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Complexity of the Convex Hull

Given set S of n points in Rd,
dim w-c complexity of CH(S)

1
2
3
d

2 ∈ Θ(1)
n ∈ Θ(n)

3n− 6 ∈ Θ(n)
Θ(nbd/2c)

Upper Bound Theorem

Construction
randomized-incremental!

what is max. #edges on ∂CH(S)?
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Visibility

q

horizon

r

p

h f

Face f is visible from p but not from q.

points facets

r

f

Fconflict(r)
Pconflict( f )

f

(visibility)
conflicts

Define conflict graph G:

f
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pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
( f1, f2)← previously incidentC(e)
P(e)← Pconflict( f1) ∪ Pconflict( f2)
foreach p ∈ P(e) do

if f is visible from p then add edge (p, f ) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

{ pr 6∈ C } 7

8

9

e

Worst-case running time: O(n3)
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Analysis
Idea. Bound expected structural change

that is, the total #facets created by the algorithm.
,

Proof. E[#facets created] =
= 4 + ∑n

r=5 E[#facets incident to pr in CH(Pr)]︸ ︷︷ ︸
#edges

deg(pr, CH(Pr))For r > 4:
E[deg(pr, CH(Pr))] =

1
r−4 ∑r

i=5 deg(pi, CH(Pr))

≤ 1
r−4 [(∑

r
i=1 deg(pi))− 12]︸ ︷︷ ︸

2 · # edges of CH(Pr)

≤ 1
r−4
[
2 · (3r− 6)− 12

]
≤ 6

≤ 6n
−20

Lemma. The expected #facets created is at most 6n− 20.
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Running Time
Theorem. The convex hull of a set of n pts in R3 can be

computed in O(n log n) expected time.

using configuration spaces, Section 9.5 [Comp. Geom A&A]

Stage r of for-loop (w/o foreach loop)

takes time O(|Fconflict(pr)|) =
O(#facets del. when adding pr)

This part of for-loop in total:
E[#facets deleted] =
≤ E[#facets created] =O(n).

Outer foreach-loop:
– in stage r:O(∑e∈L |P(e)|)
– in total:

O

(
∑

e on horizon at some time
|P(e)|

)
Lemma

{

O
(n
)

ti
m

e Rand3DConvexHull(P ⊂ R3)
pick non-coplanar set P′={p1, . . . , p4}⊆P
C ← CH(P′)
compute rand. perm. (p 5, . . . , pn) of P\P′
initialize conflict graph G
for r = 5 to n do

if Fconflict(pr) 6= ∅ then
delete all facets in Fconflict(pr) from C
L ← list of horizon edges visible from pr
foreach e ∈ L do

f ← C.create facet(e, pr); create vtx for f in G
( f1, f2)← previously incidentC(e)
P(e)← Pconflict( f1) ∪ Pconflict( f2)
foreach p ∈ P(e) do

if f visible from p then add edge (p, f ) to G

delete vtc {pr} ∪ Fconflict(pr) from G

return C

= O(n2) O(n log n)

Rd, d > 3

O(nbd/2c)
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Convex Hulls and Half-Space Intersections
Define dualtity ? between pts and (non-vertical) lines:

For p = (px, py),

that is, `? = (m,−b).
,

Observe. Let p ∈ R2 and let ` be a non-vertical line.
? is incidence-preserving:
? is order-preserving:

p ∈ ` ⇔ `? ∈ p?

p above ` ⇔ `? above p?

Plane

p
p?

` `?

primal dual
g

g?

For ` : y = mx + b, define `? to be the pt q with q? = `

define the line p? : y = pxx− py.

h h?
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Voronoi Diagrams Revisited

Let U : z = x2 + y2 be the unit paraboloid in R3.

p = (px, py, 0)

p′ = (px, py, p2
x + p2

y)

q

q(p) =

h(p) : z = (2px)x + (2py)y− (p2
x + p2

y)

q′

=|pq|2 =
√
(qx − px)2 + (qy − py)2|pq|

⇒ h(p) and U encode dist. betw. p and any other pt in z=0.

⇒ h(p) ∩U = {p′} ⇒ h(p) is tangent to U (in p′)

h(q) Note that p′ ∈ h(p).

(qx, qy, 2pxqx + 2pyqy − (p2
x + p2

y))

zq′−zq(p)

Voronoi Diagrams Revisited
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The Upper Envelope Strikes Back
and H = {h(p) | p ∈ P}.

Vor(P)

can compute Vor(P) in R2

via upper envelope in R3

use algorithm Rand3DConvexHull!

upper envelope in R3 is in
one-to-one correspondence to
lower convex hull of pt set H?

The projection of E(H) on z = 0 is Vor(P).

Let E(H) be the upper envelope of H.

Theorem. Let P ⊂ R2 × {0}
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