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randomized-incremental!
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7

2 - # edgesvof CH(P)
L2 (3r—6)—12] <6

VAN



Running Time

‘Theorem. The convex hull of a set of 7 pts in R® can be
computed in O( ) expected time.

.

\

[ i i il
1
1

Rand3DConvexHull(P C R?)
pick non-coplanar set P'={p, ..., p4}CP
C + CH(P)
compute rand. perm. (ps, ..., py) of P\P’/
initialize conflict graph G
forr = 5ton do
if F, conﬂict(pi’) # © then
delete all facets in F.ongict(pr) from C
L < list of horizon edges visible from p;
foreach ¢ € £ do
f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incidentc(¢)
P(e) < Peonflict (fl) U Peonflict (fZ)
foreach p € P(¢) do
| if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

return C
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‘Theorem. The convex hull of a set of 7 pts in R® can be
computed in O( ) expected time.

\

plck non-coplanar set P'={p,..., p4}CP
Jce CH(P')
compute rand. perm. (ps, ..., py) of P\P’/

: 1n1t1a11ze conflict graph G

E forr = 5ton do

: if F, COl‘lﬂlCt(p 7’) # © then

: delete all facets in F.ongict(pr) from C

: L < list of horizon edges visible from p;

E foreach ¢ € £ do

: f < C.create_facet(e, pr); create vtx for f in G
: (f1, f2) « previously_incidentc ()

E P(e) < Peonflict (fl) U Peonflict (fZ)

! foreach p € P(¢) do

: | if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

return C
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if F conﬂict(pi’) 7& O then
delete all facets in F.ongict(pr) from C

: L < list of horizon edges visible from p;

E foreach ¢ € £ do

: f < C.create_facet(e, p;); create vtx for f in G

: (f1, f2) « previously_incidentc ()

E P(e) < Peonflict (fl) U Peonflict (fZ)

! foreach p € P(¢) do

: | if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

return C

( )
Theorem. The convex hull of a set of n pts in R® can be
computed in O( ) expected time.
\. J
Sé Rand3DConvexHull(P cR%)
. E pick non-coplanar set P'={py, ..., ps}CP
- Jce CH(P')
/Q ') compute rand. perm. (ps, ..., py) of P\P’/
~— | initialize conflict graph G
O Morr=5tondo
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if Pconﬂict(pr) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;

foreach ¢ € £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incidentc(¢)

P(e) <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

| delete vtc {pr} U Fongiice(pr) from G

return C

L if f visible from p then add edge (p, /) to G !

( )
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O( ) expected time.

\. J
e, Stage r of for-loo foreach 1

Sé 'Rand3DConvexHull(P C R?) 5 |2 67/ fencatialosr)

. E rpick non-coplanar set P'={p,..., p4}CP

- Jce CH(P')

/Q: compute rand. perm. (ps, ..., py) of P\P’/

~—" | initialize conflict graph G

QE forr = 5ton do
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( )
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O( ) expected time.
\. J
e, Stage r of for-loo foreach 1
Sé 'Rand3DConvexHull(P C R?) : 5 . |2 67/ fencaia o)
R E rpick non-coplanar set P'={py,..., p4}CP :takes time O( | FCOI’IﬂiCt (pr) |) —
- Jce CH(P') |
/Q: compute rand. perm. (ps, ..., pn) of P\P’
\Q-/ | initialize conflict graph G

E forr =5ton do

if Pconﬂict(pr) # © then

delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;

foreach ¢ € £ do

f < C.create_facet(e, p;); create vtx for f in G

(f1, f2) < previously_incidentc(¢)

P(e) < Peonflict (fl) U Peonflict (f2)

foreach p € P(¢) do :
L if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

. return C
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( )
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O( ) expected time.
. J
O Stage r of for-loo foreach 1
Sé 'Rand3DConvexHull(P C R3) : S : o7 o ol )
= E rpick non-coplanar set P'={p,..., p4}CP :takes time O( | FCOI’IﬂiCt (PT’) |) —
) C« CH(P) : :
/QS compute rand. perm. (ps, ..., py) of P\P’ EO(#facetS del When addlng p 1’)
\D-/ | initialize conflict graph G :

E forr =5ton do

if Pconflict(pr) # © then

delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;

foreach ¢ € £ do

f < C.create_facet(e, p;); create vtx for f in G

(f1, f2) < previously_incidentc(¢)

P(e) < Peonflict (fl) U Peonflict (fZ)

foreach p € P(¢) do :
L if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

. return C
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if Pconflict(pr) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;

foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incidentc(¢)

P(e) <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

| delete vtc {pr} U Fongiice(pr) from G

. return C

‘Theorem. The convex hull of a set of 7 pts in R® can be )
\ computed in O( ) expected time. )
% papcomedta(r R Stage T o fgr('?;op e
5 [ piknoncoplnar et P~ - prker takes time O(|Feongtict (Pr)
’§< compute rand. perm. (s, .., pu) of P\P' O(#facets del. when adding p;)
S N er—ctondo ;This part of for-loop in total:

L if f visible from p then add edge (p, /) to G E
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‘Theorem. The convex hull of a set of 7 pts in R® can be )
\ computed in O( ) expected time. )
% papcomedta(r R Stage T o fgr('?;op e
5 | ek nemcopianas ot P ... kP takes time O(|Feonflict (Pr)
’§< compute rand. perm. (s, .., pu) of P\P' O(#facets del. when adding p;)
S N er—ctondo This part of for-loop in total:

delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;

foreach ¢ € £ do

f < C.create_facet(e, p;); create vtx for f in G

(f1, f2) < previously_incidentc(¢)

P(e) < Peonflict (fl) U Peonflict (fZ)

foreach p € P(¢) do :
L if f visible from p then add edge (p, /) to G

if Feontiet(pr) 7 © then E[#facets deleted] =

| delete vtc {pr} U Fongiice(pr) from G

. return C
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( )
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O ) expected time.
. J
N Stage r of for-loo foreach 1
Sé 'Rand3DConvexHull(P C R?) : S . | (70 o L)
£ ot mmapns .. takes time O(|Frongict (pr)]) =
) C « CH(P - :
/QS compute rand. perm. (ps, ..., py) of P\P’ EO(#facetS del When addlng p 7’)
~—| initiali flict graph G o :
Q Morr=5t0ndo ‘This part of for-loop in total:
' if Feonflic (Pr) 7£ @ then E —
deilette all facets in Fgpgict(pr) from C :E [#facets deleted]
L < list of horizon edges visible from p; E S E [#facets cre ated] —

foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G

(f1, f2) < previously_incidentc(¢)

P(e) < Peonflict (fl) U Peonflict (fZ)

foreach p € P(¢) do :
L if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

. return C

___________________________________________________
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Running Time

( )
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O ) expected time.
. J
N Stage r of for-loo foreach 1
Sé 'Rand3DConvexHull(P C R?) : S . | (70 o L)
£ ot mmapns .. takes time O(|Frongict (pr)]) =
) C « cH(P i :
/QS compute rand. perm. (ps, ..., py) of P\P’ EO(#facetS del When addlng p 7’)
~—| initiali flict graph G o :
Q Morr=5t0ndo ‘This part of for-loop in total:
' if Feonflic (Pr) 7£ @ then E —
deilette all facets in Fgpgict(pr) from C :E [#facets deleted]
L < list of horizon edges visible from p; E S E [#facets cre ated] —

foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G

(f1, f2) < previously_incidentc(¢)

P(e) < Peonflict (fl) U Peonflict (fZ)

foreach p € P(¢) do :
L if f visible from p then add edge (p, /) to G

Lemma

| delete vtc {pr} U Fongiice(pr) from G

. return C

___________________________________________________



Running Time

( )
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O( ) expected time.
\. J
e, Stage r of for-loo foreach 1
Sé 'Rand3DConvexHull(P C R?) : 5 . |2 67/ fencaia o)
£ e e takes time O(|Feonice (1)) —
') C < CH(P - .
/QS compute rand. perm. (ps, ..., py) of P\P’ EO(#facetS del When addlng p 7’)
~— | initiali flict graph G : . :
Q. S ‘This part of for-loop in total:
' if Feonflic (Pr) 7£ @ then E —
deilette all facets in Fgpgict(pr) from C :E [#facets deleted]
L < list of horizon edges visible from p, i S E [#facets cre ated] —0) (n) :

foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G

(f1, f2) < previously_incidentc(¢)

P(e) < Peonflict (fl) U Peonflict (fZ)

foreach p € P(¢) do :
L if f visible from p then add edge (p, /) to G

Lemma

| delete vtc {pr} U Fongiice(pr) from G

. return C

___________________________________________________



Running Time

e “
Theorem. The convex hull of a set of 7 pts in R® can be
computed in O ) expected time.
\ J
Stage r of for-loop w/o foreach
(qé R(andBDConvexHull(P C R3) 5 . | (e ot o)
B [ pick roncoplanar st P {p1.....pi)CP takes time O(|Feonfiict(pr)|) =
- .
€< compute rand. perm. (ps, ..., py) of P\P’ O(#facets del When addlng P 7)
~— | initiali flict h G . -
O Morr—Stondo This part of for-loop in total:
if Feonflic (Pr) 7& @ then —
deilette all facets in Fgpgict(pr) from C E [#facets deleted]
L < list of horizon edges visible from p, S E [#facets Created] —0) (n) )

foreach ¢ ¢ £ do
f < C.create_facet(e, p;); create vtx for f in G

(f1, f2)  previously incidentc (¢) Outer foreach-loop:

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

L if f visible from p then add edge (p, /) to G

Lemma

| delete vtc {pr} U Fongiice(pr) from G

return C
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return C

if Pconﬂict<p7’) # O then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)
P(€> — Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do
L if f visible from p then add edge (p, /) to G

| delete vtc {pr} U Fongiice(pr) from G

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O( ) expected time. )
£ Band3DConvexHull(P C ) tStlige : of fgl‘('lll(_zop <.W/ ( fore;cr)loozw
B Iélcirc‘:olr{‘;‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)
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return C

if Pconﬂict<p7’) # O then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O( ) expected time. )
£ Band3DConvexHull(P C ) tStlige : of fgl‘('lll(_zop <.W/ ( fore;cr)loozw
B Iélcirc‘:olr{‘;‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

L if f visible from p then add edge (p, /) to G '— ln totak

| delete vtc {pr} U Fongiice(pr) from G
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return C

if Pconﬂict(pi’) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O( ) expected time. )
£ Band3DConvexHull(P C ) tSt1a<ge : of fg)r(_|11(-20p <.W/ ( fore;cr)loozw
B Iélcirc‘:olr{‘z‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

L if f visible from p then add edge (p, /) to G '— ln totak

| delete vtc {pr} U Fongiice(pr) from G

O > |P(e)]

e on horizon at some time
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return C

if Pconﬂict(pi’) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O( ) expected time. )
£ Band3DConvexHull(P C ) tSt1a<ge : of fg)r(_|11(-20p <.W/ ( fore;cr)loozw
B Iélcirc‘:olr{‘z‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

L if f visible from p then add edge (p, /) to G '— ln totak

| delete vtc {pr} U Fongiice(pr) from G

O > |P(e)]

e on horizon at some time

= O(n?)
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return C

if Pconﬂict(pi’) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O( ) expected time. )
£ Band3DConvexHull(P C ) tSt1a<ge : of fg)r(_|11(-20p <.W/ ( fore;cr)loozw
B Iélcirc‘:olr{‘z‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

L if f visible from p then add edge (p, /) to G '— ln totak

| delete vtc {pr} U Fongiice(pr) from G

O > |P(e)]

e on horizon at some time

= O(n?)
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return C

if Pconﬂict(pi’) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O( ) expected time. )
£ Band3DConvexHull(P C ) tSt1a<ge : of fg)r(_|11(-20p <.W/ ( fore;cr)loozw
B Iélcirc‘:olr{‘z‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

L if f visible from p then add edge (p, /) to G '— ln totak

| delete vtc {pr} U Fongiice(pr) from G

O > |P(e)]

e on horizon at some time

= Of2) O(nlogn)
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if Pconﬂict(pi’) # © then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;

foreach ¢ ¢ £ do

f < C.create_facet(e, p;); create vtx for f in G
(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

| delete vtc {pr} U Fongiice(pr) from G

return C

‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O(nlogn) expected time. )
¥ Kand3DConvexHull(P ¢ R tStlige: of fgr(-|1;019 {w/o( f)r)li
B Iélcirc‘:olr{‘z‘;l)’lamf set P'={p1,..., p4}CP dakes time conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

> |P(e)]

e on horizon at some time

= Of2) O(nlogn)

L if f visible from p then add edge (p, /) to G '— ln totak

O



Running Time

if Pconﬂict<p7’) # O then
delete all facets in F.ongict(pr) from C

L < list of horizon edges visible from p;
foreach ¢ ¢ £ do

(f1, f2) < previously_incident.(¢)

P(€> <~ Pconﬂict(fl) U Pconﬂict(fZ)
foreach p € P(¢) do

| delete vtc {pr} U Fongiice(pr) from G

return C

f < C.create_facet(e, p;); create vtx for f in G

RY,d > 3
‘Theorem. The convex hull of a set of 7 pts in R® can be |
\ computed in O(nlogn) expected time. )
c DD Gty € 20 ts;igs ;sze fgr(—|1;op <.W/ 0( forefscr)loozw
B Iélir(‘:o;l‘ (‘1331)’ anar set P'={p1,..., ps}CP conflict \ P r)
"2 compute rand. perm. (ps,...., pa) of PP’ O(#facets del. when adding p;)
S s S stendo T This part of for-loop in total:

E [#facets deleted| =
< El[#facets created| =0O(n).

Lemma
Outer foreach-loop:
—in stage 7:O(Y_.c |P(e)|)

L if f visible from p then add edge (p, /) to G '— ln totak

O > |P(e)]

e on horizon at some time

= Of2) O(nlogn)
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R d >3

‘Theorem. The convex hull of a set of 7 pts in R® can be

\

computed in O(nlogn) expected time.

return C

| delete vtc {pr} U Fongiice(pr) from G

. J

Q O (n Ld/ZJ ) Stage r of fOT'lOOp (w/o foreach loop)

E R(andBDConvexHull(P C R3) .

£ et e takes time O(|Feongice (1)) —

C « CH(P' :

€< compute rand. perm. (ps, ..., py) of P\P’ O(#facets del When addlng P 7)
~— | initialize conflict graph G . -

@) \fort S tomn d(t,g F This part of for-loop in total:

if Feonlict (pr) 7 © then E [#facets deleted] =

delete all facets in F.ongict(pr) from C
L < list of horizon edges visible from p;
foreach ¢ € £ do

< El[#facets created| =0O(n).

f < C.create_facet(e, p;); create vtx for f in G Lemma
(f1. f2) previou)sly-inciderztc §e) Outer foreach-loop:

P(€> — Pconﬂict(fl U Peonflict f2 . .

foreach p € P(¢) do —1n Stage r. O(ZBE,C ‘P(e) |)

L if f visible from p then add edge (p, /) to G '— ln totak

O ( > |P(e)]

e on horizon at some time

= Of2) O(nlogn)
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Convex Hulls and Half-Space Intersections



Convex Hulls and Half-Spaece Intersections
Plane
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Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:
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Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py),
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Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py),
A

p

» primal
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Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A
%

» primal
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Convex Hulls and Halt-Spaece Intersections

Plane
Define dualtity x between pts and (non-vertical) lines:

For p = (px, py), define the line p*: y = pxx — py,.
A A
%

» primal dual >
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Convex Hulls and Halt-Spaece Intersections

Plane
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planes (spaces) via upper/lower convex hulls
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‘Theorem. Let P C R? x {0}and H = {h(p) | p € P}.
Let £(H) be the upper envelope of H.
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‘Theorem. Let P C R? x {0}and H = {h(p) | p € P}.
Let £(H) be the upper envelope of H.
The projection of £(H) on z = 0 is Vor(P).
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can compute Vor(P) in R?
via upper envelope in R’

'

upper envelope in R® is in
one-to-one correspondence to
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The Upper Envelope Strikes Back

‘Theorem. Let P C R? x {0}and H = {h(p) | p € P}.
Let £(H) be the upper envelope of H.
The projection of £(H) on z = 0 is Vor(P).

v

can compute Vor(P) in R?
via upper envelope in R’

'

upper envelope in R® is in
one-to-one correspondence to
lower convex hull of pt set H*

v

use algorithm Rand3DConvexHull!
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