Lecture 9: Convex Hulls in 3D or Mixing More Things

Part I: Complexity & Visibility

Philipp Kindermann

Complexity of the Convex Hull

Given set *S* of *n* points in \mathbb{R}^d , what is max. #edges on $\partial CH(S)$?

Upper Bound Theorem

Construction

randomized-incremental!

p

Lecture 9: Convex Hulls in 3D or Mixing More Things

Part II: Randomized Incremental Algorithm

Philipp Kindermann

Rand3DConvexHull($P \subset \mathbb{R}^3$) pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ 8 compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then $\{ p_r \notin C \}$ delete all facets in $F_{\text{conflict}}(p_r)$ from C $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create_facet(*e*, *p*_{*r*}); create vtx for *f* in *G* $(f_1, f_2) \leftarrow \text{previously_incident}_{\mathbb{C}}(e)$ $P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)$ foreach $p \in P(e)$ do if *f* is visible from *p* then add edge (p, f) to *G* delete vtc $\{p_r\} \cup F_{\text{conflict}}(p_r)$ from *G* Worst-case running time: $O(n^3)$ return C

Lecture 9: Convex Hulls in 3D or Mixing More Things

Part III: Analysis

Philipp Kindermann

Analysis

Idea. Bound expected *structural change*, that is, the total #facets created by the algorithm.

Running Time

 \mathbb{R}^d , d > 3

Theorem. The convex hull of a set of *n* pts in \mathbb{R}^3 can be computed in $O(n \log n)$ expected time.

Stage r of for-loop (w/o foreach loop) Rand3DConvexHull($P \subset \mathbb{R}^3$) tim takes time $O(|F_{\text{conflict}}(p_r)|) =$ pick non-coplanar set $P' = \{p_1, \ldots, p_4\} \subseteq P$ $C \leftarrow CH(P')$ O(#facets del. when adding $p_r)$ (n)compute rand. perm. (p_5, \ldots, p_n) of $P \setminus P'$ initialize conflict graph G This part of for-loop in total: for r = 5 to n do if $F_{\text{conflict}}(p_r) \neq \emptyset$ then E[#facets deleted] = delete all facets in $F_{\text{conflict}}(p_r)$ from C $\leq E[$ #facets created] = O(n). $\mathcal{L} \leftarrow$ list of horizon edges visible from p_r foreach $e \in \mathcal{L}$ do $f \leftarrow C$.create_facet (e, p_r) ; create vtx for f in G Outer foreach-loop: $(f_1, f_2) \leftarrow \text{previously_incident}_{\mathbb{C}}(e)$ $P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)$ - in stage $r: O(\sum_{e \in \mathcal{L}} |P(e)|)$ foreach $p \in P(e)$ do if f visible from p then add edge (p, f) to G– in total: delete vtc $\{p_r\} \cup F_{\text{conflict}}(p_r)$ from *G* return C e on horizon at some time using *configuration spaces*, Section 9.5 [Comp. Geom A&A] – $O(n \log n)$

Lecture 9: Convex Hulls in 3D or Mixing More Things

Part IV: Half-Space Intersections

Philipp Kindermann

Convex Hulls and Half-Space Intersections Plane

Define dualtity ***** between pts and (non-vertical) lines:

For $p = (p_x, p_y)$, define the line $p^*: y = p_x x - p_y$.

For ℓ : y = mx + b, define ℓ^* to be the pt q with $q^* = \ell$, that is, $\ell^* = (m, -b)$.

Observe. Let $p \in \mathbb{R}^2$ and let ℓ be a non-vertical line. * is incidence-preserving: $p \in \ell \iff \ell^* \in p^*$ * is order-preserving: p above $\ell \iff \ell^*$ above p^*

10 - 24

Lecture 9: Convex Hulls in 3D or Mixing More Things

Part V: Voronoi Diagrams Revisited

Philipp Kindermann

The Upper Envelope Strikes Back

