg(pi, CH(Pr))

≤ 1
r−4 [(∑

r
i=1 deg(pi))− 12]︸ ︷︷ ︸

Lemma. The expected #facets created is at most 6n− 20.

7 - 13

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]︸ ︷︷ ︸
#edges

deg(pr, CH(Pr))For r > 4:
E[deg(pr, CH(Pr))] =

1
r−4 ∑r

i=5 deg(pi, CH(Pr))

≤ 1
r−4 [(∑

r
i=1 deg(pi))− 12]︸ ︷︷ ︸

2 · # edges of CH(Pr)

Lemma. The expected #facets created is at most 6n− 20.

7 - 14

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]︸ ︷︷ ︸
#edges

deg(pr, CH(Pr))For r > 4:
E[deg(pr, CH(Pr))] =

1
r−4 ∑r

i=5 deg(pi, CH(Pr))

≤ 1
r−4 [(∑

r
i=1 deg(pi))− 12]︸ ︷︷ ︸

2 · # edges of CH(Pr)

≤ 1
r−4
[
2 · (3r− 6)− 12

]

Lemma. The expected #facets created is at most 6n− 20.

7 - 15

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]︸ ︷︷ ︸
#edges

deg(pr, CH(Pr))For r > 4:
E[deg(pr, CH(Pr))] =

1
r−4 ∑r

i=5 deg(pi, CH(Pr))

≤ 1
r−4 [(∑

r
i=1 deg(pi))− 12]︸ ︷︷ ︸

2 · # edges of CH(Pr)

≤ 1
r−4
[
2 · (3r− 6)− 12

]
≤ 6

Lemma. The expected #facets created is at most 6n− 20.

7 - 16

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]︸ ︷︷ ︸
#edges

deg(pr, CH(Pr))For r > 4:
E[deg(pr, CH(Pr))] =

1
r−4 ∑r

i=5 deg(pi, CH(Pr))

≤ 1
r−4 [(∑

r
i=1 deg(pi))− 12]︸ ︷︷ ︸

2 · # edges of CH(Pr)

≤ 1
r−4
[
2 · (3r− 6)− 12

]
≤ 6

≤

Lemma. The expected #facets created is at most 6n− 20.

7 - 17

Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]︸ ︷︷ ︸
#edges

deg(pr, CH(Pr))For r > 4:
E[deg(pr, CH(Pr))] =

1
r−4 ∑r

i=5 deg(pi, CH(Pr))

≤ 1
r−4 [(∑

r
i=1 deg(pi))− 12]︸ ︷︷ ︸

2 · # edges of CH(Pr)

≤ 1
r−4
[
2 · (3r− 6)− 12

]
≤ 6

≤ 6n
−20

Lemma. The expected #facets created is at most 6n− 20.

8 - 1

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 2

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

{Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 3

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 4

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop){

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 5

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 6

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 7

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 8

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 9

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 10

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =

Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 11

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =O(n).

Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 12

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =O(n).

Outer foreach-loop:
Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 13

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =O(n).

Outer foreach-loop:
– in stage r:O(∑e∈L |P(e)|)

Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 14

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =O(n).

Outer foreach-loop:
– in stage r:O(∑e∈L |P(e)|)
– in total:

Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 15

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =O(n).

Outer foreach-loop:
– in stage r:O(∑e∈L |P(e)|)
– in total:

O

(
∑

e on horizon at some time
|P(e)|

)
Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

8 - 16

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =O(n).

Outer foreach-loop:
– in stage r:O(∑e∈L |P(e)|)
– in total:

O

(
∑

e on horizon at some time
|P(e)|

)
Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

= O(n2)

8 - 17

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

using configuration spaces, Section 9.5 [Comp. Geom A&A]

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =O(n).

Outer foreach-loop:
– in stage r:O(∑e∈L |P(e)|)
– in total:

O

(
∑

e on horizon at some time
|P(e)|

)
Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

= O(n2)

8 - 18

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

using configuration spaces, Section 9.5 [Comp. Geom A&A]

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =O(n).

Outer foreach-loop:
– in stage r:O(∑e∈L |P(e)|)
– in total:

O

(
∑

e on horizon at some time
|P(e)|

)
Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

= O(n2) O(n log n)

8 - 19

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

using configuration spaces, Section 9.5 [Comp. Geom A&A]

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =O(n).

Outer foreach-loop:
– in stage r:O(∑e∈L |P(e)|)
– in total:

O

(
∑

e on horizon at some time
|P(e)|

)
Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

= O(n2) O(n log n)

8 - 20

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

using configuration spaces, Section 9.5 [Comp. Geom A&A]

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =O(n).

Outer foreach-loop:
– in stage r:O(∑e∈L |P(e)|)
– in total:

O

(
∑

e on horizon at some time
|P(e)|

)
Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

= O(n2) O(n log n)

Rd, d > 3

8 - 21

Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

using configuration spaces, Section 9.5 [Comp. Geom A&A]

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =O(n).

Outer foreach-loop:
– in stage r:O(∑e∈L |P(e)|)
– in total:

O

(
∑

e on horizon at some time
|P(e)|

)
Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
(f1, f2)← previously incidentC(e)
P(e)← Pconflict(f1) ∪ Pconflict(f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

= O(n2) O(n log n)

Rd, d > 3

O(nbd/2c)

9

Philipp Kindermann Winter Semester 2020

Lecture 9:
Convex Hulls in 3D

or
Mixing More Things

Part IV:
Half-Space Intersections

Computational Geometry

10 - 1

Convex Hulls and Half-Space Intersections

10 - 2

Convex Hulls and Half-Space Intersections
Plane

10 - 3

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

Plane

10 - 4

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

Plane

10 - 5

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

Plane

p

primal

10 - 6

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

Plane

p

primal

define the line p? : y = pxx− py.

10 - 7

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

Plane

p

primal dual

define the line p? : y = pxx− py.

10 - 8

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

Plane

p
p?

primal dual

define the line p? : y = pxx− py.

10 - 9

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

Plane

p
p?

primal dual

For ` : y = mx + b,

define the line p? : y = pxx− py.

10 - 10

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

Plane

p
p?

`

primal dual

For ` : y = mx + b,

define the line p? : y = pxx− py.

10 - 11

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

Plane

p
p?

`

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 12

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Plane

p
p?

`

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 13

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Plane

p
p?

` `?

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 14

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Plane

p
p?

` `?

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 15

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe.

Plane

p
p?

` `?

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 16

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.

Plane

p
p?

` `?

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 17

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:

Plane

p
p?

` `?

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 18

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving: p ∈ ` ⇔ `? ∈ p?

Plane

p
p?

` `?

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 19

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving: p ∈ ` ⇔ `? ∈ p?

Plane

p
p?

` `?

primal dual
g

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 20

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving: p ∈ ` ⇔ `? ∈ p?

Plane

p
p?

` `?

primal dual
g

g?

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 21

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

Plane

p
p?

` `?

primal dual
g

g?

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 22

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

p
p?

` `?

primal dual
g

g?

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 23

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

p
p?

` `?

primal dual
g

g?

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

h

10 - 24

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

p
p?

` `?

primal dual
g

g?

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

h h?

10 - 25

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 26

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 27

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 28

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 29

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 30

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 31

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 32

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 33

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 34

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 35

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

primal dual

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 36

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe.

Plane

primal dual

� upper convex hulls of pts↔ lower env. of lines

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

10 - 37

Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe.

Plane

primal dual

� upper convex hulls of pts↔ lower env. of lines
� can compute inters. of “lower/upper” half

planes (spaces) via upper/lower convex hulls

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

11

Philipp Kindermann Winter Semester 2020

Lecture 9:
Convex Hulls in 3D

or
Mixing More Things

Part V:
Voronoi Diagrams Revisited

Computational Geometry

12 - 1

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

Voronoi Diagrams Revisited

12 - 2

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

Voronoi Diagrams Revisited

12 - 3

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

Voronoi Diagrams Revisited

12 - 4

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

Voronoi Diagrams Revisited

12 - 5

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

Voronoi Diagrams Revisited

12 - 6

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

Voronoi Diagrams Revisited

12 - 7

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

Note that p′ ∈ h(p).

Voronoi Diagrams Revisited

12 - 8

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

Note that p′ ∈ h(p).

Voronoi Diagrams Revisited

12 - 9

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

|pq|

Note that p′ ∈ h(p).

Voronoi Diagrams Revisited

12 - 10

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

=
√
(qx − px)2 + (qy − py)2|pq|

Note that p′ ∈ h(p).

Voronoi Diagrams Revisited

12 - 11

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

=
√
(qx − px)2 + (qy − py)2|pq|

Note that p′ ∈ h(p).

Voronoi Diagrams Revisited

12 - 12

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=
√
(qx − px)2 + (qy − py)2|pq|

Note that p′ ∈ h(p).

Voronoi Diagrams Revisited

12 - 13

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=
√
(qx − px)2 + (qy − py)2|pq|

Note that p′ ∈ h(p).

Voronoi Diagrams Revisited

12 - 14

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=
√
(qx − px)2 + (qy − py)2|pq|

Note that p′ ∈ h(p).

(qx, qy, 2pxqx + 2pyqy − (p2
x + p2

y))

Voronoi Diagrams Revisited

12 - 15

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=
√
(qx − px)2 + (qy − py)2|pq|

Note that p′ ∈ h(p).

(qx, qy, 2pxqx + 2pyqy − (p2
x + p2

y))

zq′−zq(p)

Voronoi Diagrams Revisited

12 - 16

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=
√
(qx − px)2 + (qy − py)2|pq|

Note that p′ ∈ h(p).

(qx, qy, 2pxqx + 2pyqy − (p2
x + p2

y))

zq′−zq(p)

Voronoi Diagrams Revisited

q2
x + q2

y − 2pxqx − 2pyqy + (p2
x + p2

y)

12 - 17

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=
√
(qx − px)2 + (qy − py)2|pq|

Note that p′ ∈ h(p).

(qx, qy, 2pxqx + 2pyqy − (p2
x + p2

y))

zq′−zq(p)

Voronoi Diagrams Revisited

q2
x + q2

y − 2pxqx − 2pyqy + (p2
x + p2

y)

(q2
x − 2pxqx + p2

x) + (q2
y − 2pyqy + p2

y)

12 - 18

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=|pq|2 =
√
(qx − px)2 + (qy − py)2|pq|

Note that p′ ∈ h(p).

(qx, qy, 2pxqx + 2pyqy − (p2
x + p2

y))

zq′−zq(p)

Voronoi Diagrams Revisited

q2
x + q2

y − 2pxqx − 2pyqy + (p2
x + p2

y)

(q2
x − 2pxqx + p2

x) + (q2
y − 2pyqy + p2

y)

12 - 19

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=|pq|2 =
√
(qx − px)2 + (qy − py)2|pq|

⇒ h(p) and U encode dist. betw. p and any other pt in z=0.

Note that p′ ∈ h(p).

(qx, qy, 2pxqx + 2pyqy − (p2
x + p2

y))

zq′−zq(p)

Voronoi Diagrams Revisited

12 - 20

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=|pq|2 =
√
(qx − px)2 + (qy − py)2|pq|

⇒ h(p) and U encode dist. betw. p and any other pt in z=0.

⇒ h(p) ∩U = {p′}

Note that p′ ∈ h(p).

(qx, qy, 2pxqx + 2pyqy − (p2
x + p2

y))

zq′−zq(p)

Voronoi Diagrams Revisited

12 - 21

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=|pq|2 =
√
(qx − px)2 + (qy − py)2|pq|

⇒ h(p) and U encode dist. betw. p and any other pt in z=0.

⇒ h(p) ∩U = {p′} ⇒ h(p) is tangent to U (in p′)

Note that p′ ∈ h(p).

(qx, qy, 2pxqx + 2pyqy − (p2
x + p2

y))

zq′−zq(p)

Voronoi Diagrams Revisited

12 - 22

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=|pq|2 =
√
(qx − px)2 + (qy − py)2|pq|

⇒ h(p) and U encode dist. betw. p and any other pt in z=0.

⇒ h(p) ∩U = {p′} ⇒ h(p) is tangent to U (in p′)

h(q) Note that p′ ∈ h(p).

(qx, qy, 2pxqx + 2pyqy − (p2
x + p2

y))

zq′−zq(p)

Voronoi Diagrams Revisited

12 - 23

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=|pq|2 =
√
(qx − px)2 + (qy − py)2|pq|

⇒ h(p) and U encode dist. betw. p and any other pt in z=0.

⇒ h(p) ∩U = {p′} ⇒ h(p) is tangent to U (in p′)

h(q) Note that p′ ∈ h(p).

(qx, qy, 2pxqx + 2pyqy − (p2
x + p2

y))

zq′−zq(p)

Voronoi Diagrams Revisited

12 - 24

Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=|pq|2 =
√
(qx − px)2 + (qy − py)2|pq|

⇒ h(p) and U encode dist. betw. p and any other pt in z=0.

⇒ h(p) ∩U = {p′} ⇒ h(p) is tangent to U (in p′)

h(q) Note that p′ ∈ h(p).

(qx, qy, 2pxqx + 2pyqy − (p2
x + p2

y))

zq′−zq(p)

Voronoi Diagrams Revisited

13 - 1

The Upper Envelope Strikes Back
Theorem. Let P ⊂ R2 × {0}

13 - 2

The Upper Envelope Strikes Back
Theorem. Let P ⊂ R2 × {0}

13 - 3

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.Theorem. Let P ⊂ R2 × {0}

13 - 4

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.Theorem. Let P ⊂ R2 × {0}

13 - 5

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.Theorem. Let P ⊂ R2 × {0}

13 - 6

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.Theorem. Let P ⊂ R2 × {0}

13 - 7

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.Theorem. Let P ⊂ R2 × {0}

13 - 8

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.

Let E(H) be the upper envelope of H.

Theorem. Let P ⊂ R2 × {0}

13 - 9

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.

Let E(H) be the upper envelope of H.

Theorem. Let P ⊂ R2 × {0}

13 - 10

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.

Let E(H) be the upper envelope of H.

Theorem. Let P ⊂ R2 × {0}

13 - 11

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.

The projection of E(H) on z = 0 is Vor(P).

Let E(H) be the upper envelope of H.

Theorem. Let P ⊂ R2 × {0}

13 - 12

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.

Vor(P)

The projection of E(H) on z = 0 is Vor(P).

Let E(H) be the upper envelope of H.

Theorem. Let P ⊂ R2 × {0}

13 - 13

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.

Vor(P)

can compute Vor(P) in R2

via upper envelope in R3

The projection of E(H) on z = 0 is Vor(P).

Let E(H) be the upper envelope of H.

Theorem. Let P ⊂ R2 × {0}

13 - 14

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.

Vor(P)

can compute Vor(P) in R2

via upper envelope in R3

The projection of E(H) on z = 0 is Vor(P).

Let E(H) be the upper envelope of H.

Theorem. Let P ⊂ R2 × {0}

13 - 15

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.

Vor(P)

can compute Vor(P) in R2

via upper envelope in R3

upper envelope in R3 is in
one-to-one correspondence to
lower convex hull of pt set H?

The projection of E(H) on z = 0 is Vor(P).

Let E(H) be the upper envelope of H.

Theorem. Let P ⊂ R2 × {0}

13 - 16

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.

Vor(P)

can compute Vor(P) in R2

via upper envelope in R3

upper envelope in R3 is in
one-to-one correspondence to
lower convex hull of pt set H?

The projection of E(H) on z = 0 is Vor(P).

Let E(H) be the upper envelope of H.

Theorem. Let P ⊂ R2 × {0}

13 - 17

The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.

Vor(P)

can compute Vor(P) in R2

via upper envelope in R3

use algorithm Rand3DConvexHull!

upper envelope in R3 is in
one-to-one correspondence to
lower convex hull of pt set H?

The projection of E(H) on z = 0 is Vor(P).

Let E(H) be the upper envelope of H.

Theorem. Let P ⊂ R2 × {0}

	Complexity & Visibility
	Complexity of the Convex Hull
	Visibility

	Randomized Incremental Algorithm
	Analysis
	Running Time

	Half-Space Intersections
	Voronoi Diagrams Revisited
	The Upper Envelope Strikes Back

