Computational Geometry

Lecture 9: Convex Hulls in 3D or Mixing More Things

Part I: Complexity & Visibility

Philipp Kindermann

Winter Semester 2020

Given set *S* of *n* points in \mathbb{R}^d ,

dim	w-c complexity of $CH(S)$
1	
2	
3	
d	

	dim	w-c complexity of $CH(S)$	
-	1		
	2		
	3		
	d		

	dim	w-c complexity of $CH(S)$	
-	1	$2 \in \Theta(1)$	
	2		
	3		
	d		

	dim	w-c complexity of $CH(S)$	
-	1	$2 \in \Theta(1)$	
	2		
	3		
	d		

	dim	w-c complexity of $CH(S)$	
-	1	$2 \in \Theta(1)$	
	2	$n \in \Theta(n)$	
	3		
	d		

	dim	w-c complexity of $CH(S)$	
	1	$2 \in \Theta(1)$	
	2	$n \in \Theta(n)$	
	3		
	d		• •
•			•

dim	w-c complexity of $CH(S)$	
1	$2 \in \Theta(1)$	
2	$n \in \Theta(n)$	
3		
d		
	1	

	dim	w-c complexity of $CH(S)$	
_	1	$2 \in \Theta(1)$	
	2	$n \in \Theta(n)$	
	3	Your task!	
	d		

dim	w-c complexity of $CH(S)$	
1	$2 \in \Theta(1)$	
2	$n \in \Theta(n)$	
3	$3n-6 \in \Theta(n)$	
d		

Given set *S* of *n* points in \mathbb{R}^d , what is max. #edges on $\partial CH(S)$?

Upper Bound Theorem

Construction?

Given set *S* of *n* points in \mathbb{R}^d , what is max. #edges on $\partial CH(S)$?

Upper Bound Theorem

Construction

randomized-incremental!

p

p

p

Computational Geometry

Lecture 9: Convex Hulls in 3D or Mixing More Things

Part II: Randomized Incremental Algorithm

Philipp Kindermann

Winter Semester 2020

Rand3DConvexHull($P \subset \mathbb{R}^3$)

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \dots, p_4\} \subseteq P$

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \dots, p_4\} \subseteq P$ $C \leftarrow CH(P')$

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \dots, p_4\} \subseteq P$ $C \leftarrow CH(P')$

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \dots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. (p_5, \dots, p_n) of $P \setminus P'$

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \dots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. (p_5, \dots, p_n) of $P \setminus P'$

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \dots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. (p_5, \dots, p_n) of $P \setminus P'$ initialize conflict graph G : (p, f) edge \Leftrightarrow f visible from p

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \dots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. (p_5, \dots, p_n) of $P \setminus P'$ initialize conflict graph G : (p, f) edge \Leftrightarrow f visible from p

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then $\{ p_r \notin C \}$

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then $\{ p_r \notin C \}$

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then $\{ p_r \notin C \}$ delete all facets in $F_{\text{conflict}}(p_r)$ from C

return C

(8)

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then $\{ p_r \notin C \}$ delete all facets in $F_{\text{conflict}}(p_r)$ from C

return C

(8)

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then $\{ p_r \notin C \}$ delete all facets in $F_{\text{conflict}}(p_r)$ from C

return C

(8)

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ 8 $C \leftarrow CH(P')$ compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then $\{ p_r \notin C \}$ delete all facets in $F_{\text{conflict}}(p_r)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then $\{ p_r \notin C \}$ delete all facets in $F_{\text{conflict}}(p_r)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r foreach $e \in \mathcal{L}$ do

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ 8 $C \leftarrow CH(P')$ compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then $\{ p_r \notin C \}$ delete all facets in $F_{\text{conflict}}(p_r)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create_facet(*e*, *p*_{*r*}); create vtx for *f* in *G*

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ $\mathbf{C} \leftarrow \mathrm{CH}(P')$ 8 compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then $\{ p_r \notin C \}$ delete all facets in $F_{\text{conflict}}(p_r)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create_facet(*e*, *p*_{*r*}); create vtx for *f* in *G* $(f_1, f_2) \leftarrow \text{previously_incident}_{\mathbb{C}}(e)$

Computational Geometry

Lecture 9: Convex Hulls in 3D or Mixing More Things

Part III: Analysis

Philipp Kindermann

Winter Semester 2020

Idea. Bound expected *structural change*

Idea.Bound expected *structural change*,that is, the total #facets created by the algorithm.

Idea. Bound expected *structural change*, that is, the total #facets created by the algorithm.

Lemma. The expected #facets created is at most 6n - 20.

Idea. Bound expected *structural change*, that is, the total #facets created by the algorithm.

Lemma. The expected #facets created is at most 6n - 20.

Proof. E[#facets created] =

Idea. Bound expected *structural change*, that is, the total #facets created by the algorithm.

Lemma. The expected #facets created is at most 6n - 20.

Proof. E[#facets created $] = 4 + \sum_{r=5}^{n} E[$ #facets incident to p_r in CH $(P_r)]$

Idea. Bound expected *structural change*, that is, the total #facets created by the algorithm.

Lemma. The expected #facets created is at most 6n - 20.

Idea. Bound expected *structural change*, that is, the total #facets created by the algorithm.

Lemma. The expected #facets created is at most 6n - 20.

Proof. E[#facets created] = #edges = $4 + \sum_{r=5}^{n} E[$ #facets incident to p_r in CH $(P_r)]$

Idea. Bound expected *structural change*, that is, the total #facets created by the algorithm.

Lemma. The expected #facets created is at most 6n - 20. **Proof.** E[#facets created] = $= 4 + \sum_{r=5}^{n} E[$ #facets incident to p_r in CH $(P_r)]$ $deg(p_r, CH(P_r))$

Idea. Bound expected *structural change*, that is, the total #facets created by the algorithm.

Lemma. The expected #facets created is at most 6n - 20. **Proof.** E[#facets created] = $= 4 + \sum_{r=5}^{n} E[$ #facets incident to p_r in CH $(P_r)]$ For r > 4: $deg(p_r, CH(P_r))$ $E[deg(p_r, CH(P_r))] =$

Idea. Bound expected *structural change*, that is, the total #facets created by the algorithm.

Lemma. The expected #facets created is at most 6n - 20. **Proof.** E[#facets created] = $= 4 + \sum_{r=5}^{n} E[$ #facets incident to p_r in CH $(P_r)]$ For r > 4: $deg(p_r, CH(P_r))$ $E[deg(p_r, CH(P_r))] = \frac{1}{r-4} \sum_{i=5}^{r} deg(p_i, CH(P_r))$


```
Rand3DConvexHull(P \subset \mathbb{R}^3)
   pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
   C \leftarrow CH(P')
   compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
   initialize conflict graph G
   for r = 5 to n do
        if F_{\text{conflict}}(p_r) \neq \emptyset then
              delete all facets in F_{\text{conflict}}(p_r) from C
              \mathcal{L} \leftarrow list of horizon edges visible from p_r
             foreach e \in \mathcal{L} do
                   f \leftarrow C.create_facet(e, p_r); create vtx for f in G
                   (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
                   P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
                   foreach p \in P(e) do
                     if f visible from p then add edge (p, f) to G
              delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
   return C
```

```
Rand3DConvexHull(P \subset \mathbb{R}^3)
   pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
   C \leftarrow CH(P')
   compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
   initialize conflict graph G
   for r = 5 to n do
        if F_{\text{conflict}}(p_r) \neq \emptyset then
              delete all facets in F_{\text{conflict}}(p_r) from C
              \mathcal{L} \leftarrow list of horizon edges visible from p_r
             foreach e \in \mathcal{L} do
                   f \leftarrow C.create_facet(e, p_r); create vtx for f in G
                   (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
                  P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
                   foreach p \in P(e) do
                     if f visible from p then add edge (p, f) to G
              delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
   return C
```

```
Rand3DConvexHull(P \subset \mathbb{R}^3)
  pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
   C \leftarrow CH(P')
  compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
  initialize conflict graph G
  for r = 5 to n do
        if F_{\text{conflict}}(p_r) \neq \emptyset then
             delete all facets in F_{\text{conflict}}(p_r) from C
             \mathcal{L} \leftarrow list of horizon edges visible from p_r
             foreach e \in \mathcal{L} do
                  f \leftarrow C.create_facet(e, p_r); create vtx for f in G
                   (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
                  P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
                  foreach p \in P(e) do
                     if f visible from p then add edge (p, f) to G
             delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
  return C
```

time	F J
(\varkappa)	Ì
$\widetilde{}$	

```
Stage r of for-loop (w/o foreach loop)
Gand3DConvexHull(P \subset \mathbb{R}^3)
 pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
 C \leftarrow CH(P')
 compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
 initialize conflict graph G
for r = 5 to n do
      if F_{\text{conflict}}(p_r) \neq \emptyset then
           delete all facets in F_{\text{conflict}}(p_r) from C
           \mathcal{L} \leftarrow list of horizon edges visible from p_r
           foreach e \in \mathcal{L} do
                f \leftarrow C.create_facet(e, p_r); create vtx for f in G
                (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
                P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
                foreach p \in P(e) do
                   if f visible from p then add edge (p, f) to G
           delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
 return C
```

Theorem. The convex hull of a set of *n* pts in \mathbb{R}^3 can be computed in O() expected time.

```
Rand3DConvexHull(P \subset \mathbb{R}^3)
  pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
  C \leftarrow CH(P')
  compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
  initialize conflict graph G
  for r = 5 to n do
       if F_{\text{conflict}}(p_r) \neq \emptyset then
             delete all facets in F_{\text{conflict}}(p_r) from C
             \mathcal{L} \leftarrow list of horizon edges visible from p_r
             foreach e \in \mathcal{L} do
                  f \leftarrow C.create_facet(e, p_r); create vtx for f in G
                   (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
                  P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
                  foreach p \in P(e) do
                     if f visible from p then add edge (p, f) to G
             delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
  return C
```

Stage *r* of for-loop (w/o foreach loop) takes time $O(|F_{\text{conflict}}(p_r)|) =$

Theorem. The convex hull of a set of *n* pts in \mathbb{R}^3 can be computed in O() expected time.

```
Rand3DConvexHull(P \subset \mathbb{R}^3)
  pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
  C \leftarrow CH(P')
  compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
  initialize conflict graph G
  for r = 5 to n do
       if F_{\text{conflict}}(p_r) \neq \emptyset then
             delete all facets in F_{\text{conflict}}(p_r) from C
             \mathcal{L} \leftarrow list of horizon edges visible from p_r
             foreach e \in \mathcal{L} do
                  f \leftarrow C.create_facet(e, p_r); create vtx for f in G
                   (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
                  P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
                  foreach p \in P(e) do
                     if f visible from p then add edge (p, f) to G
             delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
  return C
```

Stage *r* of for-loop (w/o foreach loop) takes time $O(|F_{\text{conflict}}(p_r)|) = O(\text{#facets del. when adding } p_r)$

Theorem. The convex hull of a set of *n* pts in \mathbb{R}^3 can be computed in O() expected time.

```
Rand3DConvexHull(P \subset \mathbb{R}^3)
  pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
  C \leftarrow CH(P')
  compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
  initialize conflict graph G
  for r = 5 to n do
       if F_{\text{conflict}}(p_r) \neq \emptyset then
             delete all facets in F_{\text{conflict}}(p_r) from C
             \mathcal{L} \leftarrow list of horizon edges visible from p_r
             foreach e \in \mathcal{L} do
                  f \leftarrow C.create_facet(e, p_r); create vtx for f in G
                   (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathcal{C}}(e)
                  P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
                  foreach p \in P(e) do
                     if f visible from p then add edge (p, f) to G
             delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
  return C
```

Stage *r* of for-loop (w/o foreach loop) takes time $O(|F_{\text{conflict}}(p_r)|) = O(\text{#facets del. when adding } p_r)$ This part of for-loop in total:

Theorem. The convex hull of a set of *n* pts in \mathbb{R}^3 can be computed in O() expected time.

```
Rand3DConvexHull(P \subset \mathbb{R}^3)
  pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
  C \leftarrow CH(P')
  compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
  initialize conflict graph G
  for r = 5 to n do
       if F_{\text{conflict}}(p_r) \neq \emptyset then
             delete all facets in F_{\text{conflict}}(p_r) from C
             \mathcal{L} \leftarrow list of horizon edges visible from p_r
             foreach e \in \mathcal{L} do
                  f \leftarrow C.create_facet(e, p_r); create vtx for f in G
                   (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
                  P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
                  foreach p \in P(e) do
                     if f visible from p then add edge (p, f) to G
             delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
  return C
```

Stage *r* of for-loop (w/o foreach loop) takes time $O(|F_{\text{conflict}}(p_r)|) = O(\text{#facets del. when adding } p_r)$

This part of for-loop in total: E[#facets deleted] =

```
Stage r of for-loop (w/o foreach loop)
Rand3DConvexHull(P \subset \mathbb{R}^3)
                                                                         takes time O(|F_{\text{conflict}}(p_r)|) =
  pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
  C \leftarrow CH(P')
                                                                         O(#facets del. when adding p_r)
  compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
  initialize conflict graph G
                                                                        This part of for-loop in total:
  for r = 5 to n do
      if F_{\text{conflict}}(p_r) \neq \emptyset then
                                                                         E[#facets deleted] =
           delete all facets in F_{\text{conflict}}(p_r) from C
                                                                             \leq E[#facets created] =
           \mathcal{L} \leftarrow list of horizon edges visible from p_r
          foreach e \in \mathcal{L} do
               f \leftarrow C.create_facet(e, p_r); create vtx for f in G
               (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
               P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
               foreach p \in P(e) do
                 if f visible from p then add edge (p, f) to G
          delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
  return C
```

Theorem. The convex hull of a set of *n* pts in \mathbb{R}^3 can be computed in O() expected time.

l	computed in $O($) expected time.
	Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \dots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. (p_5, \dots, p_n) of $P \setminus P'$ initialize conflict graph G for $r = 5$ to n do if $F_{conflict}(p_r) \neq \emptyset$ then delete all facets in $F_{conflict}(p_r)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r foreach $e \in \mathcal{L}$ do $f \leftarrow C.create_facet(e, p_r); create vtx for f in G(f_1, f_2) \leftarrow previously_incidentC(e)P(e) \leftarrow P_{conflict}(f_1) \cup P_{conflict}(f_2)foreach p \in P(e) do_ if f visible from p then add edge (p, f) to Gdelete vtc \{p_r\} \cup F_{conflict}(p_r) from G$	Stage <i>r</i> of for-loop (w/o foreach loop) takes time $O(F_{conflict}(p_r)) =$ $O($ #facets del. when adding p_r) This part of for-loop in total: E[#facets deleted $] =\leq E[#facets created] =Lemma$

return C

```
Stage r of for-loop (w/o foreach loop)
Rand3DConvexHull(P \subset \mathbb{R}^3)
                                                                        takes time O(|F_{\text{conflict}}(p_r)|) =
  pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
  C \leftarrow CH(P')
                                                                        O(#facets del. when adding p_r)
  compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
  initialize conflict graph G
                                                                        This part of for-loop in total:
  for r = 5 to n do
      if F_{\text{conflict}}(p_r) \neq \emptyset then
                                                                        E[#facets deleted] =
           delete all facets in F_{\text{conflict}}(p_r) from C
                                                                            \leq E[#facets created] = O(n).
           \mathcal{L} \leftarrow list of horizon edges visible from p_r
          foreach e \in \mathcal{L} do
                                                                                                                   emma
               f \leftarrow C.create_facet(e, p_r); create vtx for f in G
               (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
               P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
               foreach p \in P(e) do
                 if f visible from p then add edge (p, f) to G
          delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
  return C
```

computed in O() expected time.
Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1,, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. $(p_5,, p_n)$ of $P \setminus P'$ initialize conflict graph G for $r = 5$ to n do if $F_{conflict}(p_r) \neq \emptyset$ then delete all facets in $F_{conflict}(p_r)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r foreach $e \in \mathcal{L}$ do $f \leftarrow C.create_facet(e, p_r)$; create vtx for f in G $(f_1, f_2) \leftarrow$ previously_incident _C (e) $P(e) \leftarrow P_{conflict}(f_1) \cup P_{conflict}(f_2)$ foreach $p \in P(e)$ do \lfloor if f visible from p then add edge (p, f) to G delete vtc $\{p_r\} \cup F_{conflict}(p_r)$ from G	Stage <i>r</i> of for-loop (w/o foreach loop) takes time $O(F_{conflict}(p_r)) =$ $O($ #facets del. when adding p_r This part of for-loop in total: E[#facets deleted $] =\leq E[#facets created] = O(n).LemmaOuter foreach-loop:$

Theorem. The convex hull of a set of *n* pts in \mathbb{R}^3 can be computed in O() expected time.

O(n) time

```
Stage r of for-loop (w/o foreach loop)
Rand3DConvexHull(P \subset \mathbb{R}^3)
                                                                      takes time O(|F_{\text{conflict}}(p_r)|) =
 pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
  C \leftarrow CH(P')
                                                                      O(#facets del. when adding p_r)
  compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
 initialize conflict graph G
                                                                      This part of for-loop in total:
  for r = 5 to n do
      if F_{\text{conflict}}(p_r) \neq \emptyset then
                                                                      E[#facets deleted] =
          delete all facets in F_{\text{conflict}}(p_r) from C
                                                                          \leq E[#facets created] = O(n).
          \mathcal{L} \leftarrow list of horizon edges visible from p_r
          foreach e \in \mathcal{L} do
              f \leftarrow C.create_facet(e, p_r); create vtx for f in G
                                                                      Outer foreach-loop:
              (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
              P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
                                                                      - in stage r: O(\sum_{e \in f} |P(e)|)
              foreach p \in P(e) do
                  if f visible from p then add edge (p, f) to G
          delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
  return C
```

computed in O() expected time.
Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \dots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ compute rand. perm. (p_5, \dots, p_n) of $P \setminus P'$ initialize conflict graph G for $r = 5$ to n do if $F_{conflict}(p_r) \neq \emptyset$ then delete all facets in $F_{conflict}(p_r)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r foreach $e \in \mathcal{L}$ do $f \leftarrow C.create_facet(e, p_r)$; create vtx for f in G $(f_1, f_2) \leftarrow$ previously_incident _C (e) $P(e) \leftarrow P_{conflict}(f_1) \cup P_{conflict}(f_2)$ foreach $p \in P(e)$ do	Stage <i>r</i> of for-loop (w/o foreach loop) takes time $O(F_{conflict}(p_r)) =$ $O($ #facets del. when adding p_r) This part of for-loop in total: E[#facets deleted $] =\leq E[#facets created] = O(n).LemmaOuter foreach-loop:- in stage r: O(\sum_{e \in \mathcal{L}} P(e))- in total:$

```
Stage r of for-loop (w/o foreach loop)
Rand3DConvexHull(P \subset \mathbb{R}^3)
                                                                      takes time O(|F_{\text{conflict}}(p_r)|) =
 pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
  C \leftarrow CH(P')
                                                                      O(#facets del. when adding p_r)
  compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
 initialize conflict graph G
                                                                      This part of for-loop in total:
  for r = 5 to n do
      if F_{\text{conflict}}(p_r) \neq \emptyset then
                                                                      E[#facets deleted] =
          delete all facets in F_{\text{conflict}}(p_r) from C
                                                                          \leq E[#facets created] = O(n).
          \mathcal{L} \leftarrow list of horizon edges visible from p_r
          foreach e \in \mathcal{L} do
              f \leftarrow C.create_facet(e, p_r); create vtx for f in G
                                                                      Outer foreach-loop:
              (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
              P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
                                                                      - in stage r: O(\sum_{e \in \mathcal{L}} |P(e)|)
              foreach p \in P(e) do
                  if f visible from p then add edge (p, f) to G
                                                                     – in total:
          delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
                                                                                                                        |P(e)|
                                                                                    \sum_{\text{on horizon at some time}} |
  return C
```

```
Stage r of for-loop (w/o foreach loop)
Rand3DConvexHull(P \subset \mathbb{R}^3)
                                                                      takes time O(|F_{\text{conflict}}(p_r)|) =
 pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
  C \leftarrow CH(P')
                                                                      O(#facets del. when adding p_r)
  compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
 initialize conflict graph G
                                                                     This part of for-loop in total:
  for r = 5 to n do
      if F_{\text{conflict}}(p_r) \neq \emptyset then
                                                                      E[#facets deleted] =
          delete all facets in F_{\text{conflict}}(p_r) from C
                                                                          \leq E[#facets created] = O(n).
          \mathcal{L} \leftarrow list of horizon edges visible from p_r
          foreach e \in \mathcal{L} do
              f \leftarrow C.create_facet(e, p_r); create vtx for f in G
                                                                      Outer foreach-loop:
              (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
              P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
                                                                      - in stage r: O(\sum_{e \in \mathcal{L}} |P(e)|)
              foreach p \in P(e) do
                  if f visible from p then add edge (p, f) to G
                                                                     – in total:
          delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
                                                                                 \sum_{e \text{ on horizon at some time}} |_{e}
                                                                                                                         |P(e)|
  return C
                                                                          = O(n^2)
```

Theorem. The convex hull of a set of *n* pts in \mathbb{R}^3 can be computed in O() expected time.

Stage r of for-loop (w/o foreach loop) Rand3DConvexHull($P \subset \mathbb{R}^3$) takes time $O(|F_{\text{conflict}}(p_r)|) =$ pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ O(#facets del. when adding $p_r)$ compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G This part of for-loop in total: for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then E[#facets deleted] = delete all facets in $F_{\text{conflict}}(p_r)$ from C $\leq E[$ #facets created] = O(n). $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create_facet (e, p_r) ; create vtx for f in G Outer foreach-loop: $(f_1, f_2) \leftarrow \text{previously_incident}_{\mathbb{C}}(e)$ $P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)$ - in stage $r: O(\sum_{e \in \mathcal{L}} |P(e)|)$ foreach $p \in P(e)$ do **if** *f* visible from *p* **then** add edge (p, f) to *G* – in total: delete vtc $\{p_r\} \cup F_{\text{conflict}}(p_r)$ from *G* P(e)return C *e* on horizon at some time using *configuration spaces*, Section 9.5 [Comp. Geom A&A] $= O(n^{2})$

Theorem. The convex hull of a set of *n* pts in \mathbb{R}^3 can be computed in O() expected time.

Stage r of for-loop (w/o foreach loop) Rand3DConvexHull($P \subset \mathbb{R}^3$) tim takes time $O(|F_{\text{conflict}}(p_r)|) =$ pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ O(#facets del. when adding $p_r)$ (\varkappa) compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G This part of for-loop in total: for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then E[#facets deleted] = delete all facets in $F_{\text{conflict}}(p_r)$ from C $\leq E[$ #facets created] = O(n). $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create_facet (e, p_r) ; create vtx for f in G Outer foreach-loop: $(f_1, f_2) \leftarrow \text{previously_incident}_{\mathbb{C}}(e)$ $P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)$ - in stage $r: O(\sum_{e \in \mathcal{L}} |P(e)|)$ foreach $p \in P(e)$ do – in total: if f visible from p then add edge (p, f) to Gdelete vtc $\{p_r\} \cup F_{\text{conflict}}(p_r)$ from *G* P(e)return C e on horizon at some time using configuration spaces, Section 9.5 [Comp. Geom A&A] -

 $O(n \log n)$

```
Stage r of for-loop (w/o foreach loop)
     Rand3DConvexHull(P \subset \mathbb{R}^3)
tim
                                                                           takes time O(|F_{\text{conflict}}(p_r)|) =
       pick non-coplanar set P' = \{p_1, \ldots, p_4\} \subseteq P
        C \leftarrow CH(P')
                                                                           O(#facets del. when adding p_r)
(\varkappa)
       compute rand. perm. (p_5, \ldots, p_n) of P \setminus P'
       initialize conflict graph G
                                                                          This part of for-loop in total:
       for r = 5 to n do
            if F_{\text{conflict}}(p_r) \neq \emptyset then
                                                                           E[#facets deleted] =
                delete all facets in F_{\text{conflict}}(p_r) from C
                                                                               \leq E[#facets created] = O(n).
                \mathcal{L} \leftarrow list of horizon edges visible from p_r
                foreach e \in \mathcal{L} do
                    f \leftarrow C.create_facet(e, p_r); create vtx for f in G
                                                                           Outer foreach-loop:
                    (f_1, f_2) \leftarrow \text{previously\_incident}_{\mathbb{C}}(e)
                    P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)
                                                                           - in stage r: O(\sum_{e \in \mathcal{L}} |P(e)|)
                    foreach p \in P(e) do
                                                                          – in total:
                        if f visible from p then add edge (p, f) to G
                delete vtc \{p_r\} \cup F_{\text{conflict}}(p_r) from G
                                                                                                                                 (e)
       return C
                                                                                      e on horizon at some time
        using configuration spaces, Section 9.5 [Comp. Geom A&A] –
                                                                                                 O(n \log n)
```

 \mathbb{R}^d , d > 3

Theorem. The convex hull of a set of *n* pts in \mathbb{R}^3 can be computed in $O(n \log n)$ expected time.

time	Rand3 pick $C \leftarrow$
\widehat{u}	comp
$\mathbf{\tilde{\mathbf{a}}}$	initia
\bigcirc	for <i>r</i>

Stage r of for-loop (w/o foreach loop) SDConvexHull($P \subset \mathbb{R}^3$) takes time $O(|F_{\text{conflict}}(p_r)|) =$ non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ CH(P')O(#facets del. when adding $p_r)$ pute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ alize conflict graph G This part of for-loop in total: = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then E[#facets deleted] = delete all facets in $F_{\text{conflict}}(p_r)$ from C $\leq E[$ #facets created] = O(n). $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create_facet (e, p_r) ; create vtx for f in G Outer foreach-loop: $(f_1, f_2) \leftarrow \text{previously_incident}_{\mathbb{C}}(e)$ $P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)$ - in stage $r: O(\sum_{e \in \mathcal{L}} |P(e)|)$ foreach $p \in P(e)$ do if f visible from p then add edge (p, f) to G– in total: delete vtc $\{p_r\} \cup F_{\text{conflict}}(p_r)$ from *G* (e)return C e on horizon at some time using *configuration spaces*, Section 9.5 [Comp. Geom A&A] – $O(n \log n)$

 \mathbb{R}^d , d > 3

Theorem. The convex hull of a set of *n* pts in \mathbb{R}^3 can be computed in $O(n \log n)$ expected time.

Stage r of for-loop (w/o foreach loop) Rand3DConvexHull($P \subset \mathbb{R}^3$) tim takes time $O(|F_{\text{conflict}}(p_r)|) =$ pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ O(#facets del. when adding $p_r)$ (n)compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G This part of for-loop in total: for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then E[#facets deleted] = delete all facets in $F_{\text{conflict}}(p_r)$ from C $\leq E[$ #facets created] = O(n). $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create_facet (e, p_r) ; create vtx for f in G Outer foreach-loop: $(f_1, f_2) \leftarrow \text{previously_incident}_{\mathbb{C}}(e)$ $P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)$ - in stage $r: O(\sum_{e \in \mathcal{L}} |P(e)|)$ foreach $p \in P(e)$ do if f visible from p then add edge (p, f) to G– in total: delete vtc $\{p_r\} \cup F_{\text{conflict}}(p_r)$ from *G* return C e on horizon at some time using *configuration spaces*, Section 9.5 [Comp. Geom A&A] – $O(n \log n)$

Computational Geometry

Lecture 9: Convex Hulls in 3D or Mixing More Things

Part IV: Half-Space Intersections

Philipp Kindermann

Winter Semester 2020

Convex Hulls and Half-Space Intersections

10 - 1

Convex Hulls and Half-Space Intersections Plane

10 - 2

Convex Hulls and Half-Space Intersections Plane Define dualtity * between pts and (non-vertical) lines:

Convex Hulls and Half-Space Intersections Plane Define dualtity * between pts and (non-vertical) lines:

10 - 4

For $p = (p_x, p_y)$,

10 - 5

Define dualtity ***** between pts and (non-vertical) lines:

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

For $\ell: y = mx + b$,

10 - 10

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$. primal dual

For $\ell: y = mx + b$,

10 - 11

Define dualtity * between pts and (non-vertical) lines:

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$

10 - 12

Define dualtity ***** between pts and (non-vertical) lines:

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

10 - 13

Define dualtity ***** between pts and (non-vertical) lines:

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe.

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. Let $p \in \mathbb{R}^2$ and let ℓ be a non-vertical line.

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. Let $p \in \mathbb{R}^2$ and let ℓ be a non-vertical line. \star is incidence-preserving:

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. Let $p \in \mathbb{R}^2$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \iff \ell^* \in p^*$

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^*: y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. Let $p \in \mathbb{R}^2$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \iff \ell^* \in p^*$

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^*: y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. Let $p \in \mathbb{R}^2$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \iff \ell^* \in p^*$

Define dualtity ***** between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^*: y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. Let $p \in \mathbb{R}^2$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \iff \ell^* \in p^*$ \star is order-preserving:

Define dualtity ***** between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^*: y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. Let $p \in \mathbb{R}^2$ and let ℓ be a non-vertical line. * is incidence-preserving: $p \in \ell \iff \ell^* \in p^*$ * is order-preserving: p above $\ell \iff \ell^*$ above p^*

Define dualtity ***** between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^*: y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. Let $p \in \mathbb{R}^2$ and let ℓ be a non-vertical line. * is incidence-preserving: $p \in \ell \iff \ell^* \in p^*$ * is order-preserving: p above $\ell \iff \ell^*$ above p^*

Define dualtity ***** between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^*: y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. Let $p \in \mathbb{R}^2$ and let ℓ be a non-vertical line. * is incidence-preserving: $p \in \ell \iff \ell^* \in p^*$ * is order-preserving: p above $\ell \iff \ell^*$ above p^*

Define dualtity ***** between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^*: y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. Let $p \in \mathbb{R}^2$ and let ℓ be a non-vertical line. * is incidence-preserving: $p \in \ell \Leftrightarrow \ell^* \in p^*$ * is order-preserving: p above $\ell \Leftrightarrow \ell^*$ above p^*

Convex Hulls and Half-Space Intersections Plane

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^*: y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Convex Hulls and Half-Space Intersections Plane

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Convex Hulls and Half-Space Intersections Plane

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Convex Hulls and Half-Space Intersections Plane

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Convex Hulls and Half-Space Intersections

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Convex Hulls and Half-Space Intersections Plāne

Define dualtity ***** between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_x$.

For $\ell: y = mx + b$, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^{\star} = (m, -b)$.

Convex Hulls and Half-Space Intersections Plane

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Convex Hulls and Half-Space Intersections Plane Define dualtity * between pts and (non-vertical) lines: For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

dual

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

primal

Convex Hulls and Half-Space Intersections Plane

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Convex Hulls and Half-Space Intersections Plane

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^*: y = p_x x - p_y$

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Convex Hulls and Half-Space Intersections Plane

Define dualtity * between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^* : y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. Upper convex hulls of pts \leftrightarrow lower env. of lines

¹⁰⁻³⁷ **Convex Hulls and Half-Space Intersections Plane** Define dualtity * between pts and (non-vertical) lines:

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. ■ upper convex hulls of pts ↔ lower env. of lines
■ can compute inters. of "lower/upper" half planes (spaces) via upper/lower convex hulls

Computational Geometry

Lecture 9: Convex Hulls in 3D or Mixing More Things

Part V: Voronoi Diagrams Revisited

Philipp Kindermann

Winter Semester 2020

Voronoi Diagrams Revisited

Let $U: z = x^2 + y^2$ be the *unit paraboloid* in \mathbb{R}^3 .

12 - 15

Theorem. Let $P \subset \mathbb{R}^2 \times \{0\}$

Theorem. Let $P \subset \mathbb{R}^2 \times \{0\}$

Theorem. Let $P \subset \mathbb{R}^2 \times \{0\}$ and $\mathcal{H} = \{h(p) \mid p \in P\}$. Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H} .

Theorem. Let $P \subset \mathbb{R}^2 \times \{0\}$ and $\mathcal{H} = \{h(p) \mid p \in P\}$. Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H} .

Theorem. Let $P \subset \mathbb{R}^2 \times \{0\}$ and $\mathcal{H} = \{h(p) \mid p \in P\}$. Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H} .

The projection of $\mathcal{E}(\mathcal{H})$ on z = 0 is Vor(P).

can compute Vor(P) in \mathbb{R}^2 via upper envelope in \mathbb{R}^3

