Computational Geometry

Lecture 9:
 Convex Hulls in 3D
 Or
 Mixing More Things

Part I:
Complexity \& Visibility

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d},

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

dim	w-c complexity of $\mathrm{CH}(S)$
1	
2	
3	
d	

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

dim	w-c complexity of $\mathrm{CH}(S)$
1	$2 \in \Theta(1)$
2	$n \in \Theta(n)$
3	$3 n-6 \in \Theta(n)$
d	$\Theta\left(n^{\lfloor d / 2\rfloor}\right)$
Upper Bound Theorem	

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

dim	w-c complexity of $\mathrm{CH}(S)$
1	$2 \in \Theta(1)$
2	$n \in \Theta(n)$
3	$3 n-6 \in \Theta(n)$
d	$\Theta\left(n^{\lfloor d / 2\rfloor}\right)$
Upper Bound Theorem	

Construction

randomized-incremental!

Visibility

Visibility

Visibility

${ }^{p}$

Visibility

- p

Visibility

Face f is visible from p but not from q.

Visibility

 - p

Face f is visible from p but not from q.

Visibility

 . p

Face f is visible from p but not from q.

Visibility

Face f is visible from p but not from q.

Visibility

Face f is visible from p but not from q.

Visibility

 . p

Face f is visible from p but not from q.

Visibility

${ }^{p}$

Face f is visible from p but not from q.

Visibility

${ }^{p}$

Face f is visible from p but not from q.

Define conflict graph G :

Visibility

- p

Face f is visible from p but not from q.

Visibility

- p

Face f is visible from p but not from q.

Define conflict graph G :

Visibility

. p

Face f is visible from p but not from q.

Define conflict graph G :
conflicts
(visibility)

Visibility

${ }^{p}$

Face f is visible from p but not from q.

Define conflict graph G :
conflicts
(visibility)

Visibility

${ }^{p}$

Face f is visible from p but not from q.

Define conflict graph G :

Computational Geometry

> Lecture 9:
> Convex Hulls in 3D
> or
> Mixing More Things

Part II:
Randomized Incremental Algorithm

$\operatorname{Rand3DConvexHull}\left(P \subset \mathbb{R}^{3}\right)$

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$
pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$
pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$
pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$

$\operatorname{Rand3DConvexHull}\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$ compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$
$\operatorname{Rand3DConvexHull}\left(P \subset \mathbb{R}^{3}\right)$
pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph $G:(p, f)$ edge \Leftrightarrow f visible from p

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$ compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph $G:(p, f)$ edge \Leftrightarrow f visible from p

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$ compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$ compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$ compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r}

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$ compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$ compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$

delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C
$\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do
$f \leftarrow$ C.create facet $\left(e, p_{r}\right)$; create vtx for f in G

$\operatorname{Rand3DConvexHull}\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$

delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C
$\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do $f \leftarrow$ C.create facet $\left(e, p_{r}\right)$; create vtx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$

delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C
$\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do
$f \leftarrow$ C.create facet $\left(e, p_{r}\right)$; create vtx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$
$P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$
return C

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$

delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C
$\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do
$f \leftarrow$ C.create facet $\left(e, p_{r}\right)$; create tx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$ $P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$ foreach $p \in P(e)$ do L return C

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$

delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C
$\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do
$f \leftarrow C$.creat e-facet $\left(e, p_{r}\right)$; create vtx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$ $P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$ foreach $p \in P(e)$ do
if f is visible from p
return C

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create-facet $\left(e, p_{r}\right)$; create vtx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$ $P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$ foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G return C

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do $f \leftarrow$ C.create facet $\left(e, p_{r}\right)$; create vtx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$ $P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$ foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G return C

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create-facet $\left(e, p_{r}\right)$; create vtx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$ $P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$ foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G return C

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create facet $\left(e, p_{r}\right)$; create vtx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$ $P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$ foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G return C

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do $f \leftarrow$ C.create facet $\left(e, p_{r}\right)$; create vtx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$ $P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$ foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G return C

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create-facet $\left(e, p_{r}\right)$; create vtx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$ $P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$ foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G return C

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create-facet $\left(e, p_{r}\right)$; create vtx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$ $P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$ foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G delete vtc $\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)$ from G

$\operatorname{Rand3DConvexHull}\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create-facet $\left(e, p_{r}\right)$; create vtx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$ $P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$ foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G delete vtc $\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)$ from G

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$
 delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r} foreach $e \in \mathcal{L}$ do $f \leftarrow$ C.create-facet $\left(e, p_{r}\right)$; create vtx for f in G $\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$ $P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$ foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G delete vtc $\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)$ from G

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$ delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C
$\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r}
foreach $e \in \mathcal{L}$ do
$f \leftarrow$ C.create facet $\left(e, p_{r}\right)$; create vtx for f in G
$\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$
$P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$
foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G delete vtc $\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)$ from G

Worst-case running time:

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$ delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C
$\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r}
foreach $e \in \mathcal{L}$ do
$f \leftarrow$ C.create facet $\left(e, p_{r}\right)$; create vtx for f in G
$\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$
$P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$
foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G delete vtc $\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)$ from G

Worst-case running time:

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$ delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C
$\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r}
foreach $e \in \mathcal{L}$ do
$f \leftarrow$ C.create facet $\left(e, p_{r}\right)$; create vtx for f in G
$\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$
$P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$
foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G delete vtc $\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)$ from G

Computational Geometry

Lecture 9:
 Convex Hulls in 3D
 Or
 Mixing More Things

Part III:
Analysis

Analysis

Idea. Bound expected structural change

Analysis

Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Analysis
Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.

Analysis
Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

Analysis
Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

$$
=4+\sum_{r=5}^{n} E\left[\# \text { facets incident to } p_{r} \text { in } \mathrm{CH}\left(P_{r}\right)\right]
$$

Analysis
Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

$$
=4+\sum_{r=5}^{n} E\left[\# \text { facets incident to } p_{r} \text { in } \mathrm{CH}\left(P_{r}\right)\right]
$$

Analysis
Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

\#edges

$=4+\sum_{r=5}^{n} E\left[\# f\right.$ facets incident to p_{r} in $\left.\mathrm{CH}\left(P_{r}\right)\right]$

Analysis
Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

\#edges

$=4+\sum_{r=5}^{n} E\left[\# f\right.$ facets incident to p_{r} in $\left.\mathrm{CH}\left(P_{r}\right)\right]$

$$
\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)
$$

Analysis
Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

\#edges

$=4+\sum_{r=5}^{n} E\left[\#\right.$ facets incident to p_{r} in $\left.\mathrm{CH}\left(P_{r}\right)\right]$
For $r>4$:
$\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)$
$E\left[\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)\right]=$

Analysis
Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

\#edges

$=4+\sum_{r=5}^{n} E\left[\# f\right.$ facets incident to p_{r} in $\left.\mathrm{CH}\left(P_{r}\right)\right]$
For $r>4$:
$\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)$
$E\left[\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)\right]=\frac{1}{r-4} \sum_{i=5}^{r} \operatorname{deg}\left(p_{i}, \mathrm{CH}\left(P_{r}\right)\right)$

Analysis

Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

\#edges

$=4+\sum_{r=5}^{n} E\left[\# f\right.$ facets incident to p_{r} in $\left.\mathrm{CH}\left(P_{r}\right)\right]$
For $r>4$:
$\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)$
$E\left[\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)\right]=\frac{1}{r-4} \sum_{i=5}^{r} \operatorname{deg}\left(p_{i}, \mathrm{CH}\left(P_{r}\right)\right)$
$\leq \frac{1}{r-4}\left[\left(\sum_{i=1}^{r} \operatorname{deg}\left(p_{i}\right)\right)-12\right]$

Analysis

Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

\#edges

$=4+\sum_{r=5}^{n} E\left[\# f\right.$ facets incident to p_{r} in $\left.\mathrm{CH}\left(P_{r}\right)\right]$
For $r>4$:
$\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)$
$E\left[\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)\right]=\frac{1}{r-4} \sum_{i=5}^{r} \operatorname{deg}\left(p_{i}, \mathrm{CH}\left(P_{r}\right)\right)$
$\leq \frac{1}{r-4}[(\underbrace{\left.\sum_{i=1}^{r} \operatorname{deg}\left(p_{i}\right)\right)}-12]$

Analysis

Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

\#edges

$=4+\sum_{r=5}^{n} E\left[\# f\right.$ facets incident to p_{r} in $\left.\mathrm{CH}\left(P_{r}\right)\right]$
For $r>4$:
$\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)$
$E\left[\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)\right]=\frac{1}{r-4} \sum_{i=5}^{r} \operatorname{deg}\left(p_{i}, \mathrm{CH}\left(P_{r}\right)\right)$

$$
\begin{gathered}
\leq \frac{1}{r-4}[(\underbrace{\left.\sum_{i=1}^{r} \operatorname{deg}\left(p_{i}\right)\right)}_{i=1}-12] \\
2 \cdot \text { edges of } \mathrm{CH}\left(P_{r}\right)
\end{gathered}
$$

Analysis

Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

\#edges

$=4+\sum_{r=5}^{n} E\left[\# f\right.$ facets incident to p_{r} in $\left.\mathrm{CH}\left(P_{r}\right)\right]$
For $r>4$:
$\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)$
$E\left[\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)\right]=\frac{1}{r-4} \sum_{i=5}^{r} \operatorname{deg}\left(p_{i}, \mathrm{CH}\left(P_{r}\right)\right)$

$$
\begin{aligned}
& \leq \frac{1}{r-4}[(\underbrace{\left.\sum_{i=1}^{r} \operatorname{deg}\left(p_{i}\right)\right)}_{i=1}-12] \\
& \quad 2 \cdot \# \text { edges of } \mathrm{CH}\left(P_{r}\right) \\
& \leq \frac{1}{r-4}[2 \cdot(3 r-6)-12]
\end{aligned}
$$

Analysis

Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

\#edges

$=4+\sum_{r=5}^{n} E\left[\# f\right.$ facets incident to p_{r} in $\left.\mathrm{CH}\left(P_{r}\right)\right]$
For $r>4$:
$\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)$
$E\left[\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)\right]=\frac{1}{r-4} \sum_{i=5}^{r} \operatorname{deg}\left(p_{i}, \mathrm{CH}\left(P_{r}\right)\right)$
$\leq \frac{1}{r-4}[(\underbrace{\left.\sum_{i=1}^{r} \operatorname{deg}\left(p_{i}\right)\right)}_{i=1}-12]$
$\leq \frac{1}{r-4}[2 \cdot(3 r-6)-12] \leq 6$

Analysis

Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

\#edges

$=4+\sum_{r=5}^{n} E\left[\#\right.$ facets incident to p_{r} in $\left.\mathrm{CH}\left(P_{r}\right)\right] \leq$
For $r>4$:
$\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)$
$E\left[\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)\right]=\frac{1}{r-4} \sum_{i=5}^{r} \operatorname{deg}\left(p_{i}, \mathrm{CH}\left(P_{r}\right)\right)$
$\leq \frac{1}{r-4}[(\underbrace{\left.\sum_{i=1}^{r} \operatorname{deg}\left(p_{i}\right)\right)}-12]$
2 . \# edges of $\mathrm{CH}\left(P_{r}\right)$
$\leq \frac{1}{r-4}[2 \cdot(3 r-6)-12] \leq 6$

Analysis

Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

\#edges

$=4+\sum_{r=5}^{n} E\left[\#\right.$ facets incident to p_{r} in $\left.\mathrm{CH}\left(P_{r}\right)\right] \leq \begin{gathered}6 n \\ -20\end{gathered}$
For $r>4$:
$\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)$
$E\left[\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)\right]=\frac{1}{r-4} \sum_{i=5}^{r} \operatorname{deg}\left(p_{i}, \mathrm{CH}\left(P_{r}\right)\right)$
$\leq \frac{1}{r-4}[(\underbrace{\left.\sum_{i=1}^{r} \operatorname{deg}\left(p_{i}\right)\right)}-12]$
2 . \# edges of $\mathrm{CH}\left(P_{r}\right)$
$\leq \frac{1}{r-4}[2 \cdot(3 r-6)-12] \leq 6$

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
    if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
        delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
        \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
        foreach \(e \in \mathcal{L}\) do
        \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create vtx for \(f\) in \(G\)
        \(\left(f_{1}, f_{2}\right) \leftarrow\) previously _incident \({ }_{C}(e)\)
        \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
        foreach \(p \in P(e)\) do
            if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G\)
        delete vtc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
    return \(C\)
```


Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in O (

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
        if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
        delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
        \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
        foreach \(e \in \mathcal{L}\) do
            \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create \(v\) tx for \(f\) in \(G\)
            \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
            \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
            foreach \(p \in P(e)\) do
                    if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G\)
            delete vtc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
    return \(C\)
```


Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
time
Rand3DConvexHull(P\subset\mp@subsup{\mathbb{R}}{}{3})
    pick non-coplanar set }\mp@subsup{P}{}{\prime}={\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{4}{}}\subseteq
    C}\leftarrow\textrm{CH}(\mp@subsup{P}{}{\prime}
    compute rand. perm. ( }\mp@subsup{p}{5}{},\ldots,\mp@subsup{p}{n}{})\mathrm{ of }P\\mp@subsup{P}{}{\prime
    initialize conflict graph G
    for }r=5\mathrm{ to }n\mathrm{ do
        if F}\mp@subsup{F}{\mathrm{ conflict }}{}(\mp@subsup{p}{r}{})\not=\varnothing\mathrm{ then
        delete all facets in F}\mp@subsup{F}{\mathrm{ conflict }}{}(\mp@subsup{p}{r}{})\mathrm{ from C
        \mathcal { L } \leftarrow \text { list of horizon edges visible from } p _ { r }
        foreach e}e\in\mathcal{L}\mathrm{ do
            f\leftarrowC.create_facet (e, pr ); create vtx for f in G
            (f1, f2)\leftarrow previously_incident }\mp@subsup{C}{C}{(e)
            P(e)\leftarrow P conflict }(\mp@subsup{f}{1}{})\cup\mp@subsup{P}{\mathrm{ conflict }}{}(\mp@subsup{f}{2}{}
            foreach p\inP(e) do
                    if f}\mathrm{ visible from p then add edge (p,f) to G
            delete vtc { {pr }\cup F conflict ( }\mp@subsup{p}{r}{})\mathrm{ from G
    return C
```


Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
(Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
        if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
        delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
        \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
        foreach \(e \in \mathcal{L}\) do
            \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create vtx for \(f\) in \(G\)
            \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
            \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
            foreach \(p \in P(e)\) do
                    if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G\)
            delete vtc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
    return \(C\)
```

Stage r of for-loop (w/o foreach loop)

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
        if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
            delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
            \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
            foreach \(e \in \mathcal{L}\) do
            \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create vtx for \(f\) in \(G\)
            \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
            \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
            foreach \(p \in P(e)\) do
                    if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G\)
            delete vtc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
    return \(C\)
```

Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$

Running Time

Theorem. The convex hull of a set of $n \mathrm{pts}$ in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
Rand3DConvexHull(P\subset\mp@subsup{\mathbb{R}}{}{3})
    pick non-coplanar set P}\mp@subsup{P}{}{\prime}={\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{4}{}}\subseteq
    C}\leftarrow\textrm{CH}(\mp@subsup{P}{}{\prime}
    compute rand. perm. ( }\mp@subsup{p}{5}{},\ldots,\mp@subsup{p}{n}{})\mathrm{ of }P\\mp@subsup{P}{}{\prime
    initialize conflict graph G
    for r=5 to }n\mathrm{ do
        if F}\mp@subsup{F}{\mathrm{ conflict }}{}(\mp@subsup{p}{r}{})\not=\varnothing\mathrm{ then
            delete all facets in F}\mp@subsup{F}{\mathrm{ conflict }}{}(\mp@subsup{p}{r}{})\mathrm{ from C
            \mathcal { L } \leftarrow \text { list of horizon edges visible from } p _ { r }
            foreach e}e\in\mathcal{L}\mathrm{ do
            f\leftarrowC.create_facet(e, pr ); create vtx for f in G
            (f1, f2)\leftarrow previously_incident }\mp@subsup{C}{C}{(e)
            P(e)\leftarrow 
            foreach p\inP(e) do
                    if f}\mathrm{ visible from }p\mathrm{ then add edge (p,f) to G
            delete vtc { }\mp@subsup{p}{r}{}}\cup\mp@subsup{F}{\mathrm{ conflict }}{}(\mp@subsup{p}{r}{})\mathrm{ from G
    return C
```

Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$ $O\left(\# f a c e t s\right.$ del. when adding $\left.p_{r}\right)$

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
Rand3DConvexHull( }P\subset\mp@subsup{\mathbb{R}}{}{3}
    pick non-coplanar set P}\mp@subsup{P}{}{\prime}={\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{4}{}}\subseteq
    C}\leftarrow\textrm{CH}(\mp@subsup{P}{}{\prime}
    compute rand. perm. ( }\mp@subsup{p}{5}{},\ldots,\mp@subsup{p}{n}{})\mathrm{ of }P\\mp@subsup{P}{}{\prime
    initialize conflict graph G
    for r=5 to }n\mathrm{ do
        if F}\mp@subsup{F}{\mathrm{ conflict }}{}(\mp@subsup{p}{r}{})\not=\varnothing\mathrm{ then
            delete all facets in F}\mp@subsup{F}{\mathrm{ conflict }}{}(\mp@subsup{p}{r}{})\mathrm{ from C
            \mathcal { L } \leftarrow \text { list of horizon edges visible from } p _ { r }
            foreach e}e\in\mathcal{L}\mathrm{ do
            f\leftarrowC.create_facet(e, pr ); create vtx for f in G
            (f},\mp@subsup{f}{2}{})\leftarrow\mathrm{ previously_incident }(C
            P(e)}\leftarrow\mp@subsup{P}{\mathrm{ conflict }}{}(\mp@subsup{f}{1}{})\cup\mp@subsup{P}{\mathrm{ conflict }}{}(\mp@subsup{f}{2}{}
            foreach p\inP(e) do
                    if f}\mathrm{ visible from p}\mathrm{ then add edge (p,f) to G
            delete vtc { }\mp@subsup{p}{r}{}}\cup\mp@subsup{F}{\mathrm{ conflict }}{}(\mp@subsup{p}{r}{})\mathrm{ from G
    return C
```

Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:

Running Time

Theorem. The convex hull of a set of $n \mathrm{pts}$ in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$
pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$
$C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$
initialize conflict graph G
for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then
delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C
$\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r}
foreach $e \in \mathcal{L}$ do
$f \leftarrow$ C.create_facet $\left(e, p_{r}\right)$; create vtx for f in G
$\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$
$P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$
foreach $p \in P(e)$ do
if f visible from p then add edge (p, f) to G
delete vtc $\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)$ from G
return C

Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:
$E[\#$ facets deleted $]=$

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in O (
) expected time.

```
Rand3DConvexHull( }P\subset\mp@subsup{\mathbb{R}}{}{3}
    pick non-coplanar set }\mp@subsup{P}{}{\prime}={\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{4}{}}\subseteq
    C}\leftarrow\textrm{CH}(\mp@subsup{P}{}{\prime}
    compute rand. perm. ( }\mp@subsup{p}{5}{},\ldots,\mp@subsup{p}{n}{})\mathrm{ of }P\\mp@subsup{P}{}{\prime
    initialize conflict graph G
    for r=5 to }n\mathrm{ do
        if }\mp@subsup{F}{\mathrm{ conflict }}{}(\mp@subsup{p}{r}{})\not=\varnothing\mathrm{ then
            delete all facets in F}\mp@subsup{F}{\mathrm{ conflict }}{}(\mp@subsup{p}{r}{})\mathrm{ from C
            \mathcal { L } \leftarrow \text { list of horizon edges visible from } p _ { r }
            foreach }e\in\mathcal{L}\mathrm{ do
                f\leftarrowC.create_facet (e, pr); create vtx for f in G
                (f1,f2)\leftarrow previously_incident 
        P ( e ) \leftarrow P P _ { \text { conflict } } ( f _ { 1 } ) \cup P _ { \text { conflict } } ( f _ { 2 } )
            foreach }p\inP(e)\mathrm{ do
                    if f}\mathrm{ visible from }p\mathrm{ then add edge }(p,f)\mathrm{ to G
            delete vtc }{\mp@subsup{p}{r}{}}\cup\mp@subsup{F}{\mathrm{ conflict }}{}(\mp@subsup{p}{r}{})\mathrm{ from G
    return C
```

Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:
E[\#facets deleted] $=$
$\leq E[\#$ facets created $]=$

Running Time

Theorem. The convex hull of a set of $n \mathrm{pts}$ in \mathbb{R}^{3} can be computed in O (
) expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
        if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
            delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
            \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
            foreach \(e \in \mathcal{L}\) do
            \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create \(v \operatorname{tx}\) for \(f\) in \(G\)
            \(\left(f_{1}, f_{2}\right) \leftarrow\) previously incident \({ }_{C}(e)\)
            \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
            foreach \(p \in P(e)\) do
                    if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G\)
            delete vtc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
    return \(C\)
```

Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:
$E[\#$ facets deleted $]=$
$\leq E[\#$ facets created $]=$
Lemma

Running Time

Theorem. The convex hull of a set of $n \mathrm{pts}$ in \mathbb{R}^{3} can be computed in O (
) expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
        if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
            delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
            \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
            foreach \(e \in \mathcal{L}\) do
        \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create \(v \operatorname{tx}\) for \(f\) in \(G\)
        \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
        \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
        foreach \(p \in P(e)\) do
            if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G\)
            delete vtc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
    return \(C\)
```

Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:
$E[\#$ facets deleted $]=$
$\leq E[\#$ facets created $]=O(n)$.
Lemma

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
```

 if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
 delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
 \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
 foreach \(e \in \mathcal{L}\) do
 \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create \(v \operatorname{tx}\) for \(f\) in \(G\)
 \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
 \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
 foreach \(p \in P(e)\) do
 if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G\)
 delete vtc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
 return \(C\)
 Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:
$E[\#$ facets deleted $]=$
$\leq E[\#$ facets created $]=O(n)$.
Lemma
Outer foreach-loop:

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
```

 if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
 delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
 \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
 foreach \(e \in \mathcal{L}\) do
 \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create vtx for \(f\) in \(G\)
 \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
 \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
 foreach \(p \in P(e)\) do
 if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G\)
 delete vtc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
 return C
 Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:
$E[\#$ facets deleted $]=$
$\leq E[\#$ facets created $]=O(n)$.
Lemma
Outer foreach-loop:

- in stage $r: O\left(\sum_{e \in \mathcal{L}}|P(e)|\right)$

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
```

 if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
 delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
 \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
 foreach \(e \in \mathcal{L}\) do
 \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create vtx for \(f\) in \(G\)
 \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
 \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
 foreach \(p \in P(e)\) do
 if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G:\) in total:
 delete vtc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
 return \(C\)
 Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:
$E[\#$ facets deleted $]=$
$\leq E[\#$ facets created $]=O(n)$.
Lemma
Outer foreach-loop:

- in stage $r: O\left(\sum_{e \in \mathcal{L}}|P(e)|\right)$
- in total:

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
```

 if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
 delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
 \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
 foreach \(e \in \mathcal{L}\) do
 \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create \(v \operatorname{tx}\) for \(f\) in \(G\)
 \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
 \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
 foreach \(p \in P(e)\) do
 if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G\) in total:
 delete voc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
 return \(C\)
 Stage r of for-loop (who foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:
$E[\#$ facets deleted $]=$
$\leq E[\#$ facets created $]=O(n)$.
Lemma
Outer foreach-loop:

- in stage $r: O\left(\sum_{e \in \mathcal{L}}|P(e)|\right)$
- in total:
$O\left(\sum_{e \text { on horizon at some time }}|P(e)|\right)$

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
```

 if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
 delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
 \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
 foreach \(e \in \mathcal{L}\) do
 \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create vtx for \(f\) in \(G\)
 \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
 \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
 foreach \(p \in P(e)\) do
 if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G\)
 delete vtc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
 return \(C\)
 C
 Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:
$E[\#$ facets deleted $]=$
$\leq E[\#$ facets created $]=O(n)$.
Lemma
Outer foreach-loop:

- in stage $r: O\left(\sum_{e \in \mathcal{L}}|P(e)|\right)$
- in total:

$$
\begin{aligned}
& O\left(\sum_{e \text { on horizon at some time }}|P(e)|\right) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
```

 if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
 delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
 \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
 foreach \(e \in \mathcal{L}\) do
 \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create vtx for \(f\) in \(G\)
 \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
 \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
 foreach \(p \in P(e)\) do
 if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G\)
 delete vtc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
 return \(C\)
 using configuration spaces, Section 9.5 [Comp. Geom A\&A]
 Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:
$E[\#$ facets deleted $]=$
$\leq E[\#$ facets created $]=O(n)$.
Lemma
Outer foreach-loop:

- in stage $r: O\left(\sum_{e \in \mathcal{L}}|P(e)|\right)$
- in total:
$O\left(\sum_{e \text { on horizon at some time }}|P(e)|\right)$
$=O\left(n^{2}\right)$

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(\quad)$ expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
```

 if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
 delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
 \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
 foreach \(e \in \mathcal{L}\) do
 \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create vtx for \(f\) in \(G\)
 \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
 \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
 foreach \(p \in P(e)\) do
 Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:
$E[\#$ facets deleted $]=$
$\leq E[\#$ facets created $]=O(n)$.

Lemma

Outer foreach-loop:

- in stage $r: O\left(\sum_{e \in \mathcal{L}}|P(e)|\right)$
- in total:
delete vtc $\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)$ from G
return C
using configuration spaces, Section 9.5 [Comp. Geom A\&A]
$O\left(\sum_{e \text { on horizon at some time }}|P(e)|\right)$
$=O\left(n^{2}\right) O(n \log n)$

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(n \log n)$ expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
```

 if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
 delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
 \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
 foreach \(e \in \mathcal{L}\) do
 \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create vtx for \(f\) in \(G\)
 \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
 \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
 foreach \(p \in P(e)\) do
 This part of for-loop in total:
$E[\#$ facets deleted $]=$
$\leq E[\#$ facets created $]=O(n)$.

Lemma

Outer foreach-loop:

- in stage $r: O\left(\sum_{e \in \mathcal{L}}|P(e)|\right)$
- in total:
delete vtc $\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)$ from G
return C
using configuration spaces, Section 9.5 [Comp. Geom A\&A]
$O\left(\sum_{e \text { on horizon at some time }}|P(e)|\right)$
$=O\left(n^{2}\right) O(n \log n)$

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(n \log n)$ expected time.

```
Rand3DConvexHull \(\left(P \subset \mathbb{R}^{3}\right)\)
    pick non-coplanar set \(P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P\)
    \(C \leftarrow \mathrm{CH}\left(P^{\prime}\right)\)
    compute rand. perm. \(\left(p_{5}, \ldots, p_{n}\right)\) of \(P \backslash P^{\prime}\)
    initialize conflict graph \(G\)
    for \(r=5\) to \(n\) do
```

 if \(F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing\) then
 delete all facets in \(F_{\text {conflict }}\left(p_{r}\right)\) from C
 \(\mathcal{L} \leftarrow\) list of horizon edges visible from \(p_{r}\)
 foreach \(e \in \mathcal{L}\) do
 \(f \leftarrow\) C.create_facet \(\left(e, p_{r}\right)\); create vtx for \(f\) in \(G\)
 \(\left(f_{1}, f_{2}\right) \leftarrow\) previously_incident \({ }_{C}(e)\)
 \(P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)\)
 foreach \(p \in P(e)\) do
 if \(f\) visible from \(p\) then add edge \((p, f)\) to \(G\) in total:
 delete vtc \(\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)\) from \(G\)
 return \(C\)
 using configuration spaces, Section 9.5 [Comp. Geom A\&A]

Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$
O (\#facets del. when adding p_{r})
This part of for-loop in total:
$E[\#$ facets deleted $]=$
$\leq E[\#$ facets created $]=O(n)$.

Lemma

Outer foreach-loop:

- in stage $r: O\left(\sum_{e \in \mathcal{L}}|P(e)|\right)$
- in total:
$O\left(\sum_{e \text { on horizon at some time }}|P(e)|\right)$
$=O\left(n^{2}\right) O(n \log n)$

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(n \log n)$ expected time.

if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then
delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C
$\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r}
foreach $e \in \mathcal{L}$ do
$f \leftarrow$ C.create_facet $\left(e, p_{r}\right)$; create vtx for f in G
$\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident $_{C}(e)$
$P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$
foreach $p \in P(e)$ do
if f visible from p then add edge (p, f) to G in total:
delete vtc $\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)$ from G
return C
using configuration spaces, Section 9.5 [Comp. Geom A\&A]
$O\left(n^{[d / 2\rfloor}\right)$ Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$ O (\#facets del. when adding p_{r})
This part of for-loop in total:
E[\#facets deleted] $=$
$\leq E[\#$ facets created $]=O(n)$.

Lemma

Outer foreach-loop:

- in stage $r: O\left(\sum_{e \in \mathcal{L}}|P(e)|\right)$
$O\left(\sum_{e \text { on horizon at some time }}|P(e)|\right)$
$=O\left(n^{2}-O(n \log n)\right.$

Computational Geometry

Lecture 9:
Convex Hulls in 3D
Or
Mixing More Things

Part IV:
Half-Space Intersections

Convex Hulls and Half-Space Intersections Plane

Convex Hulls and Half-Space Intersections
Define dualtity \star between pts and (non-vertical) lines:

Convex Hulls and Half-Space Intersections
Define dualtity \star between pts and (non-vertical) lines:

$$
\text { For } p=\left(p_{x}, p_{y}\right)
$$

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$,

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

Convex Hulls and Half-Space Intersections Define dualtity \star between pts and (non-vertical) lines:

For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

For $\ell: y=m x+b$,

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

For $\ell: y=m x+b$,

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe.

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line.

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving:

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$ \star is order-preserving:

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$
\star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$
\star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$
\star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$
\star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p x$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$ \star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{x}$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$ \star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{x}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$ \star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{x}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$ \star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{x}$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$ \star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p y$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$ \star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p x$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$ \star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{x}$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$ \star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{x}$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$ \star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{x}$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$ \star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{x}$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. \square upper convex hulls of pts \leftrightarrow lower env. of lines

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{x}$.

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. \square upper convex hulls of pts \leftrightarrow lower env. of lines

- can compute inters. of "lower/upper" half planes (spaces) via upper/lower convex hulls

Computational Geometry

Lecture 9:
 Convex Hulls in 3D
 Or

Mixing More Things
Part V:
Voronoi Diagrams Revisited

Voronoi Diagrams Revisited

Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Yoronoi Diagram/s Revisited Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

$$
p=\left(p_{x}, p_{y}, 0\right)
$$

Yoronoi Diagram/s Revisited Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

$$
p=\left(p_{x}, p_{y}, 0\right)
$$

Yoronoi Diagram/s Revisited Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

$$
p=\left(p_{x}, p_{y}, 0\right)
$$

Yoronoi Diagram/s Revisited Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

$$
p=\left(p_{x}, p_{y}, 0\right)
$$

Yoronoi Diagram/s Revisited Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

Yoronoi Diagram/s Revisited
Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

Yoronoi Diagram/s Revisited Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

Yoronoi Diagram/s Revisited
Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

Yoronoi Diagram/s Revisited
Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

Yoronoi Diagram/s Revisited
Let $u: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

Yoronoi Diagram/s Revisited
Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

Yoronoi Diagram/s Revisited
Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

$$
p=\left(p_{x}, p_{y}, 0\right)
$$

$$
|p q|=\sqrt{\left(q_{x}-p_{x}\right)^{2}+\left(q_{y}-p_{y}\right)^{2}}
$$

$$
q(p)=\left(q_{x}, q_{y}, 2 p_{x} q_{x}+2 p_{y} q_{y}-\left(p_{x}^{2}+p_{y}^{2}\right)\right)
$$

Yoronoi Diagram/s Revisited Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

$$
\begin{aligned}
z_{q^{\prime}}-z_{q(p)} & p=\left(p_{x}, p_{y}, 0\right) \\
& q(p)=\left(q_{x}, q_{y}, 2 p_{x} q_{x}+2 p_{y} q_{y}-\left(p_{x}^{2}+p_{y}^{2}\right)\right)
\end{aligned}
$$

Yoronoi Diagram/s Revisited

Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.
$z_{q^{\prime}}-z_{q(p)}$
$q_{x}^{2}+q_{y}^{2}-2 p_{x} q_{x}-2 p_{y} q_{y}+\left(p_{x}^{2}+p_{y}^{2}\right)$

Yoronoi Diagrams Revisited

Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

$p=\left(p_{x}, p_{y}, 0\right)$
$|p q|=\sqrt{\left(q_{x}-p_{x}\right)^{2}+\left(q_{y}-p_{y}\right)^{2}}$
$\rho^{\prime}(p)=\left(q_{x}, q_{y}, 2 p_{x} q_{x}+2 p_{y} q_{y}-\left(p_{x}^{2}+p_{y}^{2}\right)\right)$
$q_{x}^{2}+q_{y}^{2}-2 p_{x} q_{x}-2 p_{y} q_{y}+\left(p_{x}^{2}+p_{y}^{2}\right)$
$\left(q_{x}^{2}-2 p_{x} q_{x}+p_{x}^{2}\right)+\left(q_{y}^{2}-2 p_{y} q_{y}+p_{y}^{2}\right)$

Yoronoi Diagrams Revisited

Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

$$
\begin{aligned}
& z_{q^{\prime}}-z_{q(p)} \\
& =|p q|^{2}
\end{aligned}
$$

$$
q_{x}^{2}+q_{y}^{2}-2 p_{x} q_{x}-2 p_{y} q_{y}+\left(p_{x}^{2}+p_{y}^{2}\right)
$$

$$
\left(q_{x}^{2}-2 p_{x} q_{x}+p_{x}^{2}\right)+\left(q_{y}^{2}-2 p_{y} q_{y}+p_{y}^{2}\right)
$$

Voronoi Diagram/s Revisited

Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

$$
\begin{aligned}
& z_{q^{\prime}}-z_{q(p)}=|p q|^{2} \\
& =q(p)=\left(q_{x}, q_{y}, 2 p_{x} q_{x}+2 p_{y} q_{y}-\left(p_{x}^{2}+p_{y}^{2}\right)\right)
\end{aligned}
$$

$\Rightarrow h(p)$ and U encode dist. betw. p and any other pt in $z=0$.

Yoronoi Diagram/s Revisited

Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

$$
\begin{aligned}
& z_{q^{\prime}}-z_{q(p)}=|p q|^{2} \\
& =q(p)=\left(q_{x}, q_{y}, 2 p_{x} q_{x}+2 p_{y} q_{y}-\left(p_{x}^{2}+p_{y}^{2}\right)\right)
\end{aligned}
$$

$\Rightarrow h(p)$ and U encode dist. betw. p and any other pt in $z=0$.
$\Rightarrow h(p) \cap U=\left\{p^{\prime}\right\}$

Yoronoi Diagram/s Revisited

Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

$$
\begin{aligned}
& \begin{array}{l}
z_{q^{\prime}}-z_{q(p)} \\
=|p q|^{2}
\end{array} \\
& \quad q(p)=\left(q_{x}, q_{y}, 2 p_{x} q_{x}+2 p_{y} q_{y}-\left(p_{x}^{2}+p_{y}^{2}\right)\right)
\end{aligned}
$$

$\Rightarrow h(p)$ and U encode dist. betw. p and any other pt in $z=0$.
$\Rightarrow h(p) \cap U=\left\{p^{\prime}\right\} \Rightarrow h(p)$ is tangent to $U\left(\right.$ in $\left.p^{\prime}\right)$

Yoronoi Diagram/s Revisited
Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

$$
\begin{aligned}
& \begin{array}{l}
z_{q^{\prime}}-z_{q(p)} \\
=|p q|^{2}
\end{array} \\
& \quad q(p)=\left(q_{x}, q_{y}, 2 p_{x} q_{x}+2 p_{y} q_{y}-\left(p_{x}^{2}+p_{y}^{2}\right)\right)
\end{aligned}
$$

$\Rightarrow h(p)$ and U encode dist. betw. p and any other pt in $z=0$.
$\Rightarrow h(p) \cap U=\left\{p^{\prime}\right\} \Rightarrow h(p)$ is tangent to U (in p^{\prime})

Yoronoi Diagram/s Revisited
Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

$$
\begin{aligned}
& \begin{array}{l}
z_{q^{\prime}}-\overline{z_{q(p)}} \\
=|p q|^{2}
\end{array} \\
& \quad q(p)=\left(q_{x}, q_{y}, 2 p_{x} q_{x}+2 p_{y} q_{y}-\left(p_{x}^{2}+p_{y}^{2}\right)\right)
\end{aligned}
$$

$\Rightarrow h(p)$ and U encode dist. betw. p and any other pt in $z=0$.
$\Rightarrow h(p) \cap U=\left\{p^{\prime}\right\} \Rightarrow h(p)$ is tangent to U (in p^{\prime})

Yoronoi Diagram/s Revisited
Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

$$
\begin{gathered}
h(p): z=\left(2 p_{x}\right) x+\left(2 p_{y}\right) y-\left(p_{x}^{2}+p_{y}^{2}\right) \\
\text { Note that } p^{\prime} \in h(p) .
\end{gathered}
$$

$\Rightarrow h(p)$ and U encode dist. betw. p and any other pt in $z=0$.
$\Rightarrow h(p) \cap U=\left\{p^{\prime}\right\} \Rightarrow h(p)$ is tangent to U (in p^{\prime})

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$

The Upper Envelope Strikes Back
Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.

The Upper Envelope Strikes Back
Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.
Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H}.

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.
Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H}.

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.
Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H}.

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.
Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H}.
The projection of $\mathcal{E}(\mathcal{H})$ on $z=0$ is

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.
Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H}.
The projection of $\mathcal{E}(\mathcal{H})$ on $z=0$ is $\operatorname{Vor}(P)$.

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.
Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H}.
The projection of $\mathcal{E}(\mathcal{H})$ on $z=0$ is $\operatorname{Vor}(P)$.
can compute $\operatorname{Vor}(P)$ in \mathbb{R}^{2} via upper envelope in \mathbb{R}^{3}

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.
Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H}.
The projection of $\mathcal{E}(\mathcal{H})$ on $z=0$ is $\operatorname{Vor}(P)$.
can compute $\operatorname{Vor}(P)$ in \mathbb{R}^{2} via upper envelope in \mathbb{R}^{3}

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.
Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H}.
The projection of $\mathcal{E}(\mathcal{H})$ on $z=0$ is $\operatorname{Vor}(P)$.
can compute $\operatorname{Vor}(P)$ in \mathbb{R}^{2} via upper envelope in \mathbb{R}^{3}

upper envelope in \mathbb{R}^{3} is in one-to-one correspondence to lower convex hull of pt set \mathcal{H}^{\star}

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.
Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H}.
The projection of $\mathcal{E}(\mathcal{H})$ on $z=0$ is $\operatorname{Vor}(P)$.
can compute $\operatorname{Vor}(P)$ in \mathbb{R}^{2} via upper envelope in \mathbb{R}^{3}

upper envelope in \mathbb{R}^{3} is in one-to-one correspondence to lower convex hull of pt set \mathcal{H}^{\star} \downarrow

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.
Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H}.
The projection of $\mathcal{E}(\mathcal{H})$ on $z=0$ is $\operatorname{Vor}(P)$.
can compute $\operatorname{Vor}(P)$ in \mathbb{R}^{2} via upper envelope in \mathbb{R}^{3}

upper envelope in \mathbb{R}^{3} is in one-to-one correspondence to lower convex hull of pt set \mathcal{H}^{\star} \downarrow

