Computational Geometry

Lecture 9:
 Convex Hulls in 3D
 Or
 Mixing More Things

Part I:
Complexity \& Visibility

Complexity of the Convex Hull

Given set S of n points in \mathbb{R}^{d}, what is max. \#edges on $\partial \mathrm{CH}(S)$?

dim	w-c complexity of $\mathrm{CH}(S)$
1	$2 \in \Theta(1)$
2	$n \in \Theta(n)$
3	$3 n-6 \in \Theta(n)$
d	$\Theta\left(n^{\lfloor d / 2\rfloor}\right)$
Upper Bound Theorem	

Construction

randomized-incremental!

Visibility

${ }^{p}$

Face f is visible from p but not from q.

Define conflict graph G :

Computational Geometry

> Lecture 9:
> Convex Hulls in 3D
> or
> Mixing More Things

Part II:
Randomized Incremental Algorithm

Rand3DConvexHull $\left(P \subset \mathbb{R}^{3}\right)$

pick non-coplanar set $P^{\prime}=\left\{p_{1}, \ldots, p_{4}\right\} \subseteq P$ $C \leftarrow \mathrm{CH}\left(P^{\prime}\right)$
compute rand. perm. $\left(p_{5}, \ldots, p_{n}\right)$ of $P \backslash P^{\prime}$ initialize conflict graph G for $r=5$ to n do
if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then $\left\{p_{r} \notin C\right\}$ delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C
$\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r}
foreach $e \in \mathcal{L}$ do
$f \leftarrow$ C.create facet $\left(e, p_{r}\right)$; create vtx for f in G
$\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident ${ }_{C}(e)$
$P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$
foreach $p \in P(e)$ do
if f is visible from p then add edge (p, f) to G delete vtc $\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)$ from G

Computational Geometry

Lecture 9:
 Convex Hulls in 3D
 Or
 Mixing More Things

Part III:
Analysis

Analysis

Idea. Bound expected structural change, that is, the total \#facets created by the algorithm.

Lemma. The expected \#facets created is at most $6 n-20$.
Proof. $\quad E[\#$ facets created $]=$

\#edges

$=4+\sum_{r=5}^{n} E\left[\#\right.$ facets incident to p_{r} in $\left.\mathrm{CH}\left(P_{r}\right)\right] \leq \begin{gathered}6 n \\ -20\end{gathered}$
For $r>4$:
$\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)$
$E\left[\operatorname{deg}\left(p_{r}, \mathrm{CH}\left(P_{r}\right)\right)\right]=\frac{1}{r-4} \sum_{i=5}^{r} \operatorname{deg}\left(p_{i}, \mathrm{CH}\left(P_{r}\right)\right)$
$\leq \frac{1}{r-4}[(\underbrace{\left.\sum_{i=1}^{r} \operatorname{deg}\left(p_{i}\right)\right)}-12]$
2 . \# edges of $\mathrm{CH}\left(P_{r}\right)$
$\leq \frac{1}{r-4}[2 \cdot(3 r-6)-12] \leq 6$

Running Time

Theorem. The convex hull of a set of n pts in \mathbb{R}^{3} can be computed in $O(n \log n)$ expected time.

if $F_{\text {conflict }}\left(p_{r}\right) \neq \varnothing$ then
delete all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from C
$\mathcal{L} \leftarrow$ list of horizon edges visible from p_{r}
foreach $e \in \mathcal{L}$ do
$f \leftarrow$ C.create_facet $\left(e, p_{r}\right)$; create vtx for f in G
$\left(f_{1}, f_{2}\right) \leftarrow$ previously_incident $_{C}(e)$
$P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$
foreach $p \in P(e)$ do
if f visible from p then add edge (p, f) to G in total:
delete vtc $\left\{p_{r}\right\} \cup F_{\text {conflict }}\left(p_{r}\right)$ from G
return C
using configuration spaces, Section 9.5 [Comp. Geom A\&A]
$O\left(n^{[d / 2\rfloor}\right)$ Stage r of for-loop (w/o foreach loop) takes time $O\left(\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)=$ O (\#facets del. when adding p_{r})
This part of for-loop in total:
E[\#facets deleted] $=$
$\leq E[\#$ facets created $]=O(n)$.

Lemma

Outer foreach-loop:

- in stage $r: O\left(\sum_{e \in \mathcal{L}}|P(e)|\right)$
$O\left(\sum_{e \text { on horizon at some time }}|P(e)|\right)$
$=O\left(n^{2}-O(n \log n)\right.$

Computational Geometry

Lecture 9:
Convex Hulls in 3D
Or
Mixing More Things

Part IV:
Half-Space Intersections

Convex Hulls and Half-Space Intersections Plane

Define dualtity \star between pts and (non-vertical) lines:
For $p=\left(p_{x}, p_{y}\right)$, define the line $p^{\star}: y=p_{x} x-p_{y}$.

dual

For $\ell: y=m x+b$, define ℓ^{\star} to be the pt q with $q^{\star}=\ell$, that is, $\ell^{\star}=(m,-b)$.

Observe. Let $p \in \mathbb{R}^{2}$ and let ℓ be a non-vertical line. \star is incidence-preserving: $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$
\star is order-preserving: $\quad p$ above $\ell \Leftrightarrow \ell^{\star}$ above p^{\star}

Computational Geometry

Lecture 9:
 Convex Hulls in 3D
 Or

Mixing More Things
Part V:
Voronoi Diagrams Revisited

Yoronoi Diagram/s Revisited
Let $U: z=x^{2}+y^{2}$ be the unit paraboloid in \mathbb{R}^{3}.

Note that $p^{\prime} \in h(p)$.

$$
\begin{aligned}
& \begin{array}{l}
z_{q^{\prime}}-\overline{z_{q(p)}} \\
=|p q|^{2}
\end{array} \\
& \quad q(p)=\left(q_{x}, q_{y}, 2 p_{x} q_{x}+2 p_{y} q_{y}-\left(p_{x}^{2}+p_{y}^{2}\right)\right)
\end{aligned}
$$

$\Rightarrow h(p)$ and U encode dist. betw. p and any other pt in $z=0$.
$\Rightarrow h(p) \cap U=\left\{p^{\prime}\right\} \Rightarrow h(p)$ is tangent to U (in p^{\prime})

The Upper Envelope Strikes Back

Theorem. Let $P \subset \mathbb{R}^{2} \times\{0\}$ and $\mathcal{H}=\{h(p) \mid p \in P\}$.
Let $\mathcal{E}(\mathcal{H})$ be the upper envelope of \mathcal{H}.
The projection of $\mathcal{E}(\mathcal{H})$ on $z=0$ is $\operatorname{Vor}(P)$.
can compute $\operatorname{Vor}(P)$ in \mathbb{R}^{2} via upper envelope in \mathbb{R}^{3}

upper envelope in \mathbb{R}^{3} is in one-to-one correspondence to lower convex hull of pt set \mathcal{H}^{\star} \downarrow

