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Triangulation of Planar Point Sets

Definition. Given P C IR?, a triangulation of P is a maximal
planar subdivision with vtx set P, that is, no
edge can be added without crossing.

===

Observe.  m all inner faces are triangles

B outer face is complement of a convex polygon

(Theorem. Let P C IR? be a set of n sites, not all collinear,
and let /1 be the number of sites on JCH(P).

Then any triangulation of P has
2n — 2 — h triangles and 3n — 3 — h edges.
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Back to Height Interpolation

40
/ 890

height = 985 height = 23

Intuition. Avoid “skinny” triangles!

In other words: avoid small angles!
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Definition. Given a set P C R?and a triangulation 7 of P,
let m be the number of triangles in / and let
A(T) = (a1, ...,ua3y) be the angle vector of T,
where a1 < --- < ag,, are the angles in the
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We say A(7) > A(T")
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T is angle-optimal if
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Edge Flips

Definition. Let 7 be a triangulation. An edge ¢ of 7 is
illegal if the minimum angle in the two
triangles adjacent to e increases when flipping.

Observe.  Let ¢ be an illegal edge of 7, and 7' = flip(T, ¢).
Then A(T7") > A(T).

min; &; = 60° min; &; = 30°

/
T fip T
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") Use Thales++ w.r.t. 75, M
Note. If s € dD, both pg and rs legal
Definition. A triangulation is legal if it has no illegal edge.
Existence? Algorithm: Let 7 be any triangulation of P.
1 ! While 7 has an illegal edge e, flip e. Return 7.
algorithm - L~
terminates I
t A(T) goes up! & #(triangulations of P) < oo
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Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.
But 1s every legal triangulation angle-optimal??

Let’s see.
To clarity things, we’ll introduce yet another
type of triangulation. ..
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Voronoi & Delaunay

Recall: Given a set P of n points in the plane. ..

Vor(P) = subdivision of the plane into
Voronoi cells, edges, and vertices

V(p) = {x € R?: |xp| < |xg| forallg € P\ {p}}
Voronoi cell of p € P

Definition: The graph G = (P, E) with
{p,q} € E & V(p) and V(g) share an edge
is the dual graph of Vor(P)

Definition: The Delaunay graph DG (P) is the straight-line
drawing of G.
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Proof. Recall property of Voronoi edges:

Edge pgis in DG(P) < dD,, closed disk s.t.
mpqcdDy and

B {p.9r=Dp 0P
¢ = center(D,) lies on edge betw. V(p) & V(g).

Suppose Juv # pgin DG(P) that crosses 1.
u,o g qu — U, 0 g t]%] —
uv crosses another edge of £,

P9 ¢ D= p,q &t =

pq crosses another edge of £,
= one of s, or s, crosses one of s,, Or sy

spg CV(p), sqp CV(q), 5u0 C V(u), sou C V().
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Planarity

[Lemma. P C R? finite = DG(P) plane. ]
Proof. Recall property of Voronoi edges:

Edge pgis in DG(P) < dD,, closed disk s.t.
mpqcdDy and

B {p.9r=Dp 0P
¢ = center(D,) lies on edge betw. V(p) & V(g).

Suppose Juv # pgin DG(P) that crosses 1.
u,o g qu — U, 0 g t]%] —
uv crosses another edge of £,

P9 ¢ D= p,q &t =

pq crosses another edge of £,
= one of s, or s, crosses one of s,, Or sy

L7 5,0 CV(P), Sqp C V(q), Suv C V(11), 501 C V(0).
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[Lemma. P c IR? finite. Then

(i) Three pts p,q,r € P are vertices of the same
face of DG(P) < int(C(p,gq,7r)) NP =Q

(ii) Two pts p,q € P form an edge of DG(P) <
there is a disk D with
mJDNP=1{p,q}and
B int(D)NP=0.

P C R? finite, T triangulation of P. Then

0 7T Delaunay < for each triangle A of 7
< int(C(A)) NP = Q.
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>

[Lemma. P c IR? finite. Then

(i) Three pts p,q,r € P are vertices of the same
face of DG(P) < int(C(p,gq,7r)) NP =Q

(ii) Two pts p,q € P form an edge of DG(P) <
there is a disk D with
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Characterization of Voronoi vertices and Voronoi edges =

>

[Lemma. P c IR? finite. Then

(i) Three pts p,q,r € P are vertices of the same
face of DG(P) < int(C(p,gq,7r)) NP =Q

(ii) Two pts p,q € P form an edge of DG(P) <
there is a disk D with
mJDNP=1{p,q}and
B int(D)NP=0.

P C R? finite, T triangulation of P. Then

T Delaunay <> for each triangle A of 7T
int(C(A)) NP = Q.

(“empty-circumcircle property”)
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“="by contradiction:
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bounded by co-circular pts

|l Thales++ homework exercise!
All Delaunay triang. have same min. angle.
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