

Computational Geometry

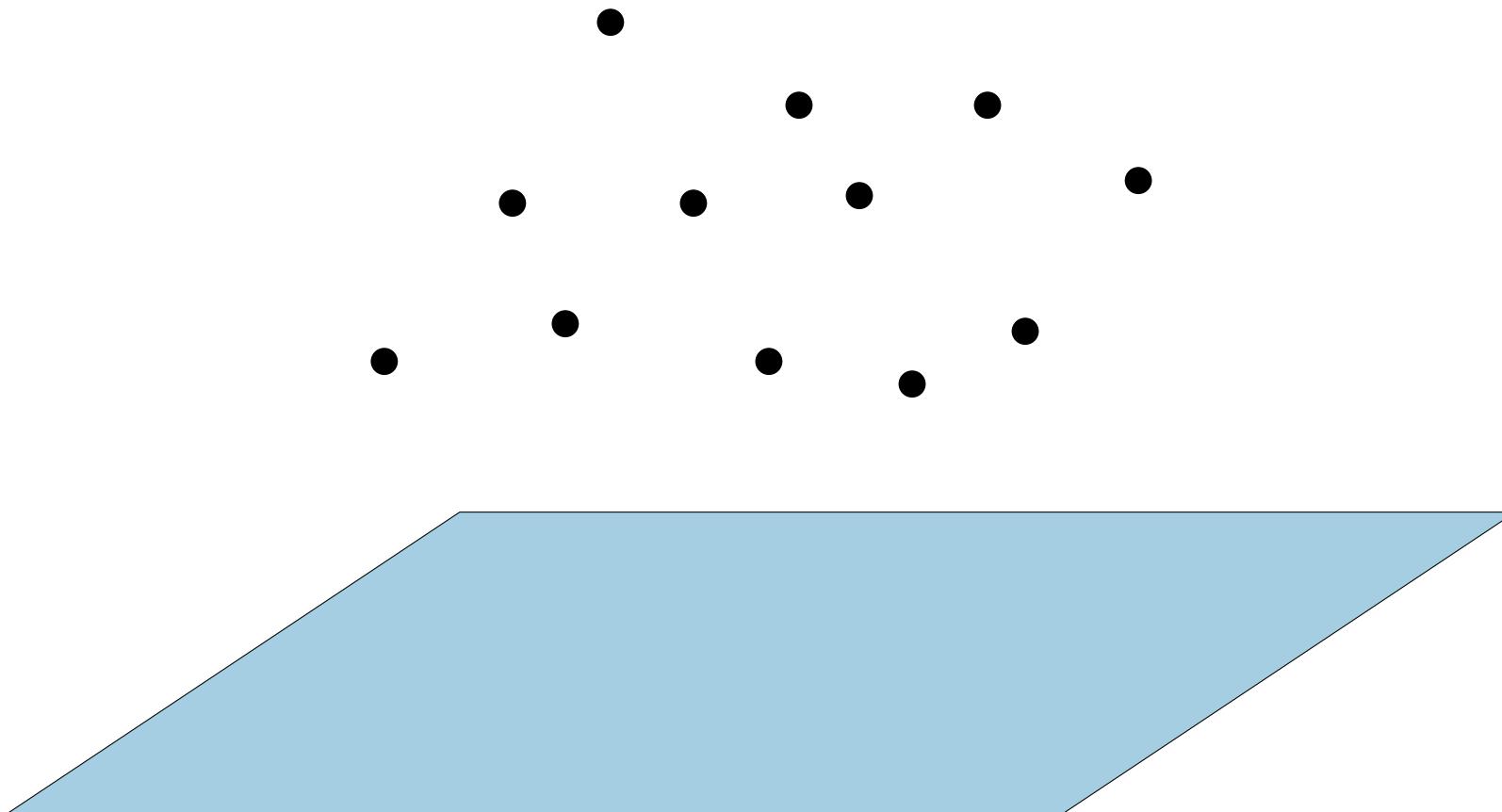
Lecture 8:
Delaunay Triangulations
or
Height Interpolation

Part I:
Height Interpolation

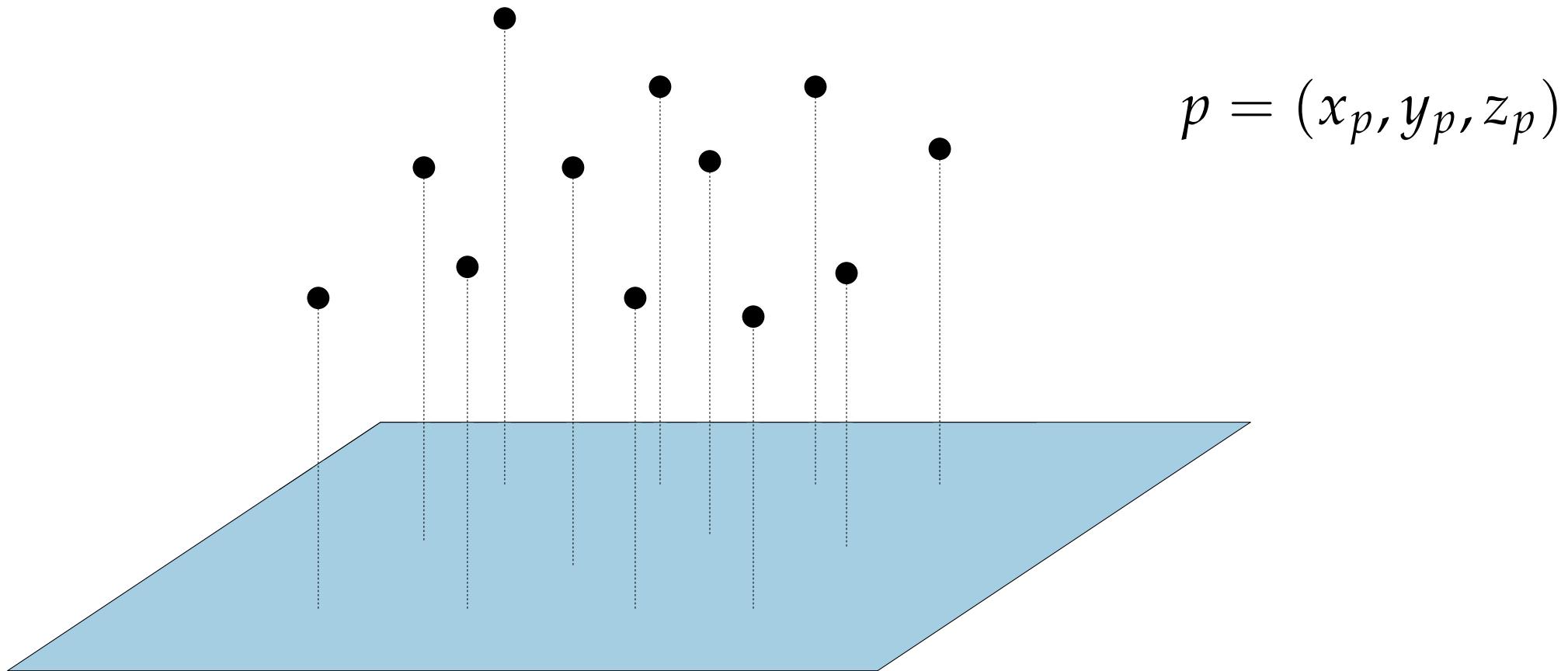
Philipp Kindermann

Summer Semester 2020

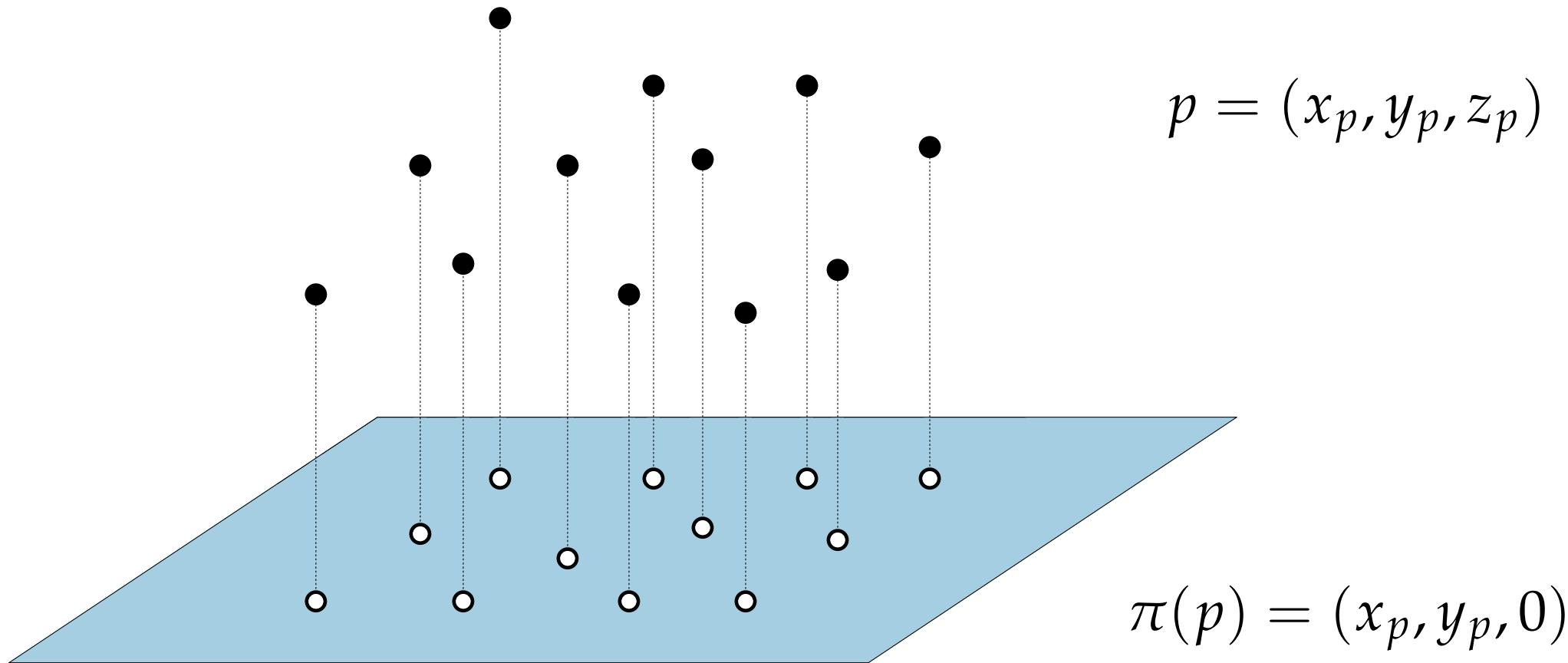
Height Interpolation



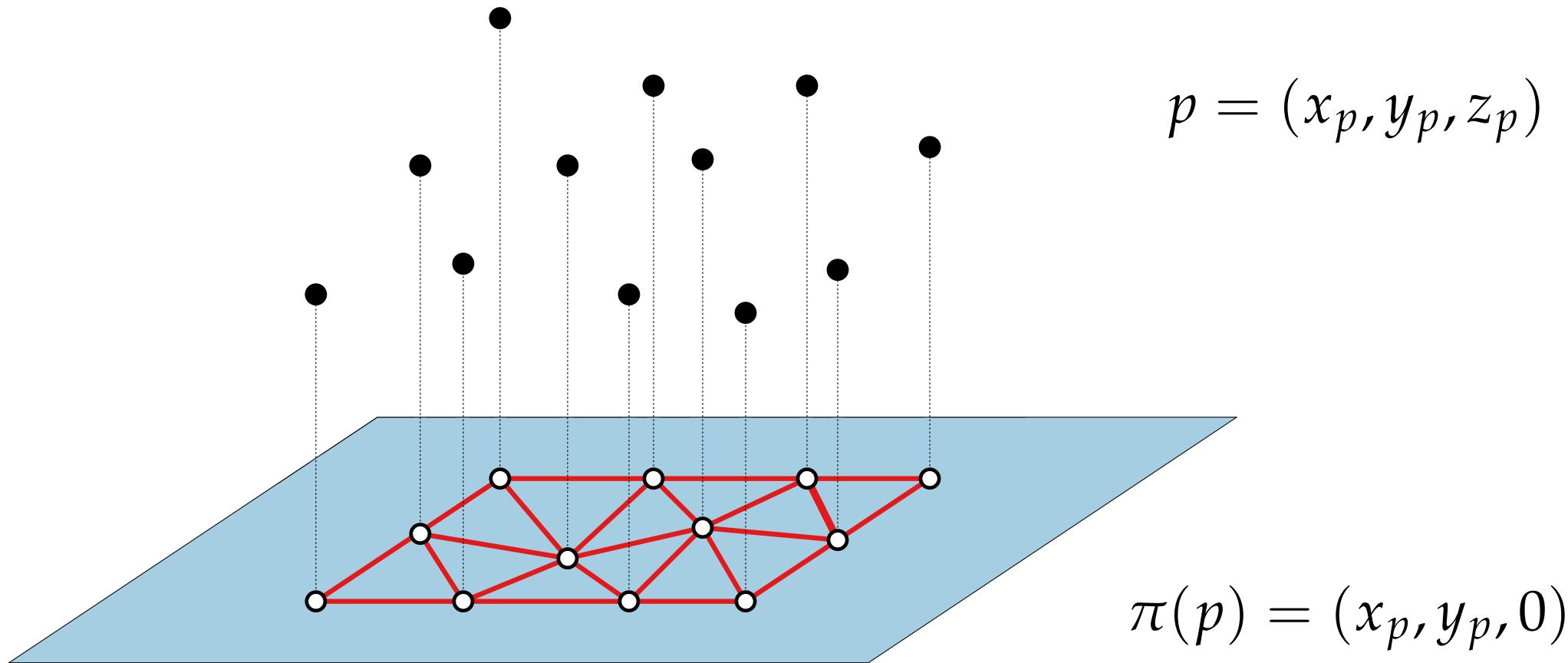
Height Interpolation



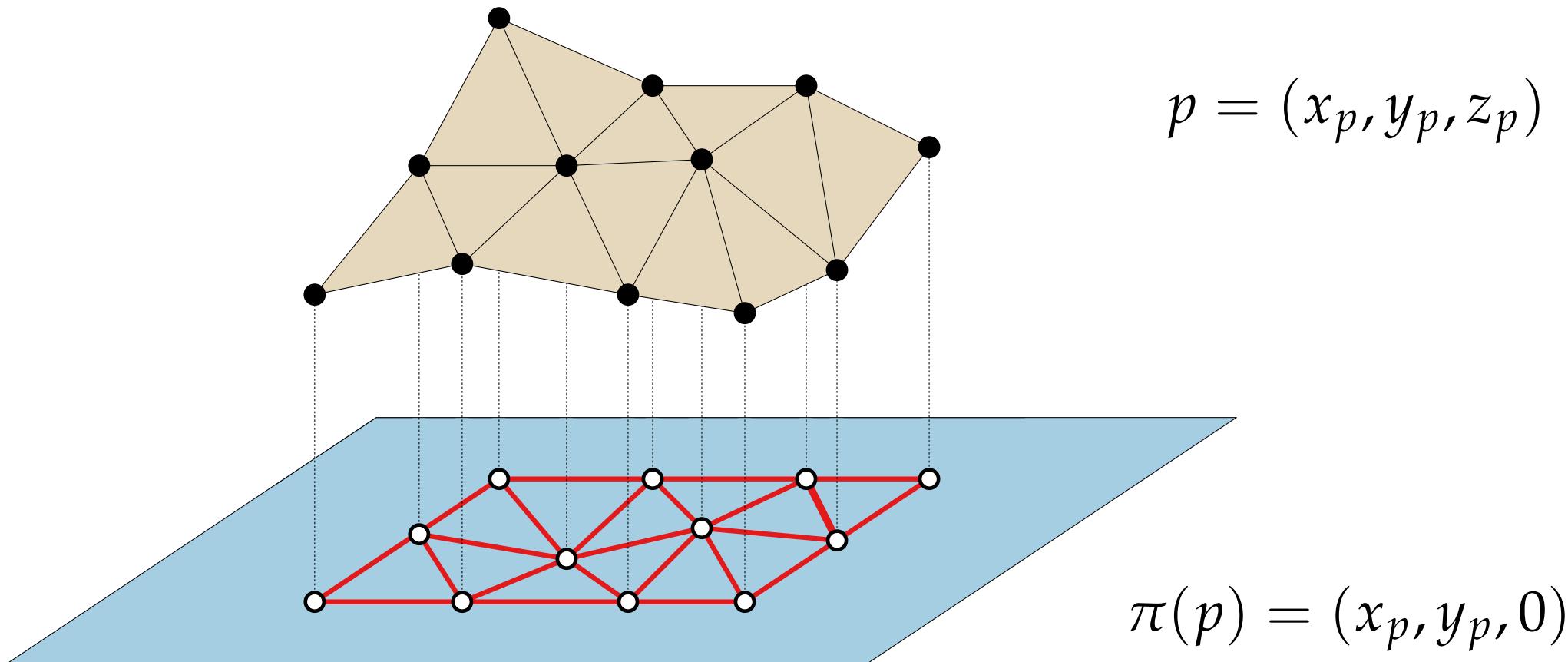
Height Interpolation



Height Interpolation

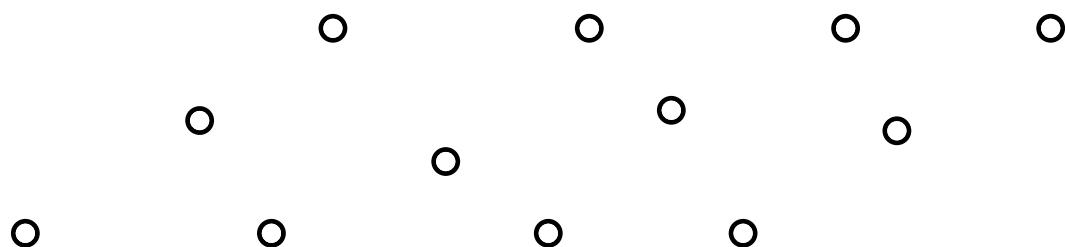


Height Interpolation



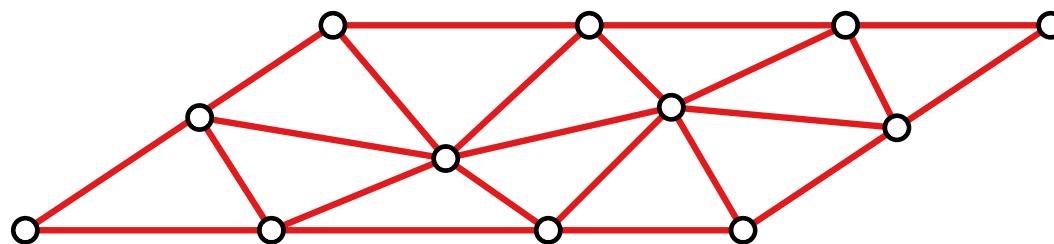
Triangulation of Planar Point Sets

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P , that is, no edge can be added without crossing.



Triangulation of Planar Point Sets

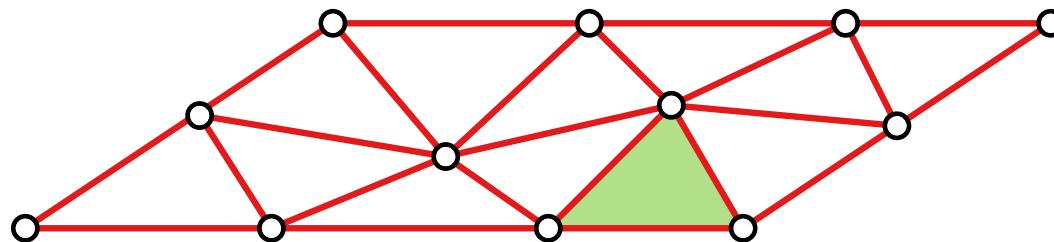
Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P , that is, no edge can be added without crossing.



Observe.

Triangulation of Planar Point Sets

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P , that is, no edge can be added without crossing.

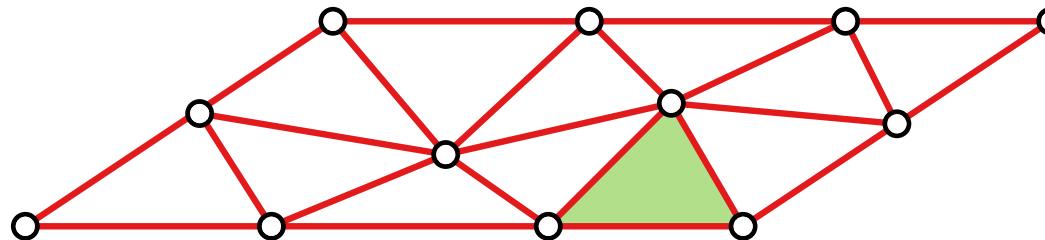


Observe.

- all inner faces are triangles

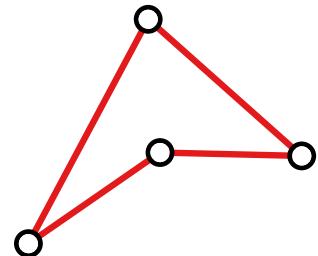
Triangulation of Planar Point Sets

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P , that is, no edge can be added without crossing.



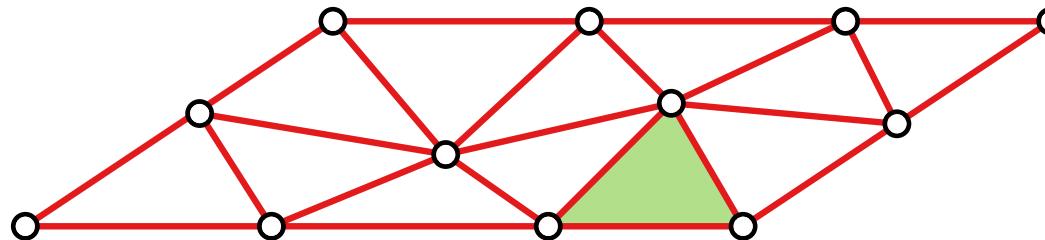
Observe.

- all inner faces are triangles



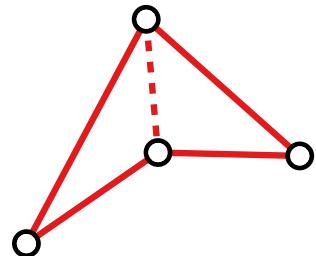
Triangulation of Planar Point Sets

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P , that is, no edge can be added without crossing.



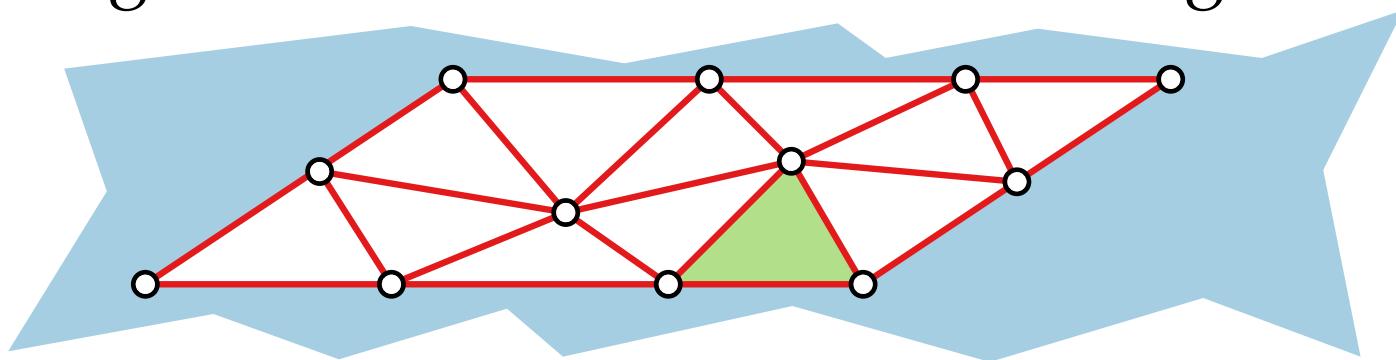
Observe.

- all inner faces are triangles



Triangulation of Planar Point Sets

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P , that is, no edge can be added without crossing.

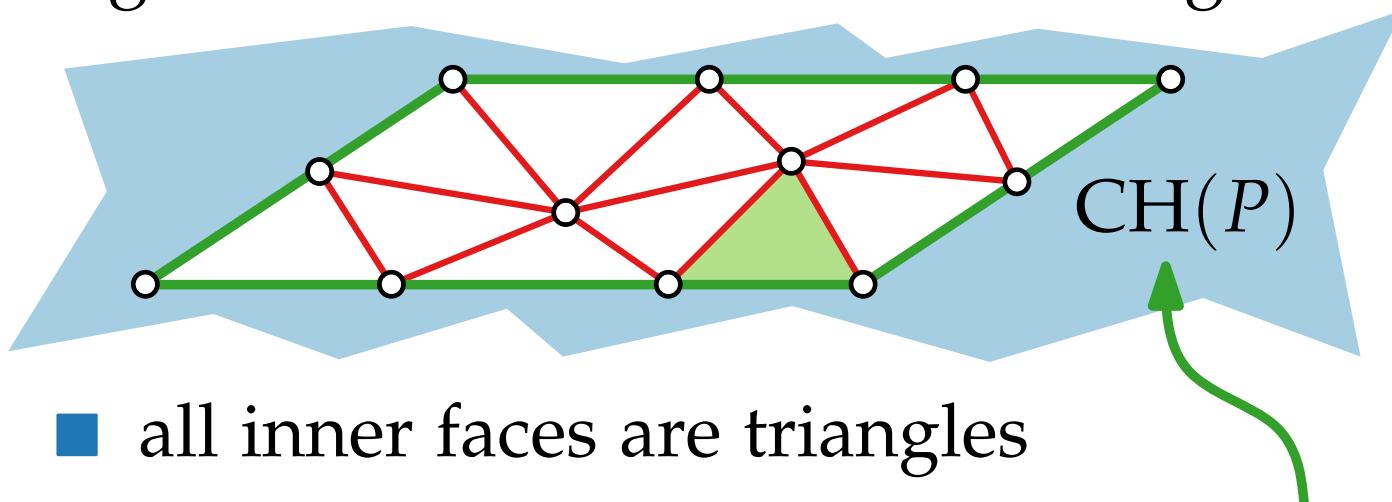


Observe.

- all inner faces are triangles
- outer face is complement of a convex polygon

Triangulation of Planar Point Sets

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P , that is, no edge can be added without crossing.

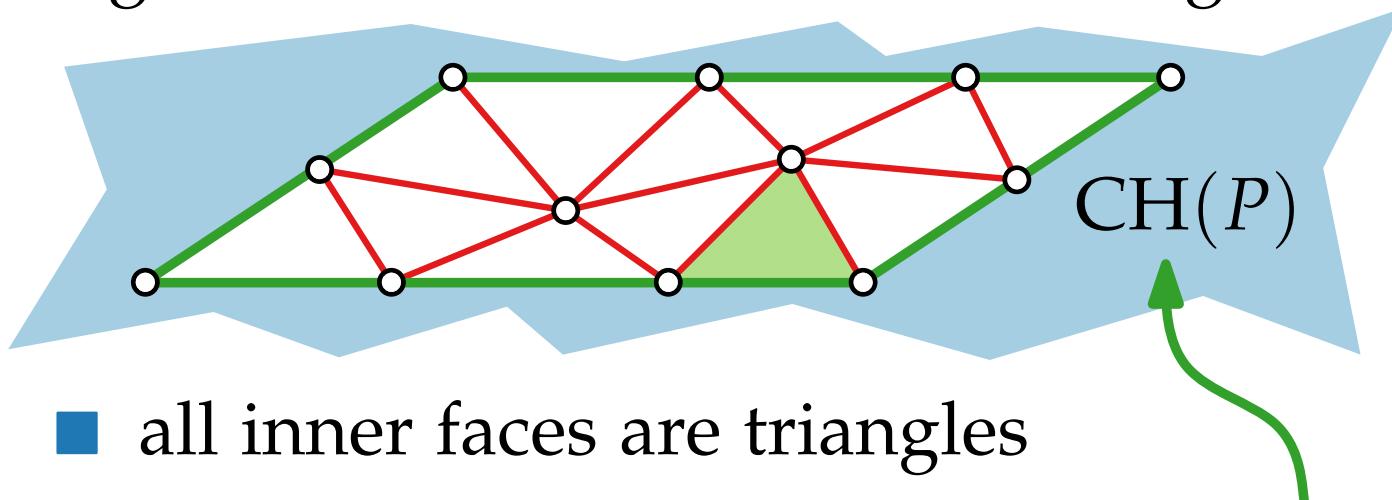


Observe.

- all inner faces are triangles
- outer face is complement of a convex polygon

Triangulation of Planar Point Sets

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P , that is, no edge can be added without crossing.



Observe.

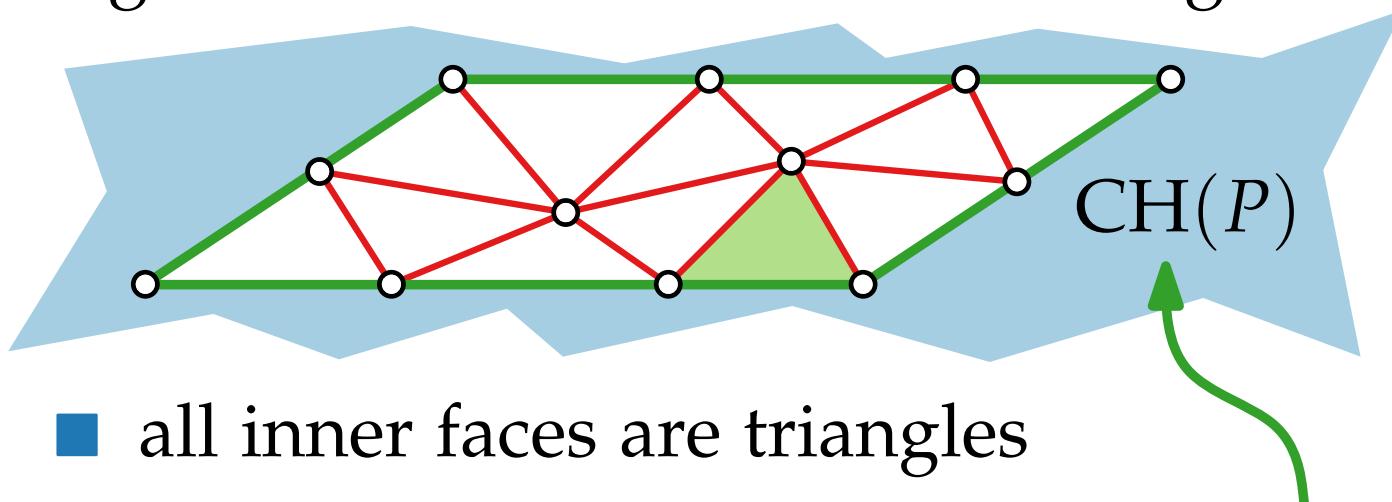
- all inner faces are triangles
- outer face is complement of a convex polygon

Theorem.

Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial\text{CH}(P)$.

Triangulation of Planar Point Sets

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P , that is, no edge can be added without crossing.



Observe.

- all inner faces are triangles
- outer face is complement of a convex polygon

Theorem.

Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial\text{CH}(P)$.

Then *any* triangulation of P has

?

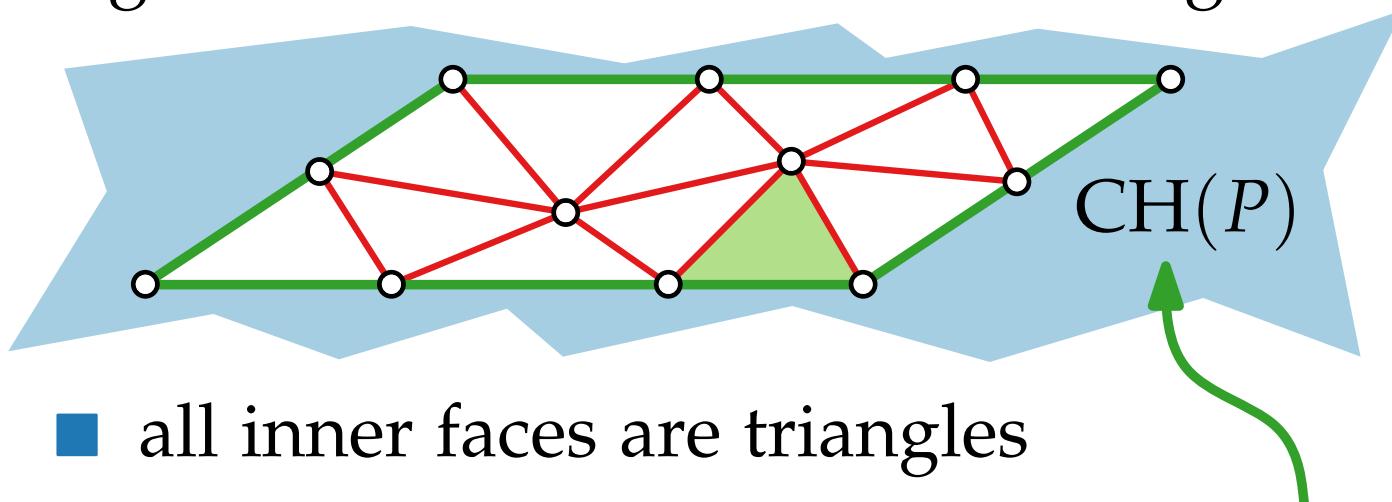
triangles and

?

edges.

Triangulation of Planar Point Sets

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P , that is, no edge can be added without crossing.



Observe.

- all inner faces are triangles
- outer face is complement of a convex polygon

Theorem.

Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial\text{CH}(P)$.

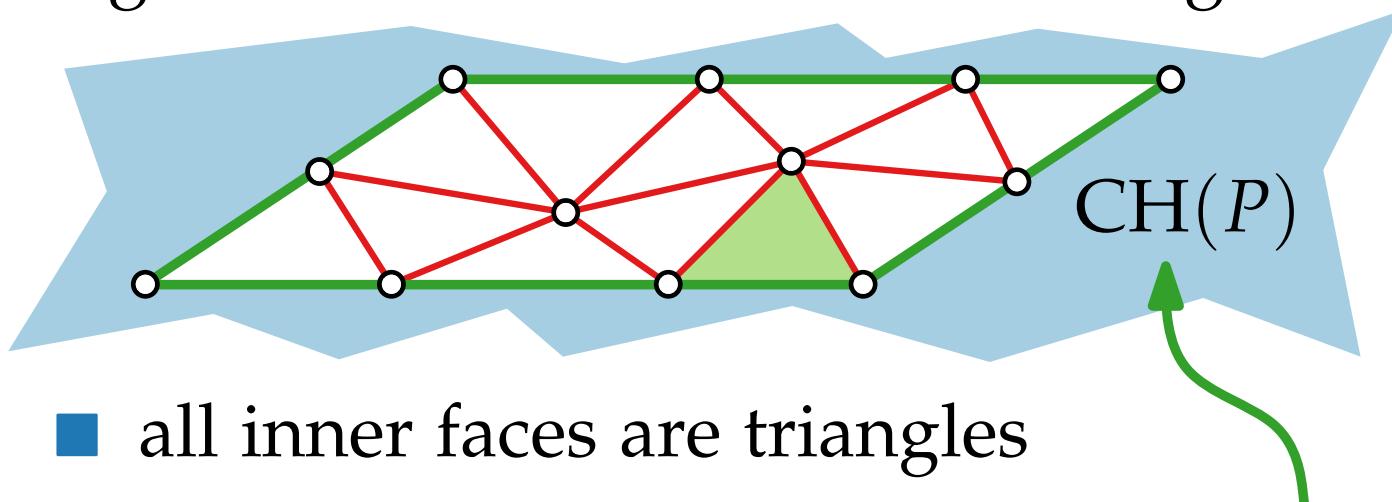
Then *any* triangulation of P has

?

triangles and $3n - 3 - h$ edges.

Triangulation of Planar Point Sets

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P , that is, no edge can be added without crossing.



Observe.

- all inner faces are triangles
- outer face is complement of a convex polygon

Theorem.

Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial\text{CH}(P)$.

Then *any* triangulation of P has $2n - 2 - h$ triangles and $3n - 3 - h$ edges.

Computational Geometry

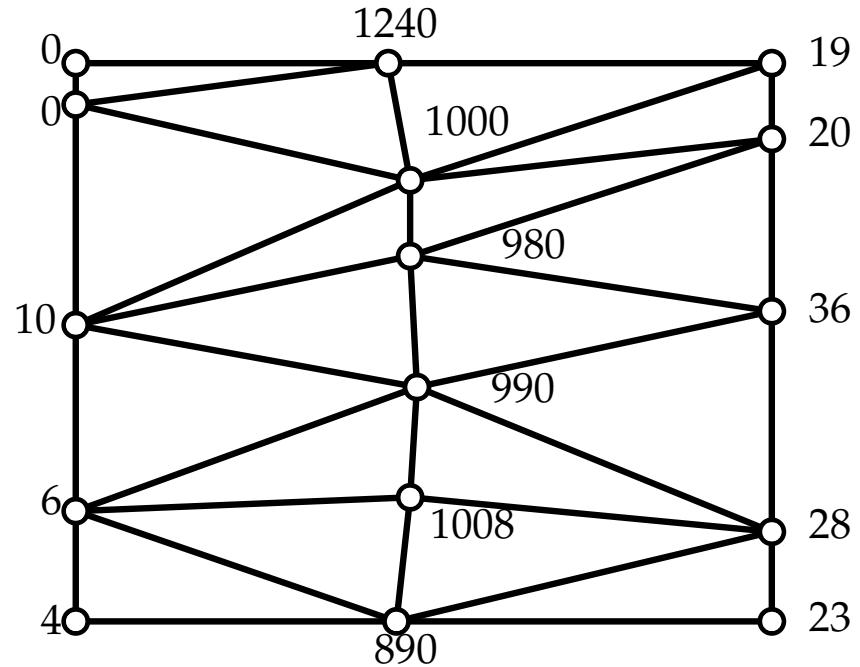
Lecture 8: Delaunay Triangulations or Height Interpolation

Part II: Angle-Optimal Triangulation

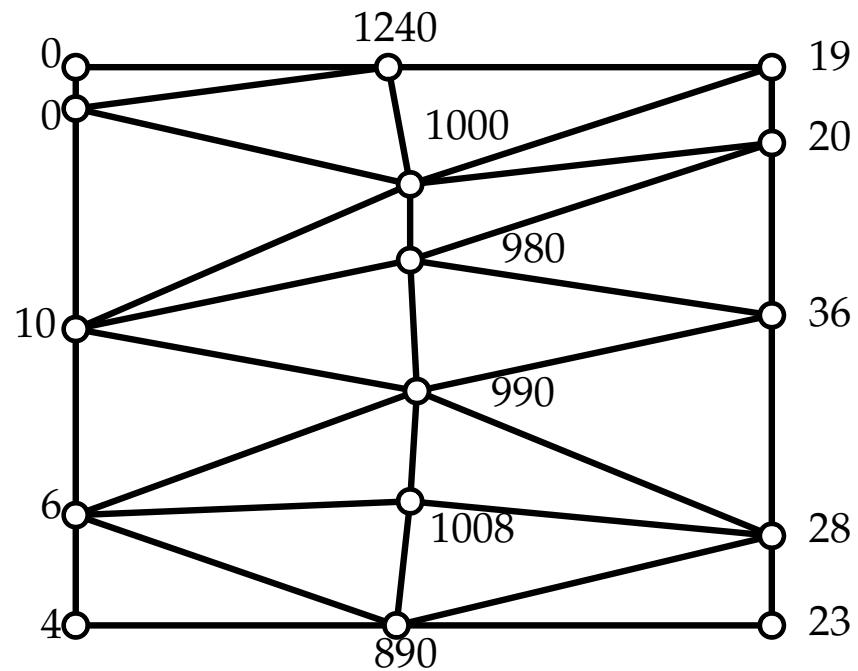
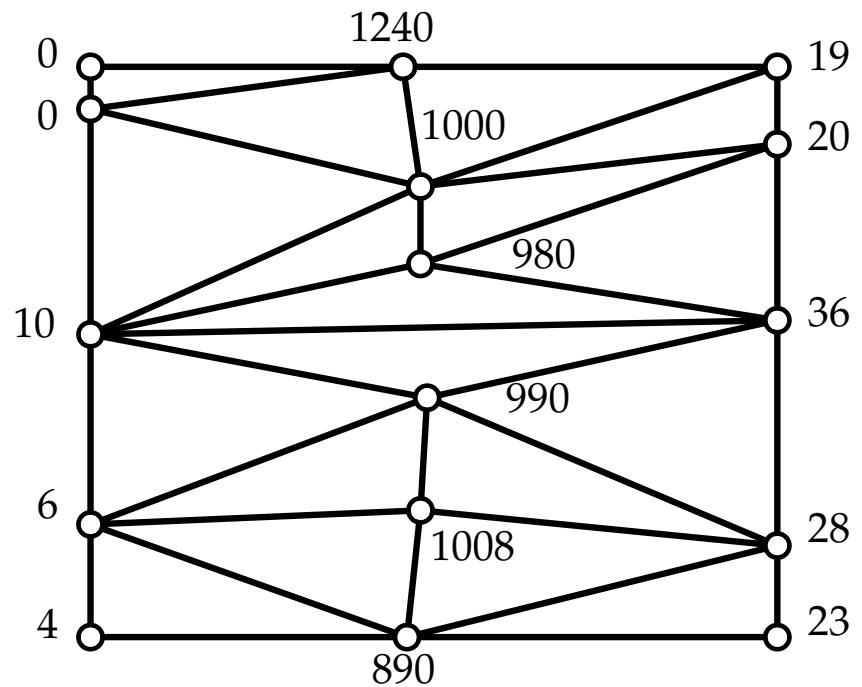
Philipp Kindermann

Summer Semester 2020

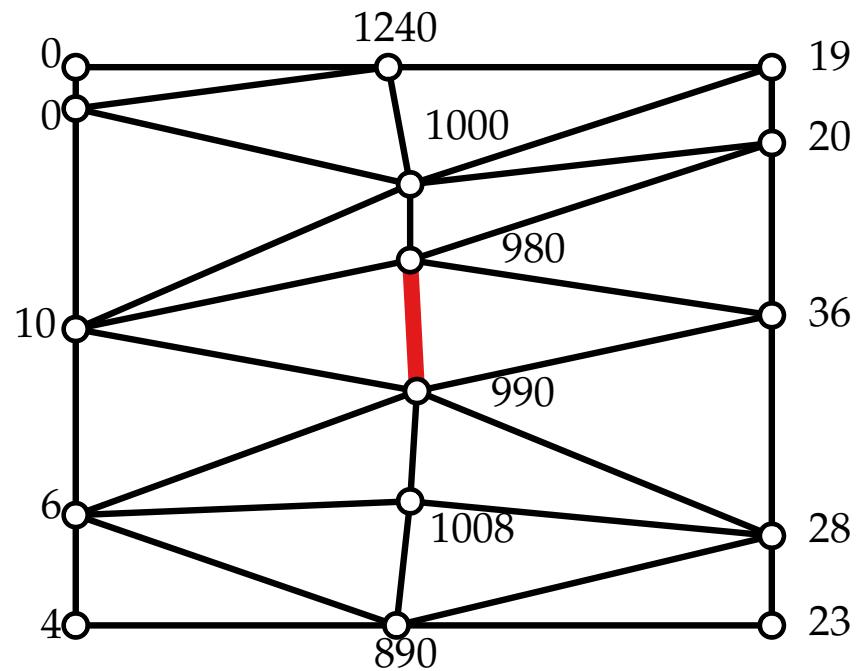
Back to Height Interpolation



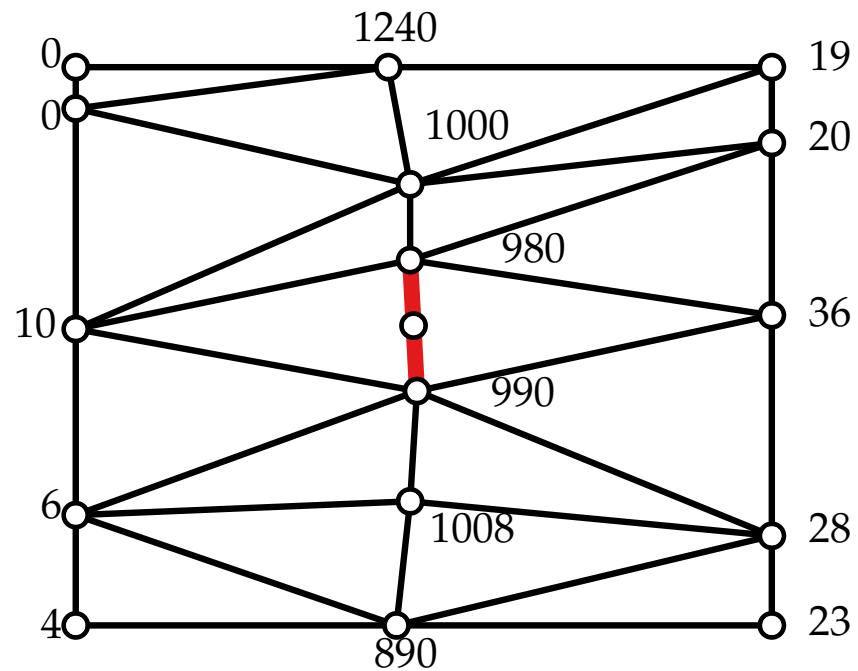
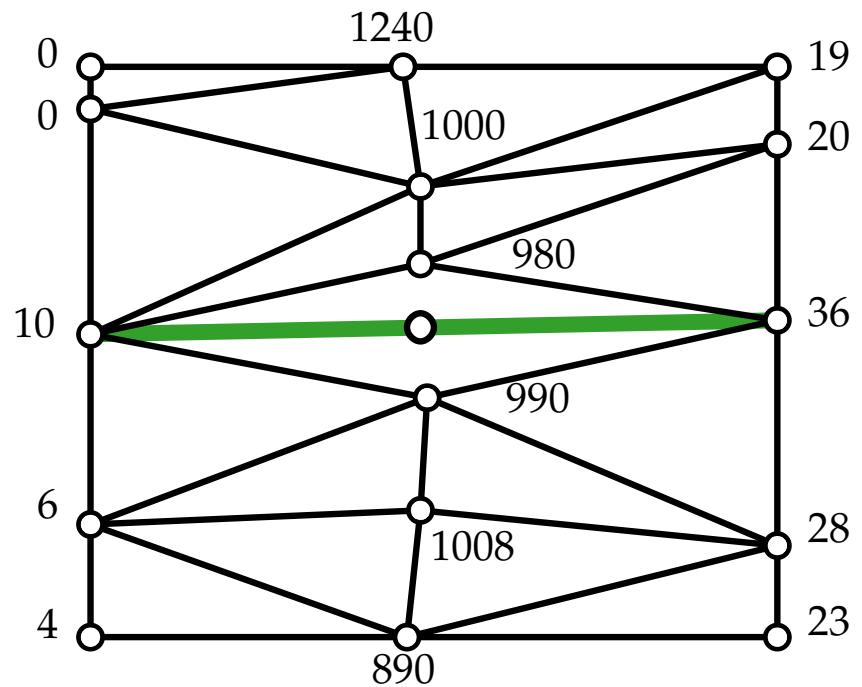
Back to Height Interpolation



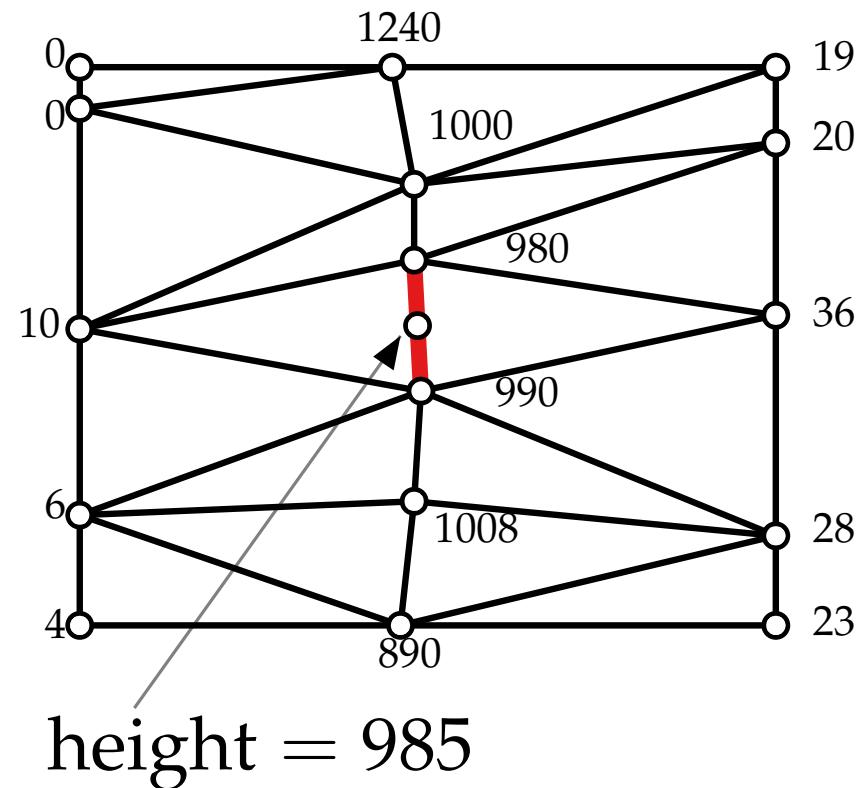
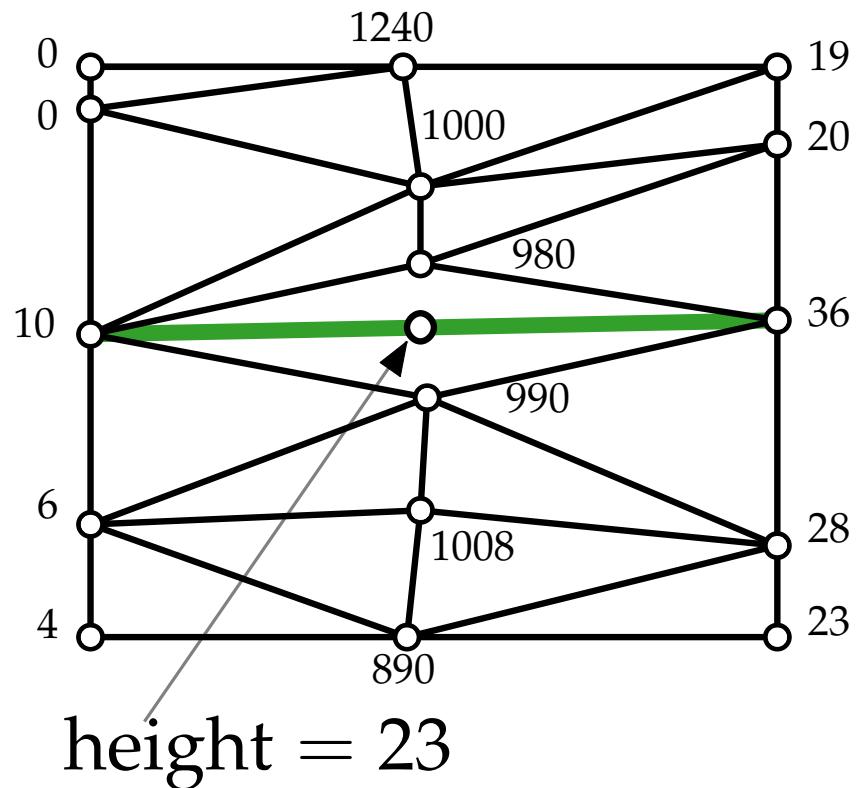
Back to Height Interpolation



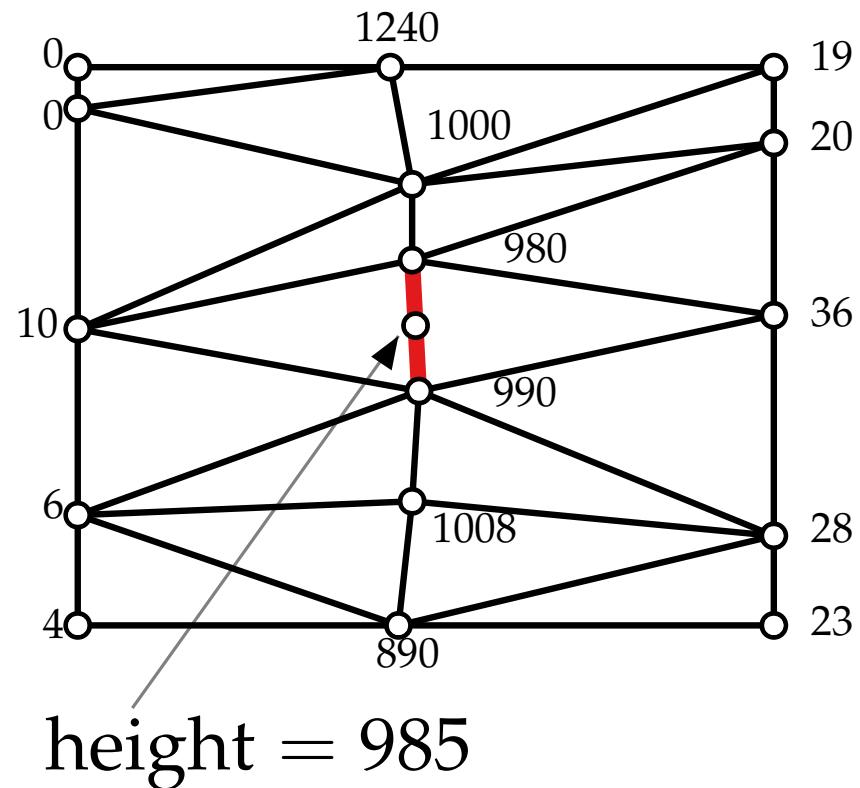
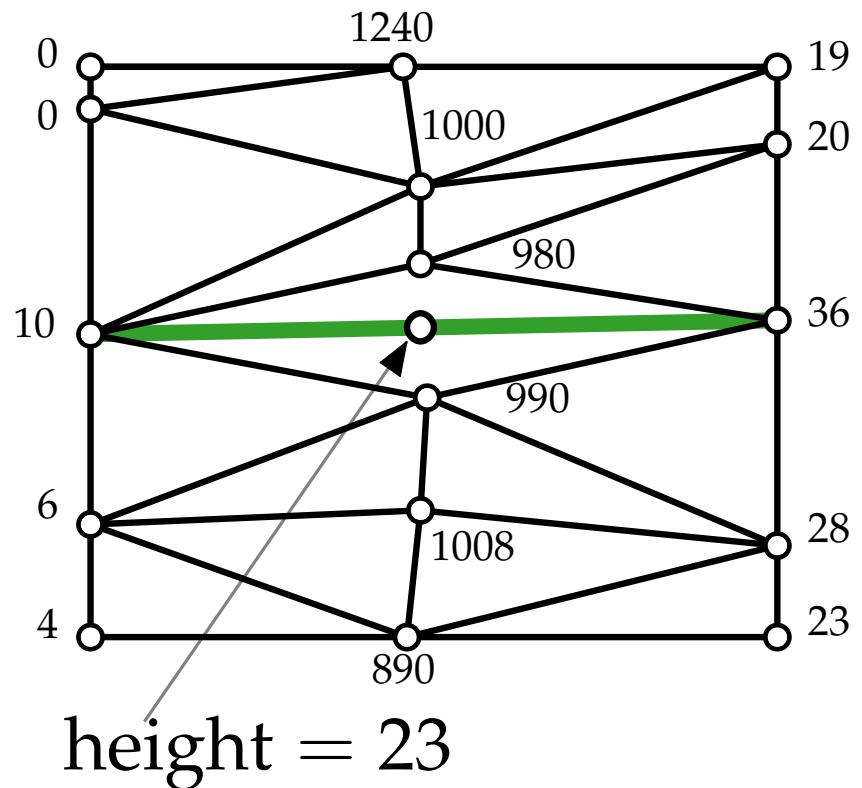
Back to Height Interpolation



Back to Height Interpolation

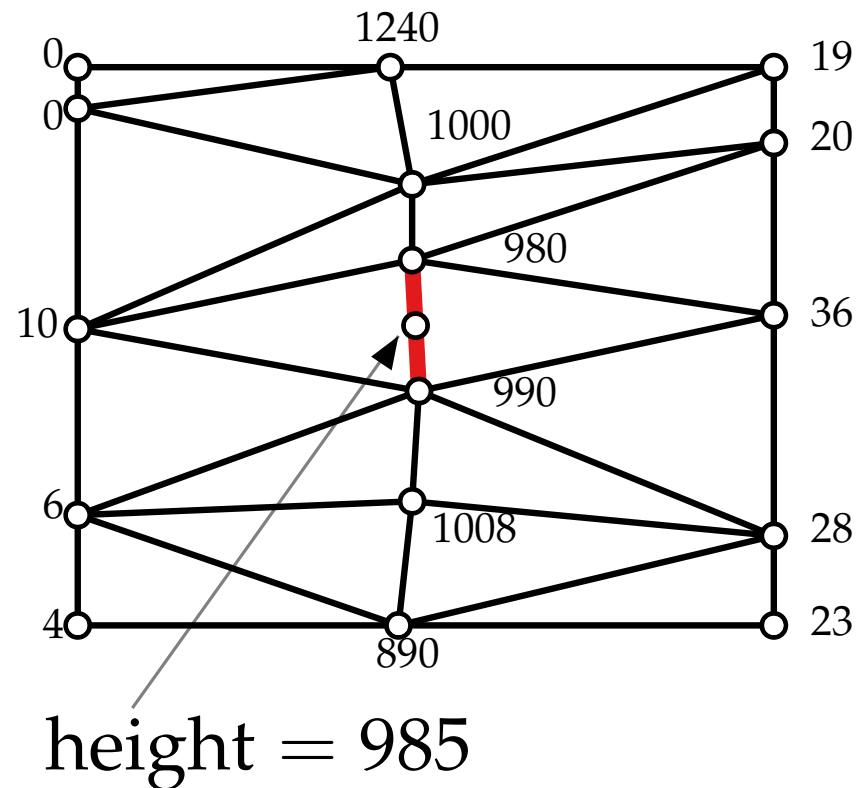
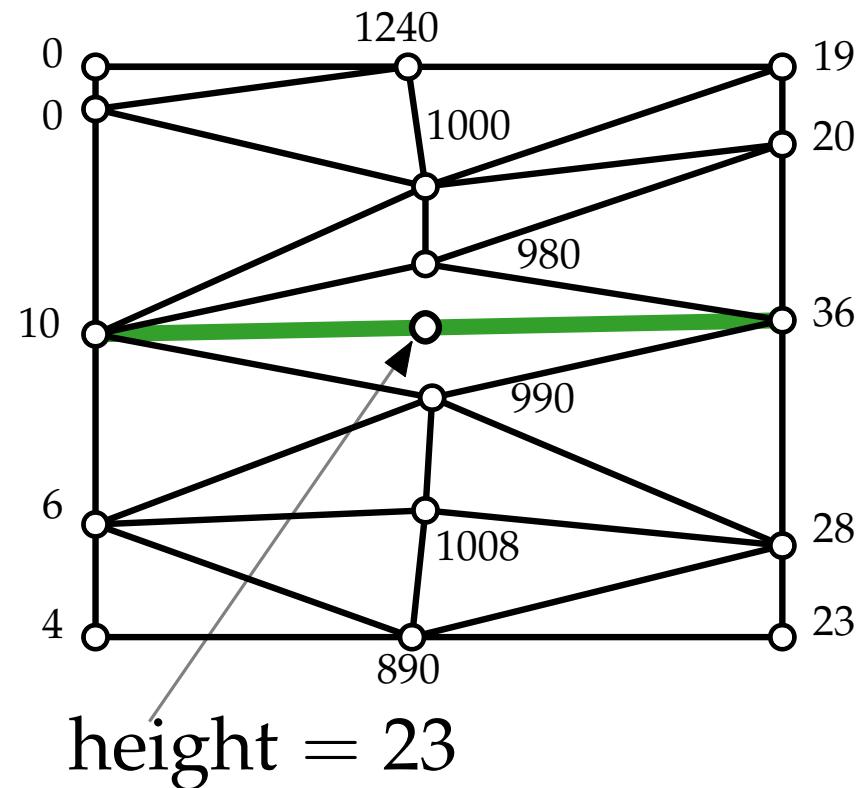


Back to Height Interpolation



Intuition. Avoid “skinny” triangles!

Back to Height Interpolation

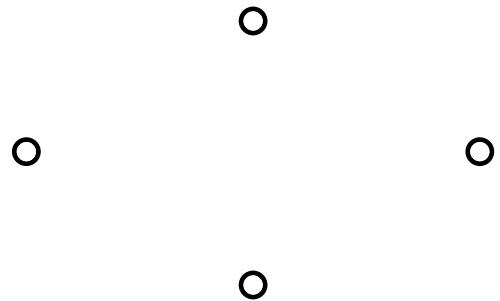


Intuition. Avoid “skinny” triangles!

In other words: avoid small angles!

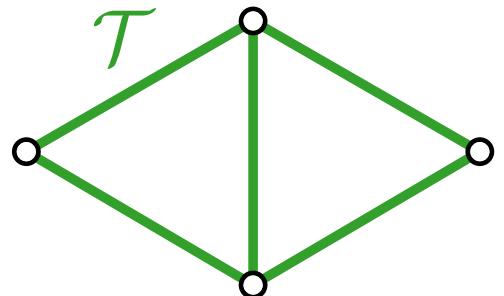
Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$



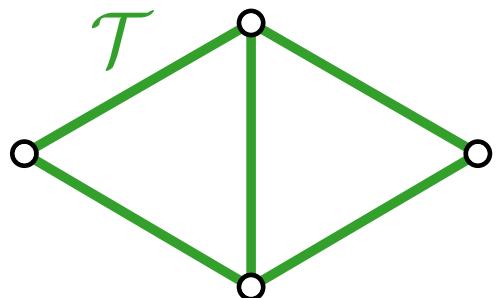
Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P ,



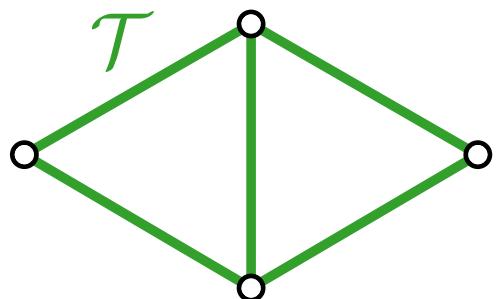
Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T}



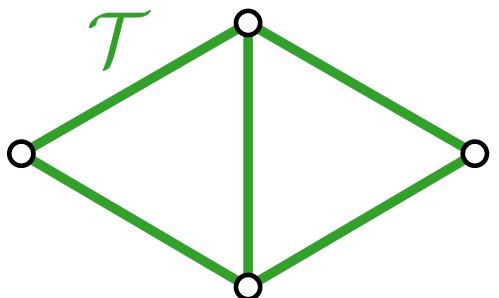
Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T}



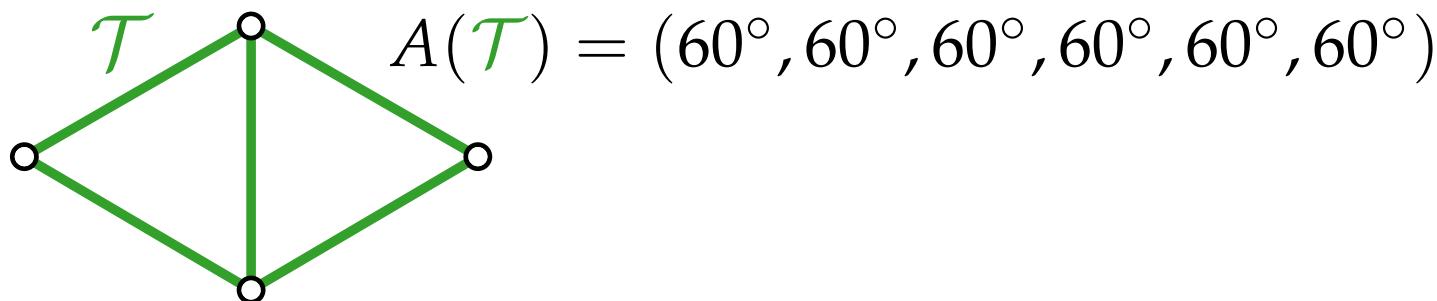
Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .



Angle-Optimal Triangulations

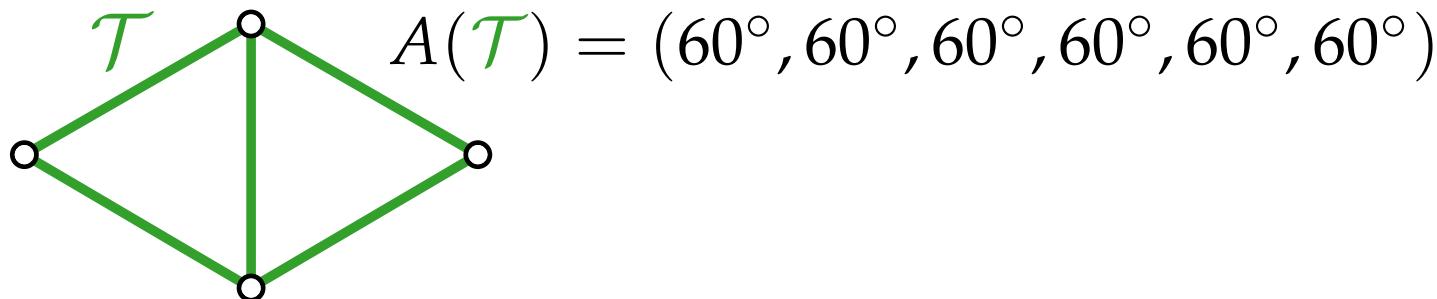
Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .



Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

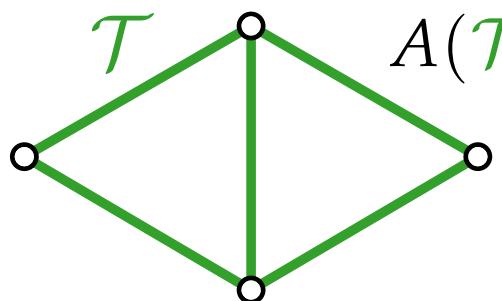
We say $A(\mathcal{T}) > A(\mathcal{T}')$



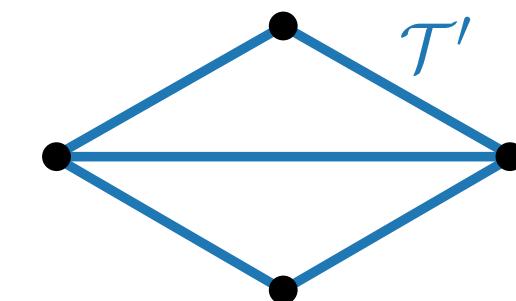
Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$



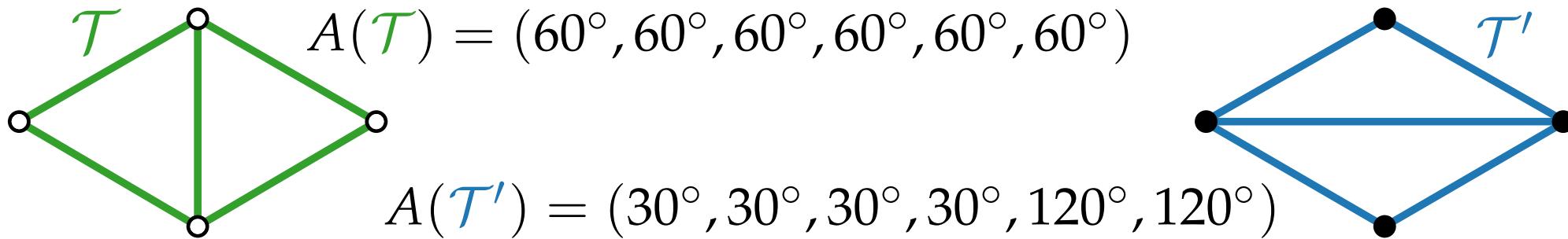
$$A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ)$$



Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

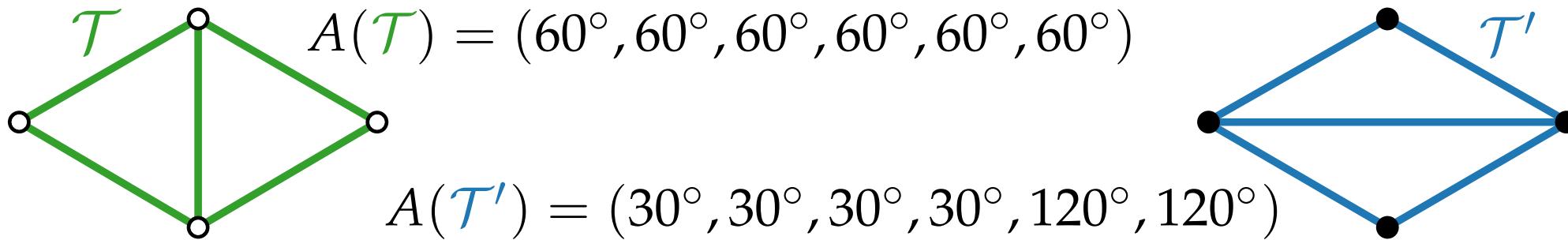
We say $A(\mathcal{T}) > A(\mathcal{T}')$



Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

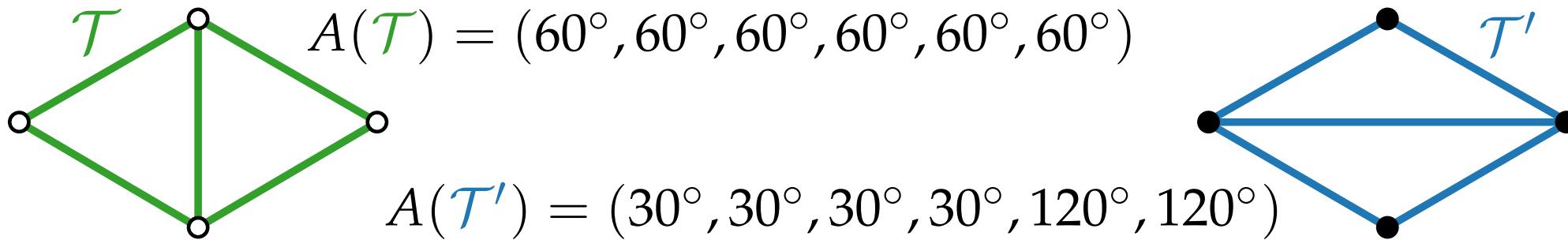
We say $A(\mathcal{T}) > A(\mathcal{T}')$
if $\exists i \in \{1, \dots, 3m\}$:



Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

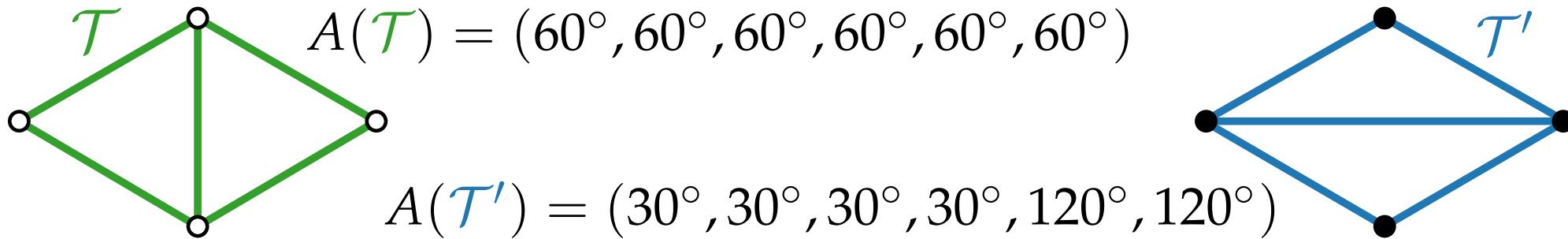
We say $A(\mathcal{T}) > A(\mathcal{T}')$
if $\exists i \in \{1, \dots, 3m\} : \alpha_i > \alpha'_i$



Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

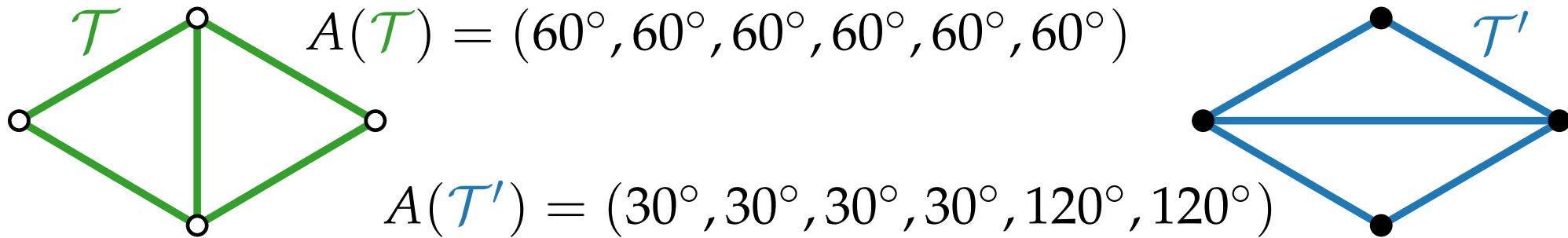
We say $A(\mathcal{T}) > A(\mathcal{T}')$
 if $\exists i \in \{1, \dots, 3m\} : \alpha_i > \alpha'_i$ and



Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$
 if $\exists i \in \{1, \dots, 3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.



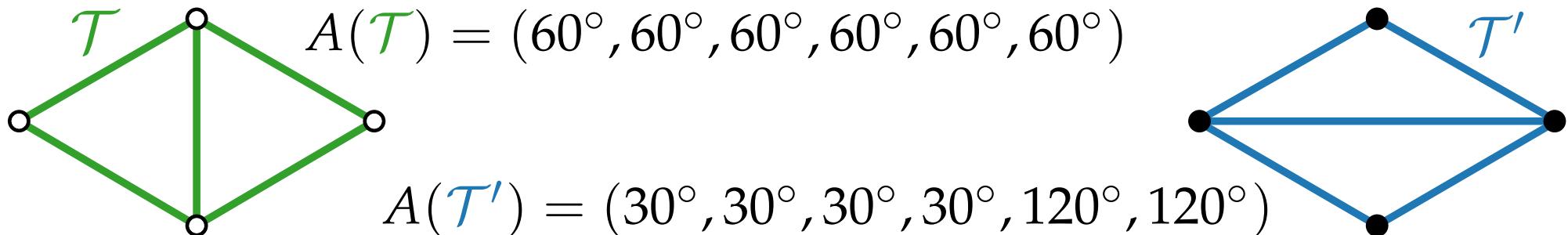
Angle-Optimal Triangulations

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$

if $\exists i \in \{1, \dots, 3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

\mathcal{T} is *angle-optimal* if



Angle-Optimal Triangulations

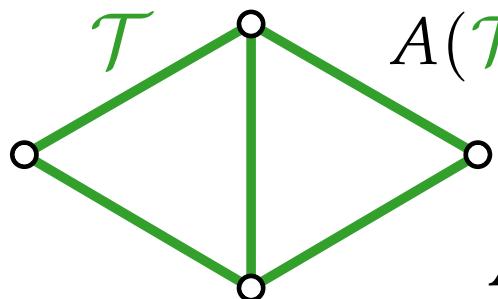
Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$

if $\exists i \in \{1, \dots, 3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

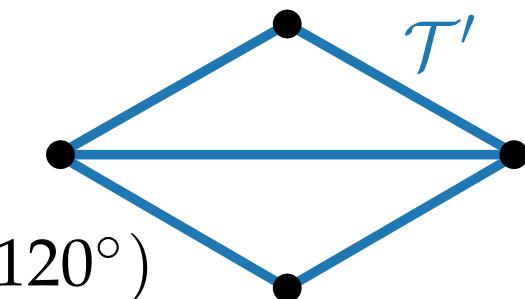
\mathcal{T} is *angle-optimal* if

$A(\mathcal{T}) \geq A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P .



$$A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ)$$

$$A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)$$



Angle-Optimal Triangulations

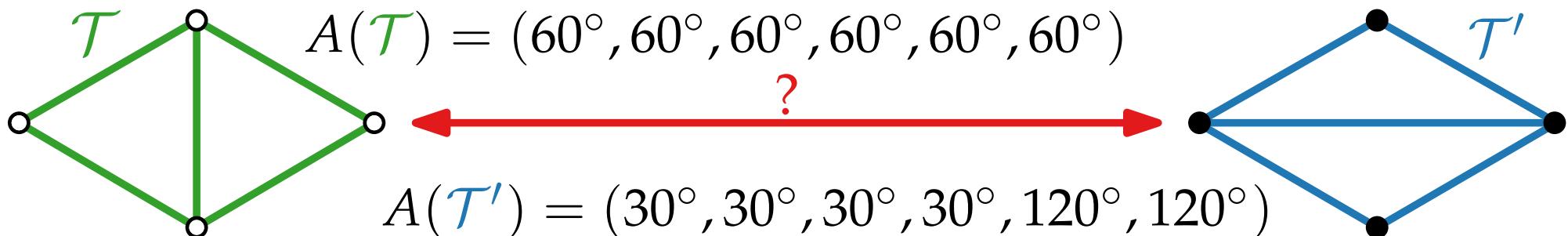
Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P , let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$

if $\exists i \in \{1, \dots, 3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

\mathcal{T} is *angle-optimal* if

$A(\mathcal{T}) \geq A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P .



Computational Geometry

Lecture 8: Delaunay Triangulations or Height Interpolation

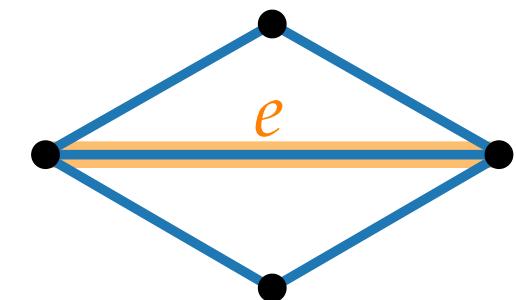
Part III: Edge Flips & Legal Triangulations

Philipp Kindermann

Summer Semester 2020

Edge Flips

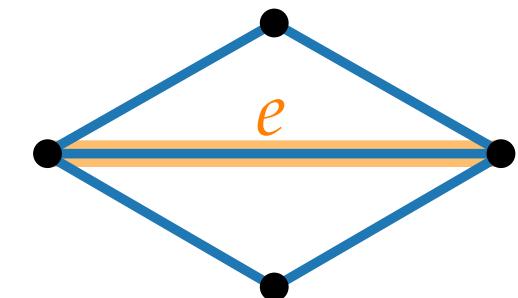
Definition. Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to e increases when flipping.



Edge Flips

Definition. Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to e increases when flipping.

$$\min_i \alpha_i = 30^\circ$$

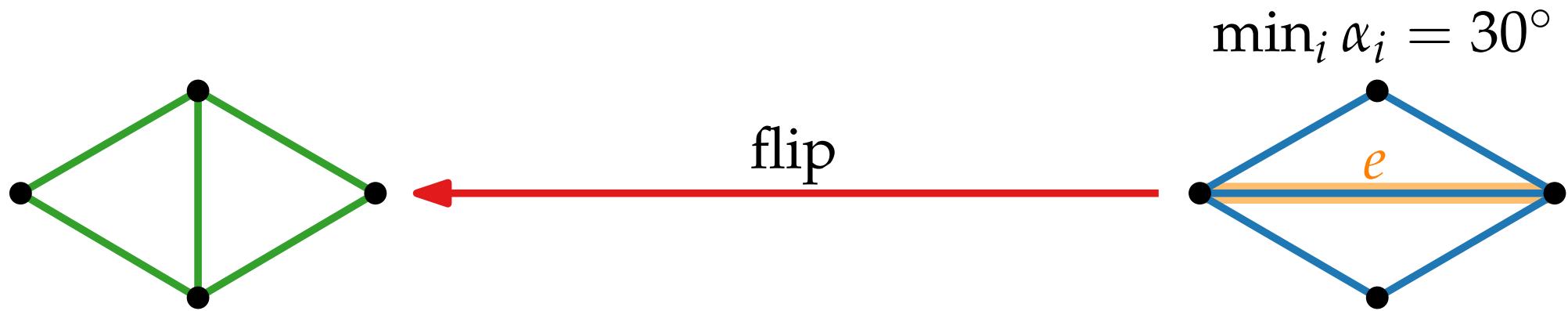


Edge Flips

Definition. Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to e increases when flipping.

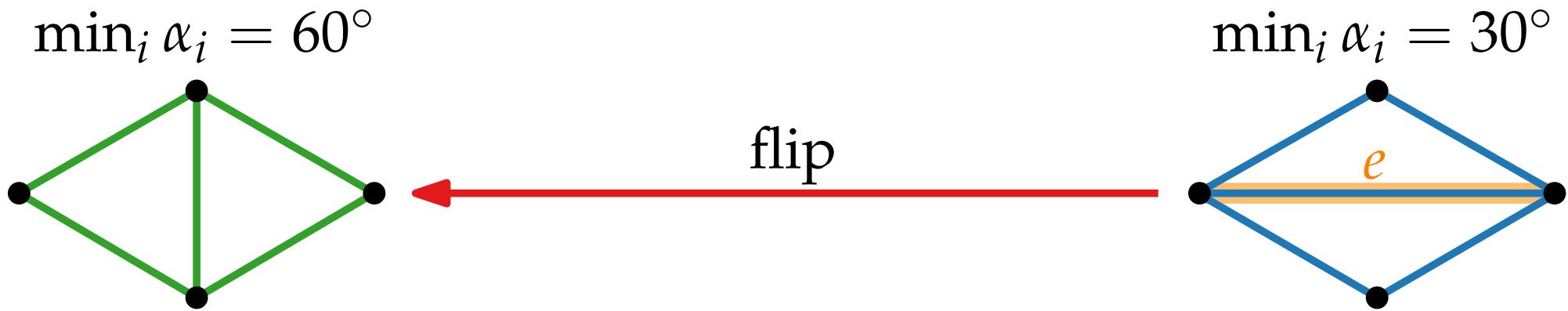
Edge Flips

Definition. Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to e increases when flipping.



Edge Flips

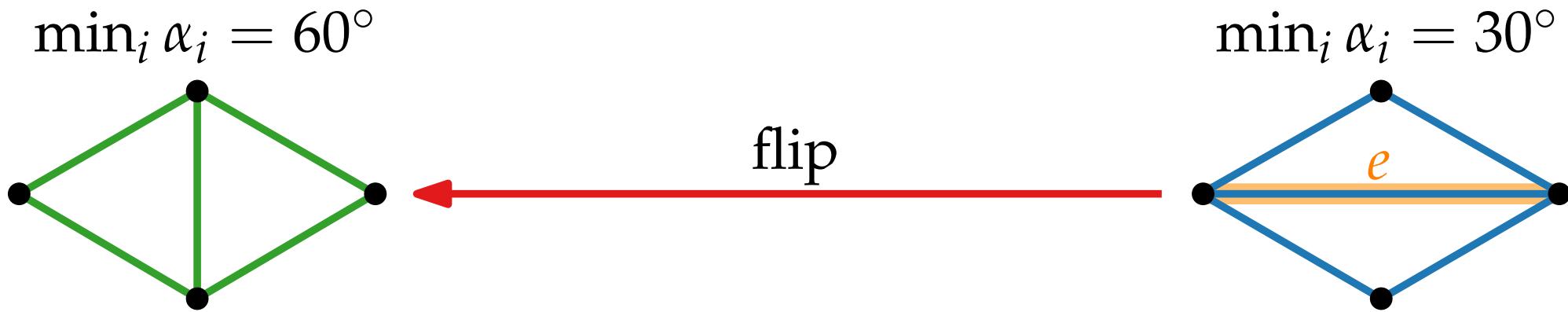
Definition. Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to e increases when flipping.



Edge Flips

Definition. Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to e increases when flipping.

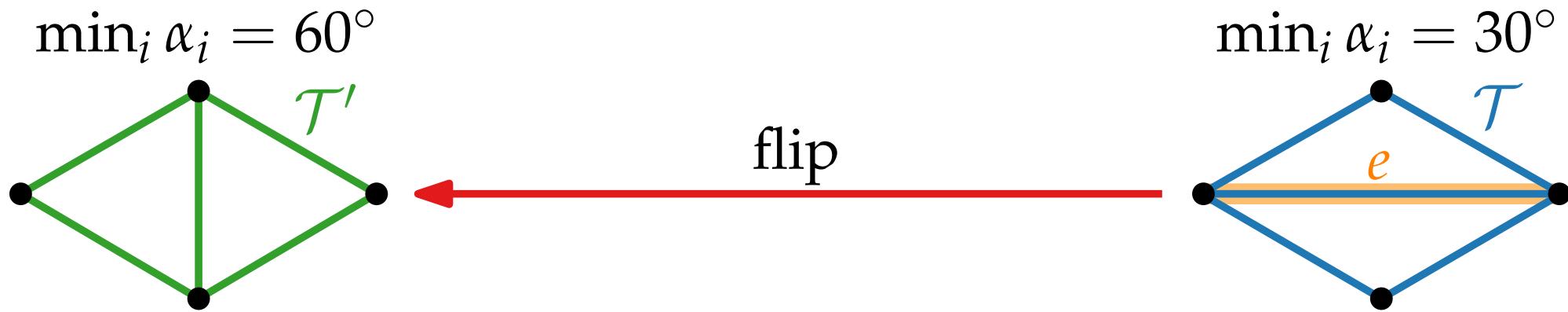
Observe. Let e be an illegal edge of \mathcal{T} , and $\mathcal{T}' = \text{flip}(\mathcal{T}, e)$.



Edge Flips

Definition. Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to e increases when flipping.

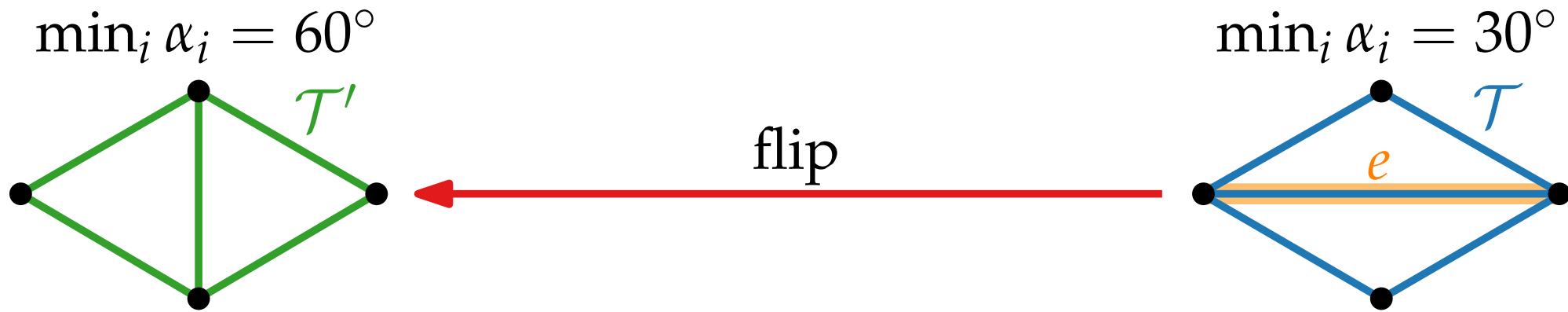
Observe. Let e be an illegal edge of \mathcal{T} , and $\mathcal{T}' = \text{flip}(\mathcal{T}, e)$.



Edge Flips

Definition. Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to e increases when flipping.

Observe. Let e be an illegal edge of \mathcal{T} , and $\mathcal{T}' = \text{flip}(\mathcal{T}, e)$. Then $A(\mathcal{T}') > A(\mathcal{T})$.



This is all Greek to me...

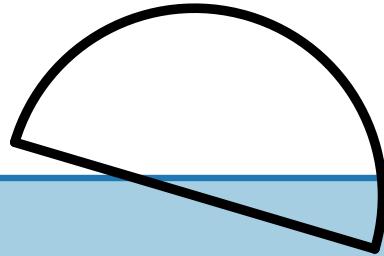
Theorem. [Thales]

This is all Greek to me...

Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

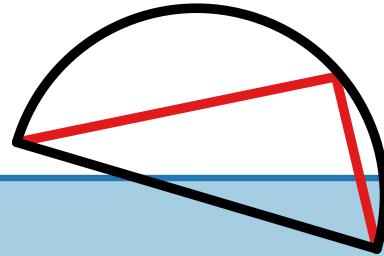
This is all Greek to me...



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

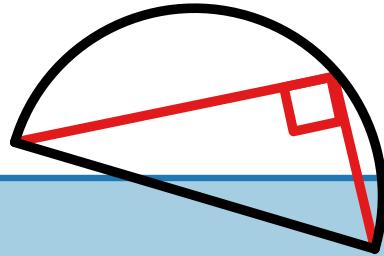
This is all Greek to me...



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

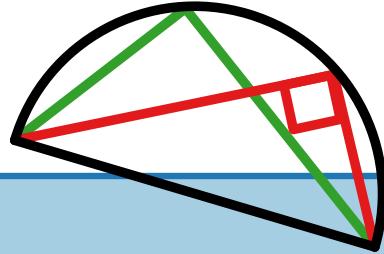
This is all Greek to me...



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

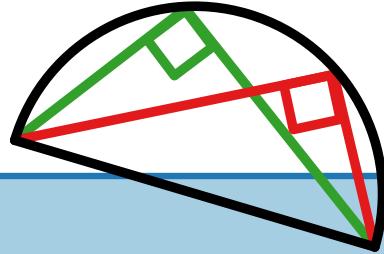
This is all Greek to me...



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

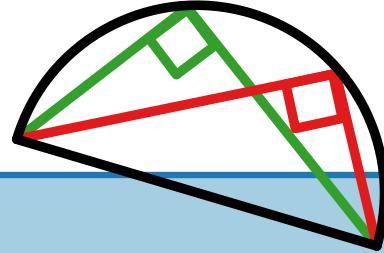
This is all Greek to me...



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

This is all Greek to me...

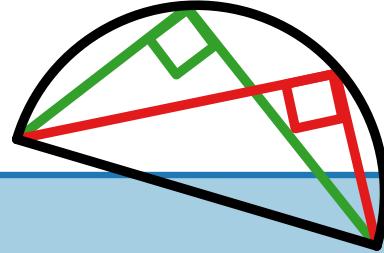


Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: [Thales++]

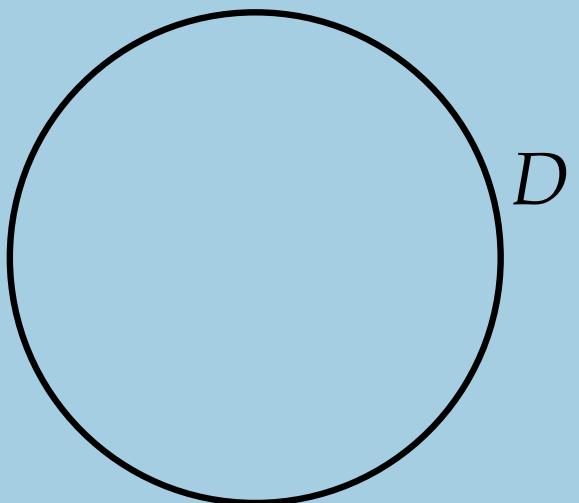
This is all Greek to me...



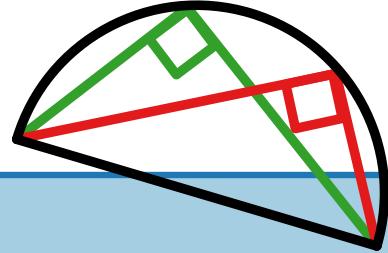
Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: [Thales++]



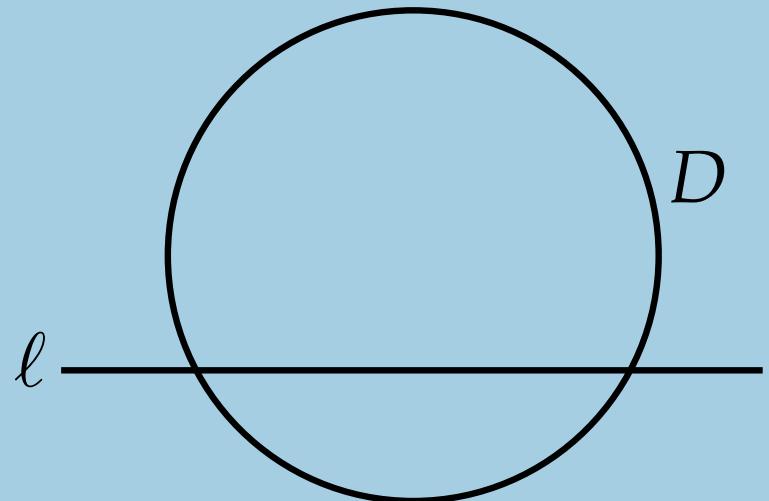
This is all Greek to me...



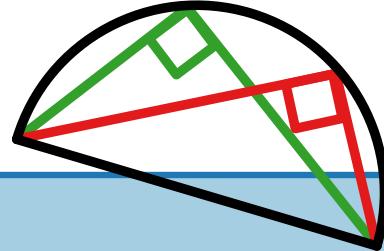
Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: [Thales++]



This is all Greek to me...

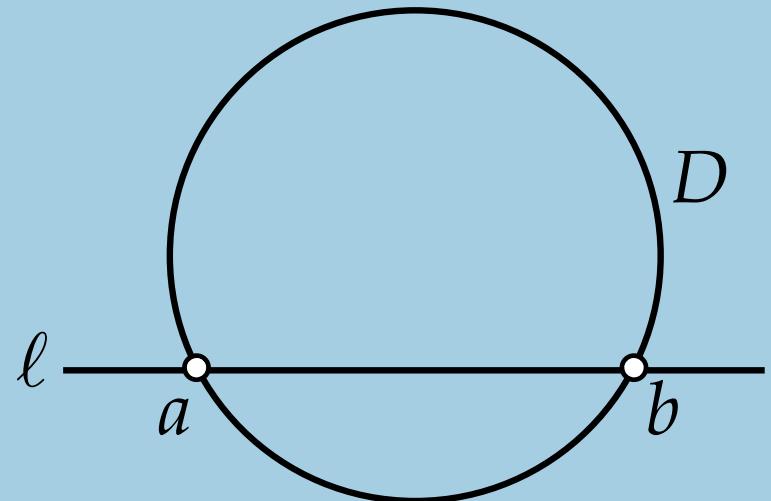


Theorem. [Thales]

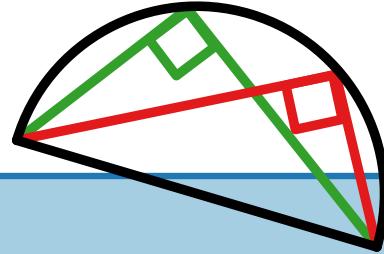
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: [Thales++]

$$\{a, b\} := \ell \cap \partial D \quad (a \neq b)$$



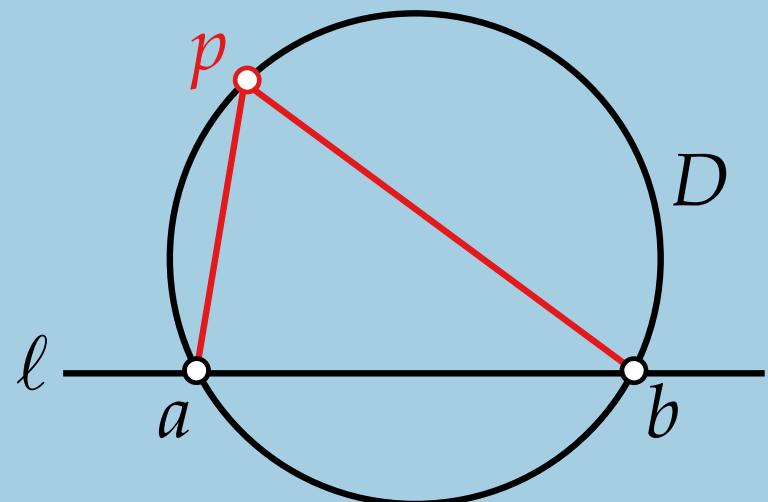
This is all Greek to me...



Theorem. [Thales]

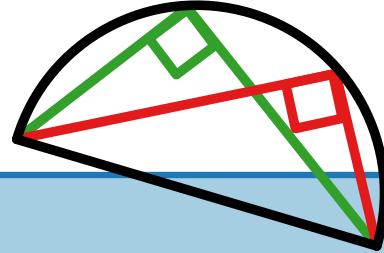
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: [Thales++]



$$\{a, b\} := \ell \cap \partial D \quad (a \neq b)$$

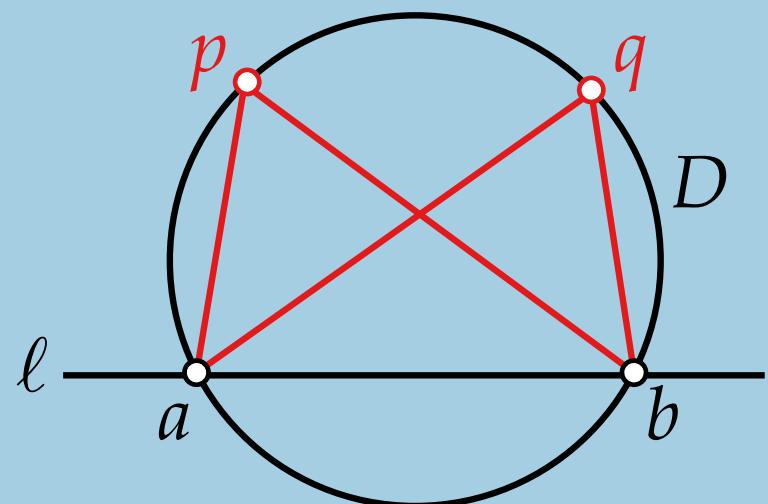
This is all Greek to me...



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

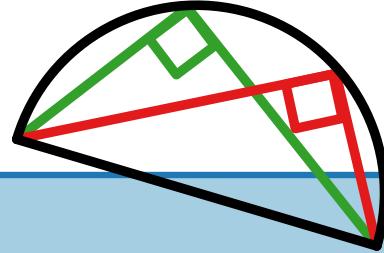
Theorem: [Thales++]



$$\{a, b\} := \ell \cap \partial D \quad (a \neq b)$$

$$p, q \in \partial D$$

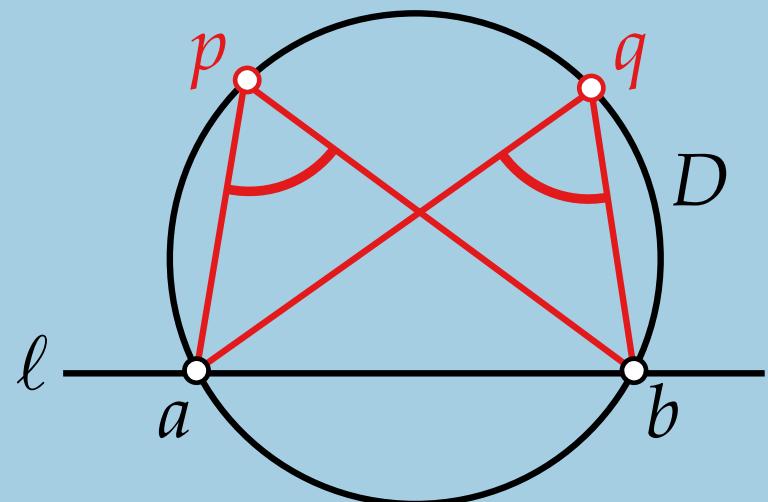
This is all Greek to me...



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

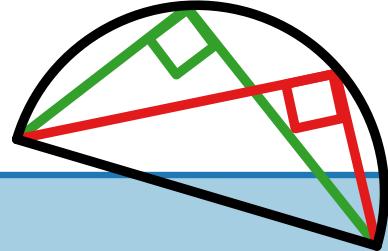
Theorem: [Thales++]



$$\{a, b\} := \ell \cap \partial D \quad (a \neq b)$$

$$p, q \in \partial D$$

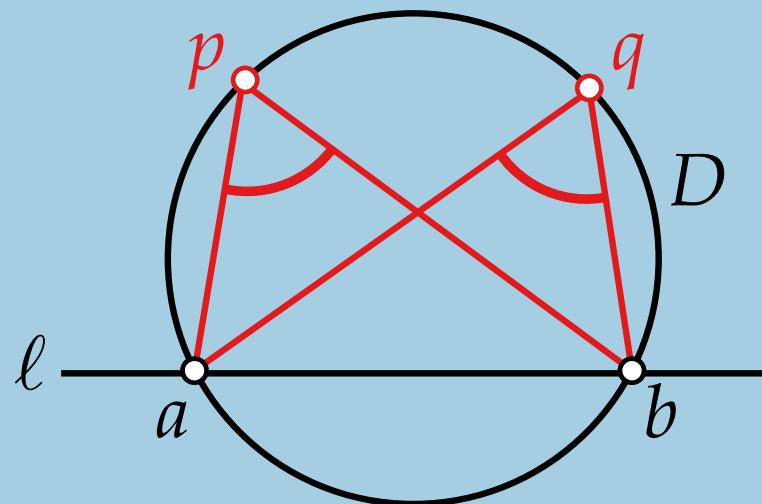
This is all Greek to me...



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: [Thales++]

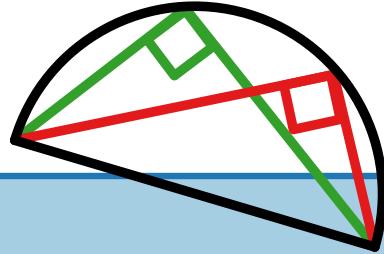


$$\{a, b\} := \ell \cap \partial D \quad (a \neq b)$$

$$p, q \in \partial D$$

$\angle apb = \angle aqb$

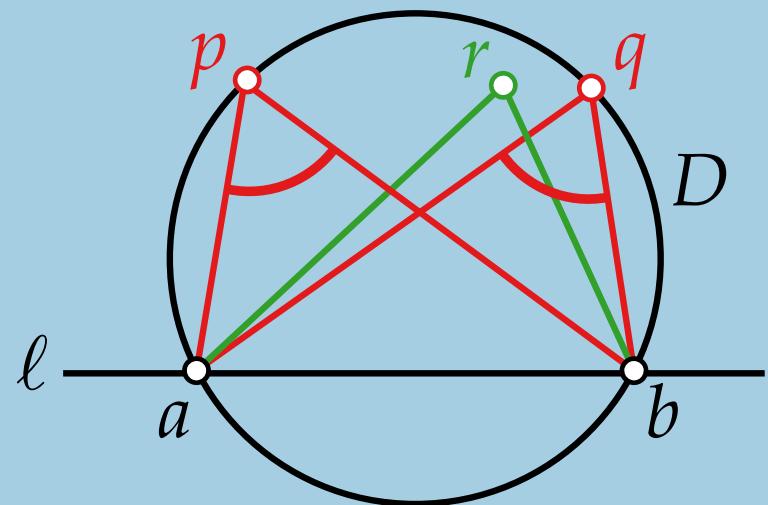
This is all Greek to me...



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: [Thales++]



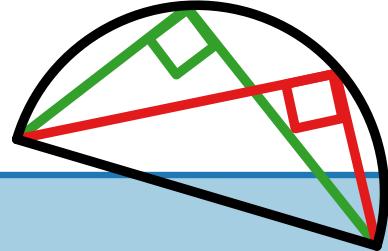
$$\{a, b\} := \ell \cap \partial D \quad (a \neq b)$$

$$p, q \in \partial D$$

$$r \in \text{int}(D)$$

$$\angle apb = \angle aqb$$

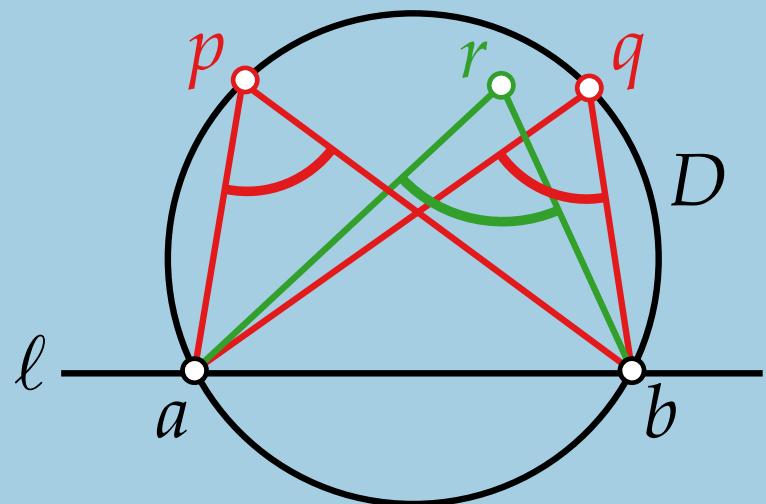
This is all Greek to me...



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: [Thales++]



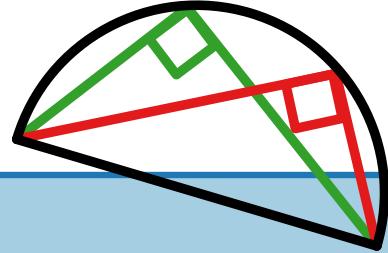
$$\{a, b\} := \ell \cap \partial D \quad (a \neq b)$$

$$p, q \in \partial D$$

$$r \in \text{int}(D)$$

$$\angle apb = \angle aqb < \angle arb$$

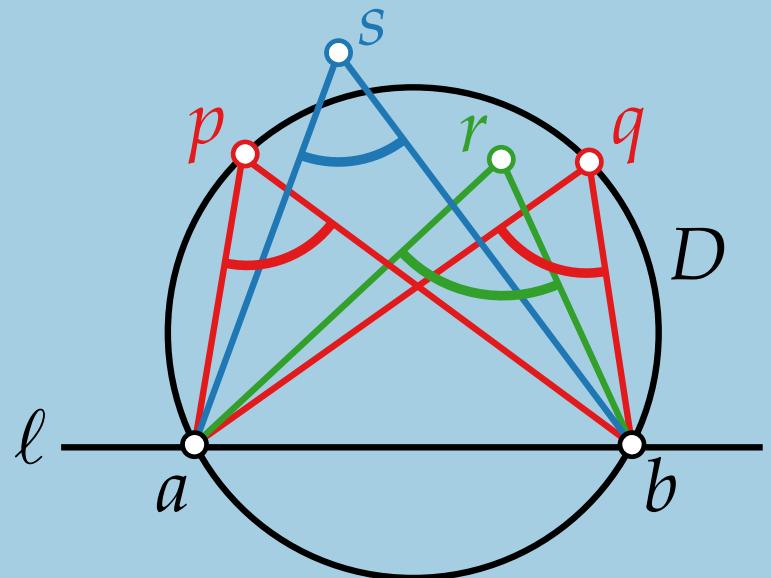
This is all Greek to me...



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: [Thales++]



$$\{a, b\} := \ell \cap \partial D \quad (a \neq b)$$

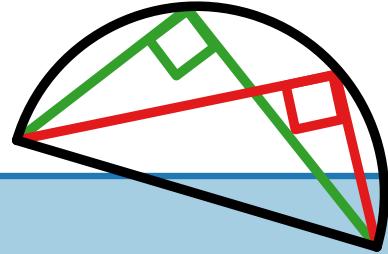
$$p, q \in \partial D$$

$$r \in \text{int}(D)$$

$$s \notin D$$

$$\angle apb = \angle aqb < \angle arb$$

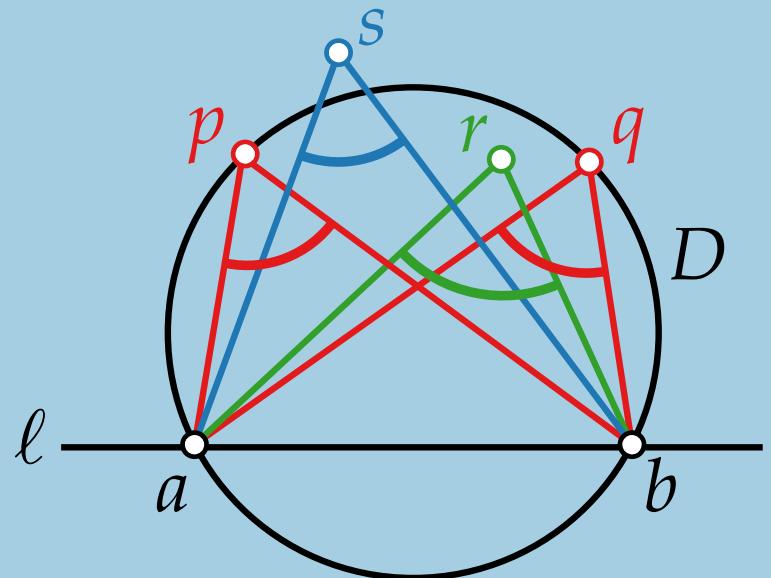
This is all Greek to me...



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: [Thales++]



$$\{a, b\} := \ell \cap \partial D \quad (a \neq b)$$

$$p, q \in \partial D$$

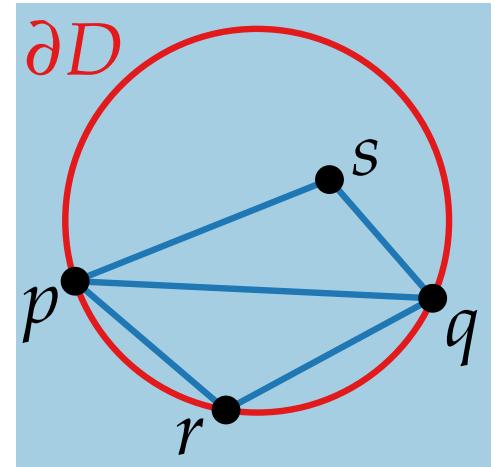
$$r \in \text{int}(D)$$

$$s \notin D$$

$$\angle asb < \angle apb = \angle aqb < \angle arb$$

Legal Triangulations

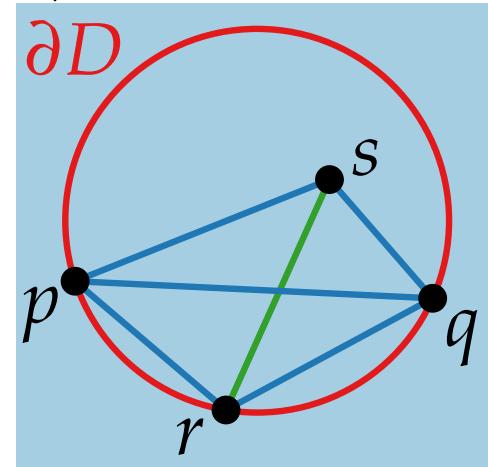
Lemma. Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
Then edge pq is illegal iff $s \in \text{int}(D)$.



Legal Triangulations

Lemma. Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.



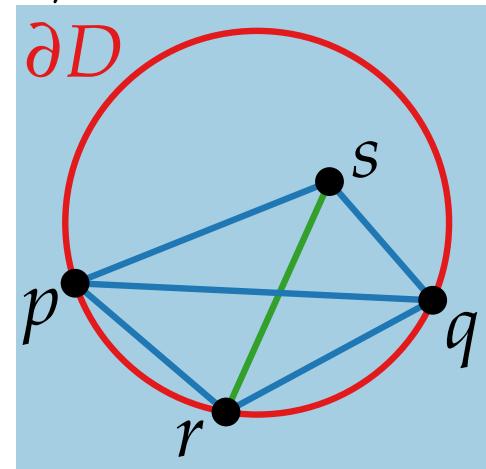
Legal Triangulations

Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof.

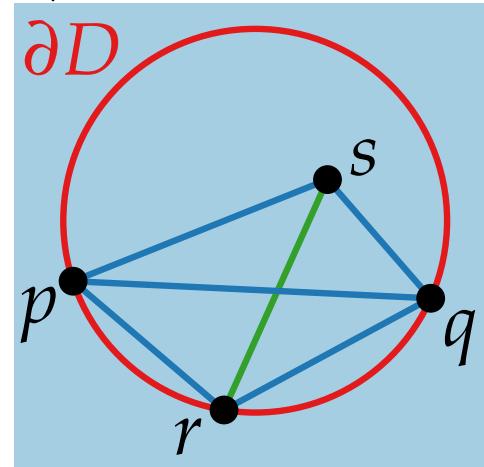


Legal Triangulations

Lemma. Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof. Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ")

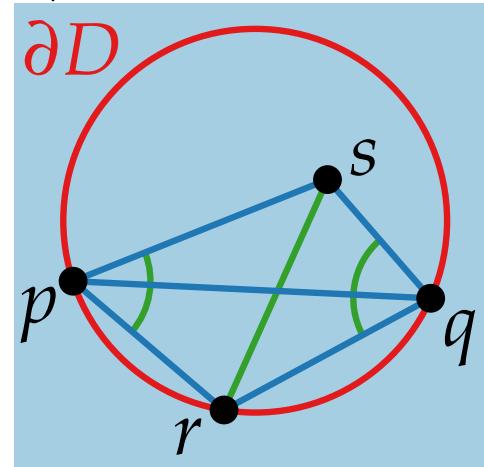


Legal Triangulations

Lemma. Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof. Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ")

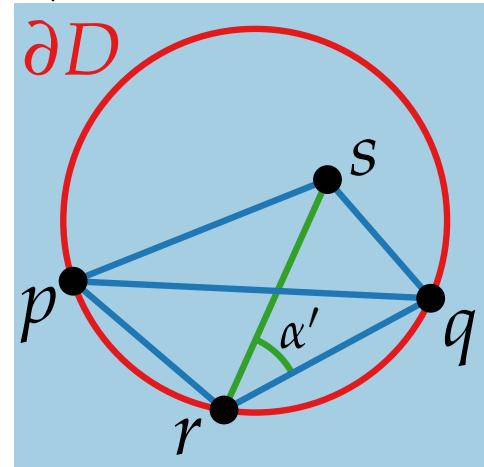


Legal Triangulations

Lemma. Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof. Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ")

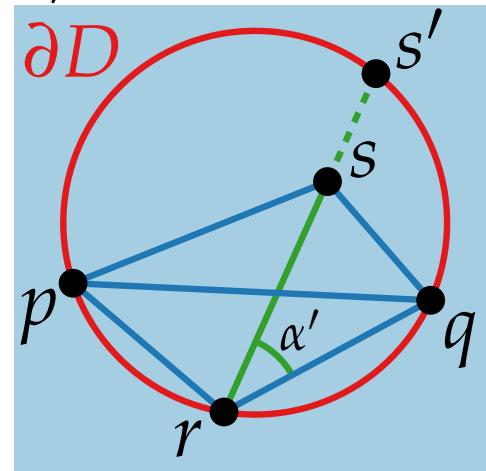


Legal Triangulations

Lemma. Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof. Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ")



Legal Triangulations

Lemma. Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof. Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ")



Legal Triangulations

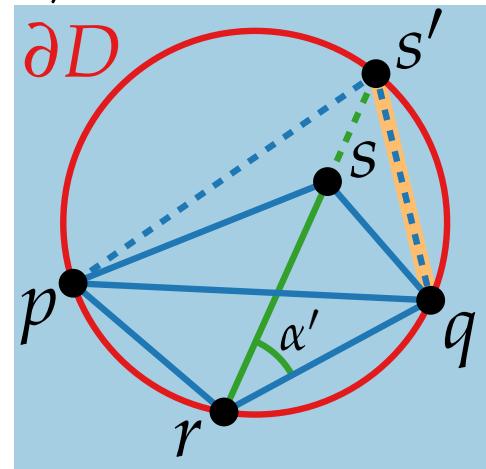
Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ") Use Thales++ w.r.t. qs' .



Legal Triangulations

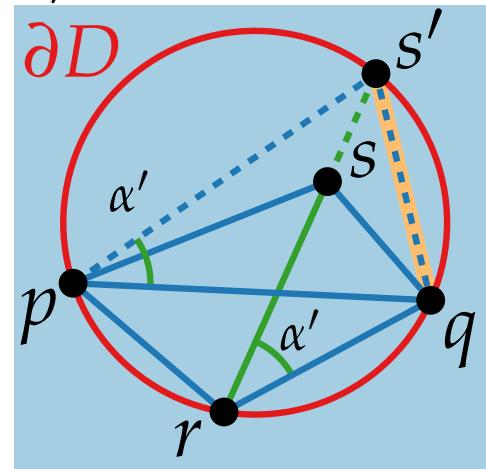
Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ") Use Thales++ w.r.t. qs' .



Legal Triangulations

Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ") Use Thales++ w.r.t. qs' .



Legal Triangulations

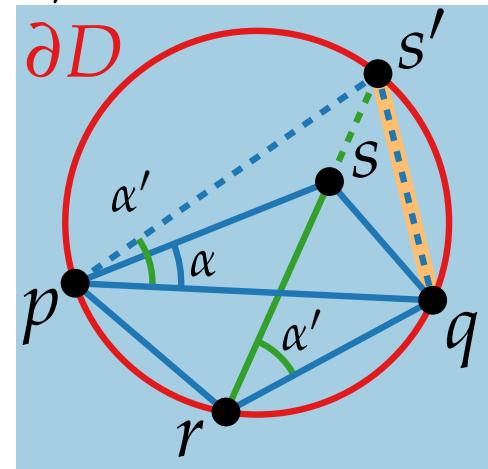
Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ") Use Thales++ w.r.t. qs' . \square



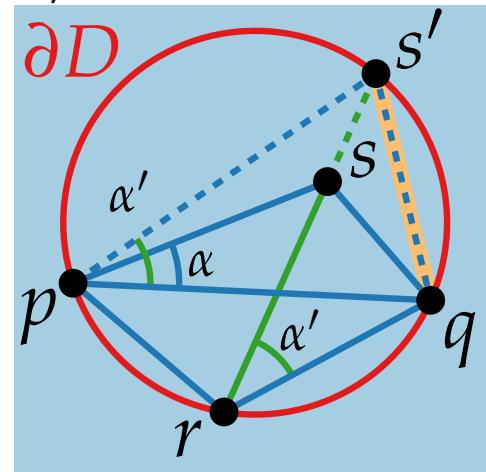
Legal Triangulations

Lemma. Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
then either pq or rs is illegal. ∂D

Proof. Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ") Use Thales++ w.r.t. qs' . □

Note.



Legal Triangulations

Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

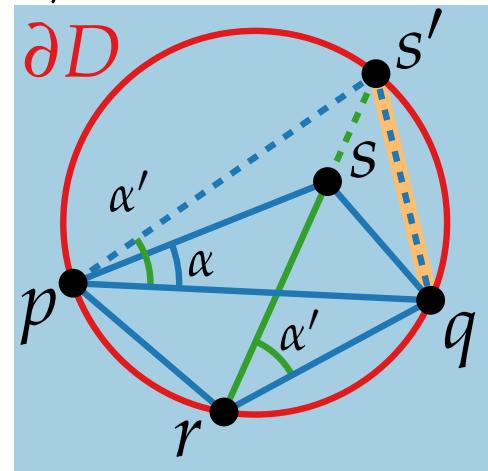
If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ") Use Thales++ w.r.t. qs' . \square

Note.

If $s \in \partial D$, both pq and rs legal.



Legal Triangulations

Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

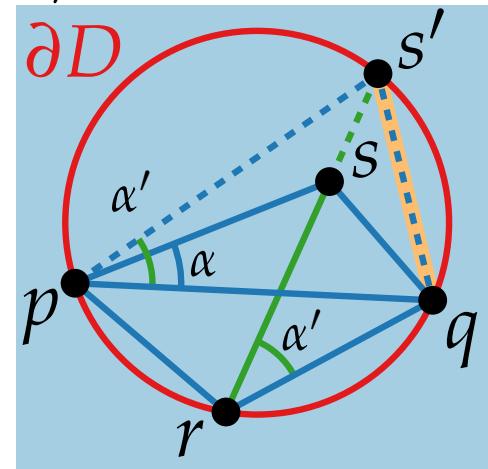
If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ") Use Thales++ w.r.t. qs' . \square

Note.

If $s \in \partial D$, both pq and rs legal.



Definition.

A triangulation is *legal* if it has no illegal edge.

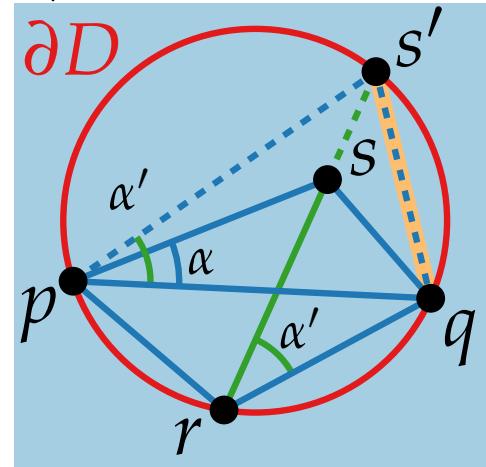
Legal Triangulations

Lemma. Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
then either pq or rs is illegal. ∂D

Proof. Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ") Use Thales++ w.r.t. qs' . □

Note. If $s \in \partial D$, both pq and rs legal.



Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Legal Triangulations

Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

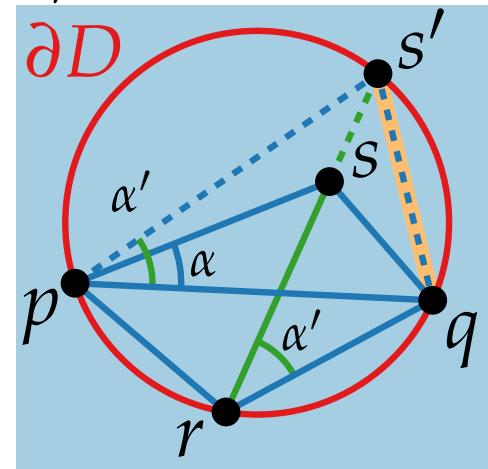
If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ") Use Thales++ w.r.t. qs' . \square

Note.

If $s \in \partial D$, both pq and rs legal.



Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P .
 While \mathcal{T} has an illegal edge e , flip e . Return \mathcal{T} .

Legal Triangulations

Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

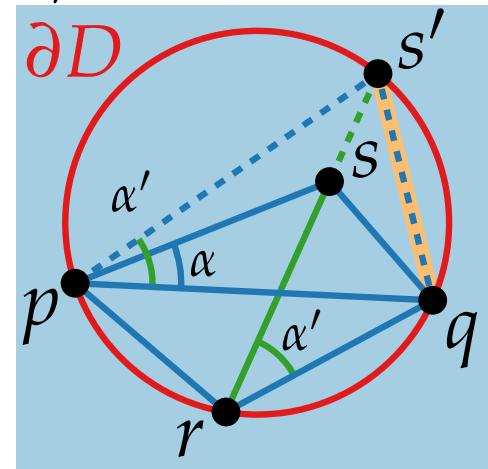
If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ") Use Thales++ w.r.t. qs' . \square

Note.

If $s \in \partial D$, both pq and rs legal.



Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P .
 While \mathcal{T} has an illegal edge e , flip e . Return \mathcal{T} .



Legal Triangulations

Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

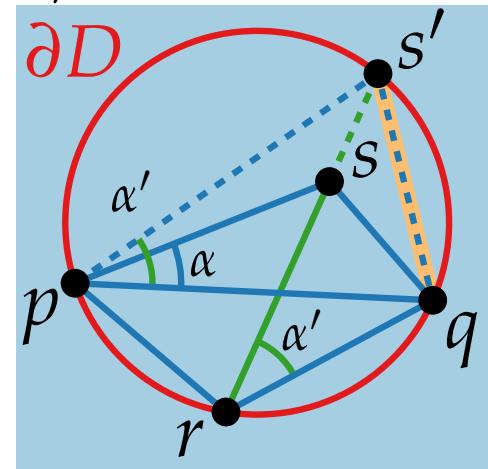
Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.

(" \Rightarrow ") Use Thales++ w.r.t. qs' . \square

Note.

If $s \in \partial D$, both pq and rs legal.



Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P .
 While \mathcal{T} has an illegal edge e , flip e . Return \mathcal{T} .

$A(\mathcal{T})$ goes up!

Legal Triangulations

Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

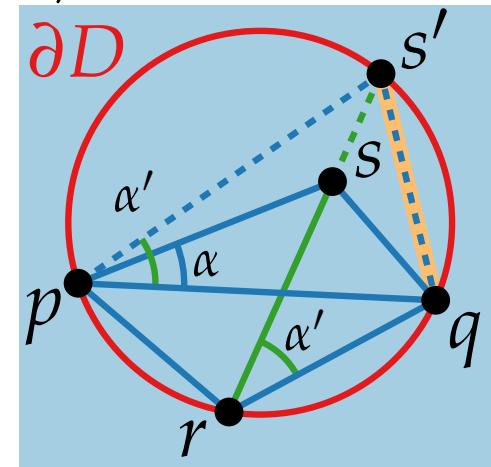
Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.

(" \Rightarrow ") Use Thales++ w.r.t. qs' . \square

Note.

If $s \in \partial D$, both pq and rs legal.



Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P .
 While \mathcal{T} has an illegal edge e , flip e . Return \mathcal{T} .

$A(\mathcal{T})$ goes up! **&**

Legal Triangulations

Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

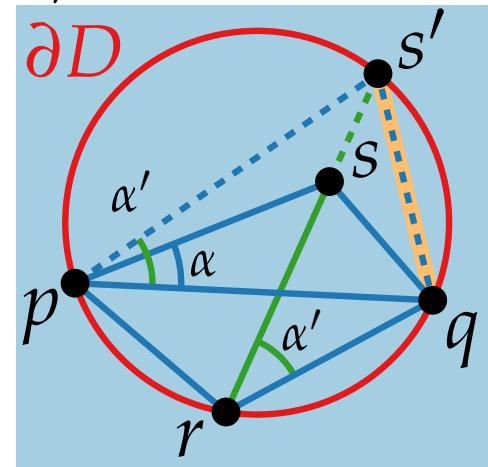
Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.

(" \Rightarrow ") Use Thales++ w.r.t. qs' . \square

Note.

If $s \in \partial D$, both pq and rs legal.



Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P .
 While \mathcal{T} has an illegal edge e , flip e . Return \mathcal{T} .

$A(\mathcal{T})$ goes up! **&** $\#(\text{triangulations of } P) < \infty$

Legal Triangulations

Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

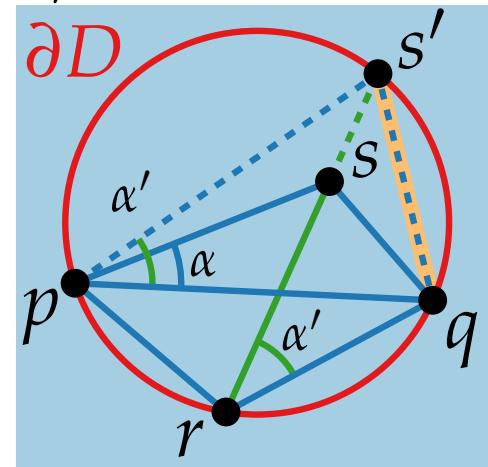
If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.
 (" \Rightarrow ") Use Thales++ w.r.t. qs' . \square

Note.

If $s \in \partial D$, both pq and rs legal.



Definition. A triangulation is *legal* if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P .
 While \mathcal{T} has an illegal edge e , flip e . Return \mathcal{T} .

↗ $A(\mathcal{T})$ goes up! & $\#(\text{triangulations of } P) < \infty$

Legal Triangulations

Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

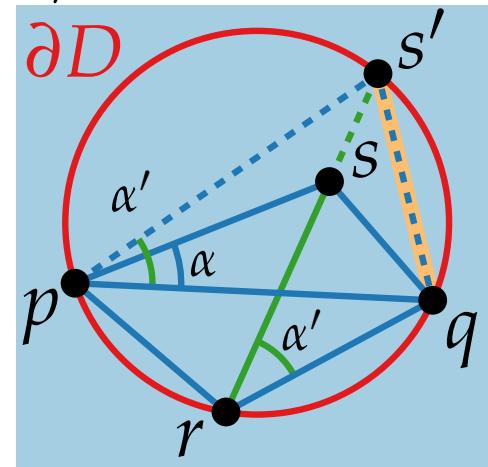
Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.

(" \Rightarrow ") Use Thales++ w.r.t. qs' . \square

Note.

If $s \in \partial D$, both pq and rs legal.



Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P .
 While \mathcal{T} has an illegal edge e , flip e . Return \mathcal{T} .

algorithm
terminates

$A(\mathcal{T})$ goes up! & $\#(\text{triangulations of } P) < \infty$

Legal Triangulations

Lemma.

Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$.
 Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$,
 then either pq or rs is illegal.

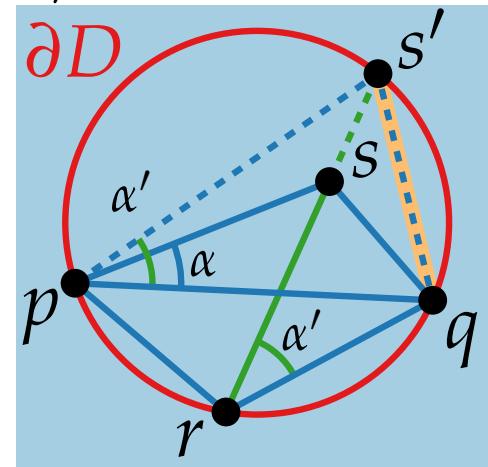
Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.

(" \Rightarrow ") Use Thales++ w.r.t. qs' . \square

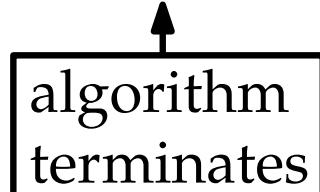
Note.

If $s \in \partial D$, both pq and rs legal.



Definition. A triangulation is *legal* if it has no illegal edge.

Existence?



Algorithm: Let \mathcal{T} be any triangulation of P .
 While \mathcal{T} has an illegal edge e , flip e . Return \mathcal{T} .

$A(\mathcal{T})$ goes up! & $\#(\text{triangulations of } P) < \infty$

Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.

Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.

But is every legal triangulation angle-optimal??

Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.

But is every legal triangulation angle-optimal??

Let's see.

Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.

But is every legal triangulation angle-optimal??

Let's see.

To clarify things, we'll introduce yet another type of triangulation... .

Computational Geometry

Lecture 8: Delaunay Triangulations or Height Interpolation

Part IV: Delaunay Triangulation

Philipp Kindermann

Summer Semester 2020

Voronoi & Delaunay

Recall: Given a set P of n points in the plane...

Voronoi & Delaunay

Recall: Given a set P of n points in the plane...
 $\text{Vor}(P)$ = subdivision of the plane into
Voronoi cells, edges, and vertices

Voronoi & Delaunay

Recall:

Given a set P of n points in the plane...

$\text{Vor}(P)$ = subdivision of the plane into
Voronoi cells, edges, and vertices

$\mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$
Voronoi cell of $p \in P$

Voronoi & Delaunay

Recall:

Given a set P of n points in the plane...

$\text{Vor}(P)$ = subdivision of the plane into
Voronoi cells, edges, and vertices

$\mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$
Voronoi cell of $p \in P$

Definition: The graph $\mathcal{G} = (P, E)$ with
 $\{p, q\} \in E \Leftrightarrow \mathcal{V}(p)$ and $\mathcal{V}(q)$ share an edge
is the *dual graph* of $\text{Vor}(P)$

Voronoi & Delaunay

Recall: Given a set P of n points in the plane...

$\text{Vor}(P)$ = subdivision of the plane into

Voronoi cells, edges, and vertices

$\mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$

Voronoi cell of $p \in P$

Definition: The graph $\mathcal{G} = (P, E)$ with

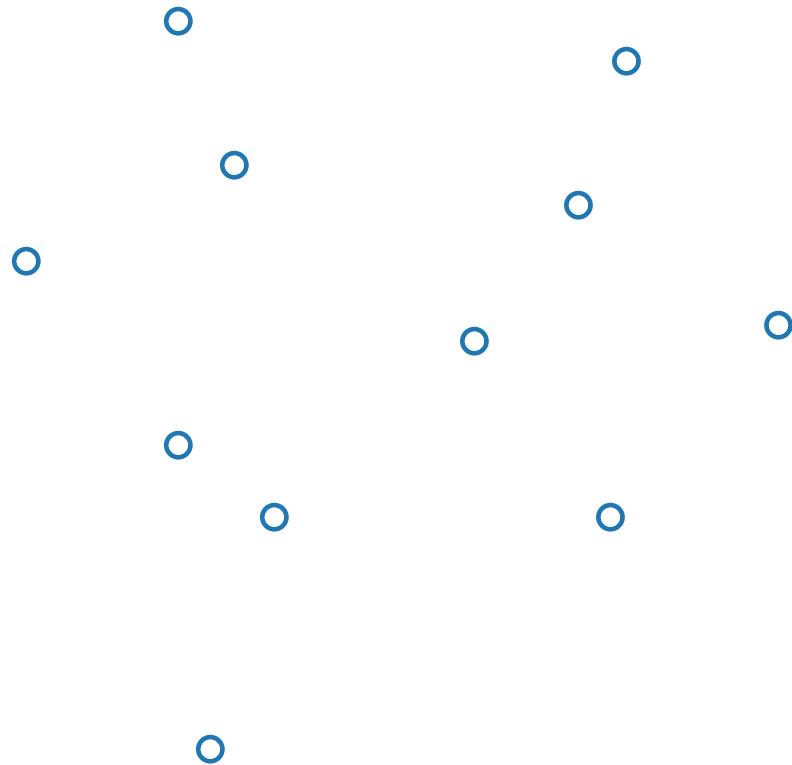
$\{p, q\} \in E \Leftrightarrow \mathcal{V}(p)$ and $\mathcal{V}(q)$ share an edge

is the *dual graph* of $\text{Vor}(P)$

Definition: The *Delaunay graph* $\mathcal{DG}(P)$ is the straight-line drawing of \mathcal{G} .

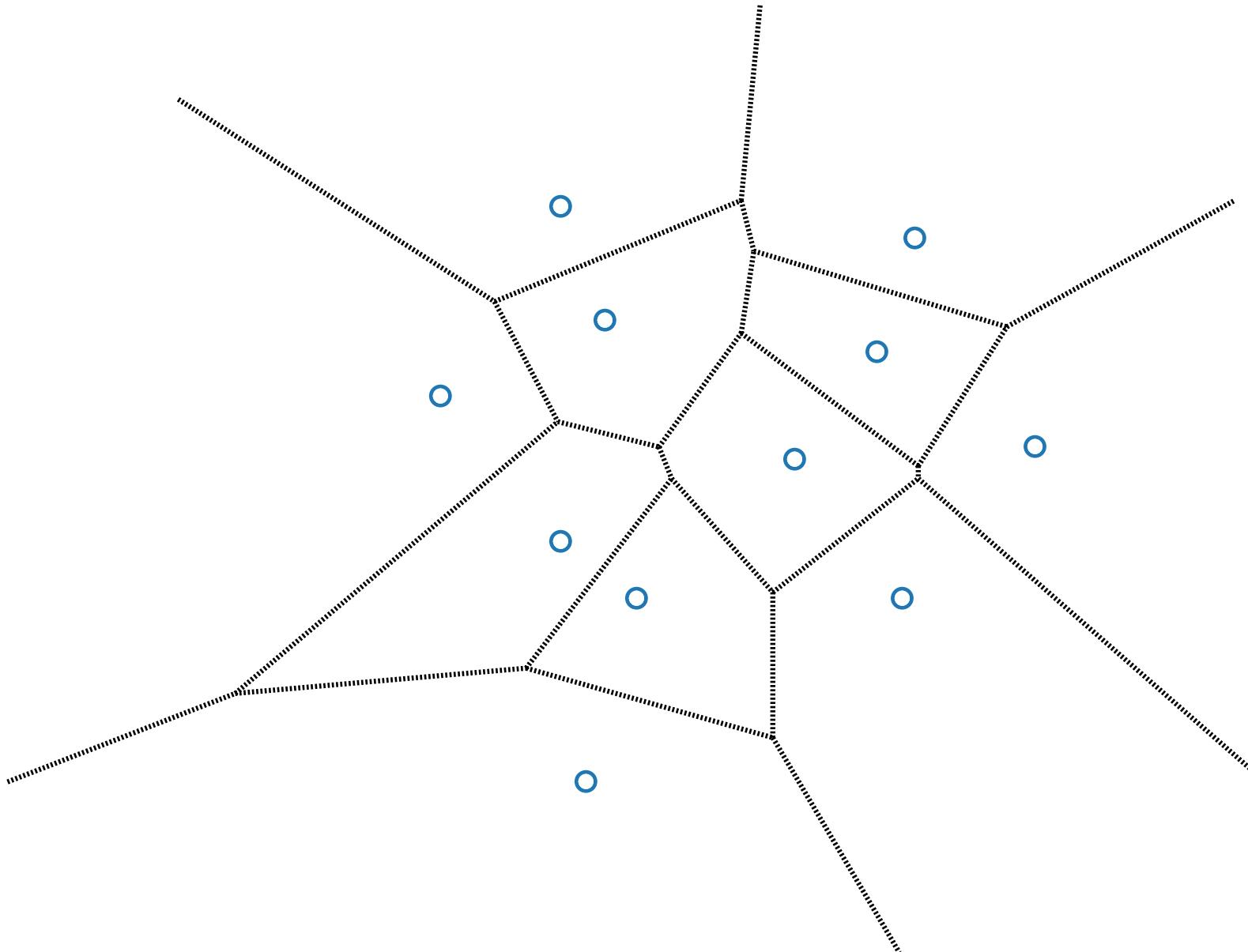
From Voronoi to Delaunay

$$\mathcal{P} \subset \mathbb{R}^2$$



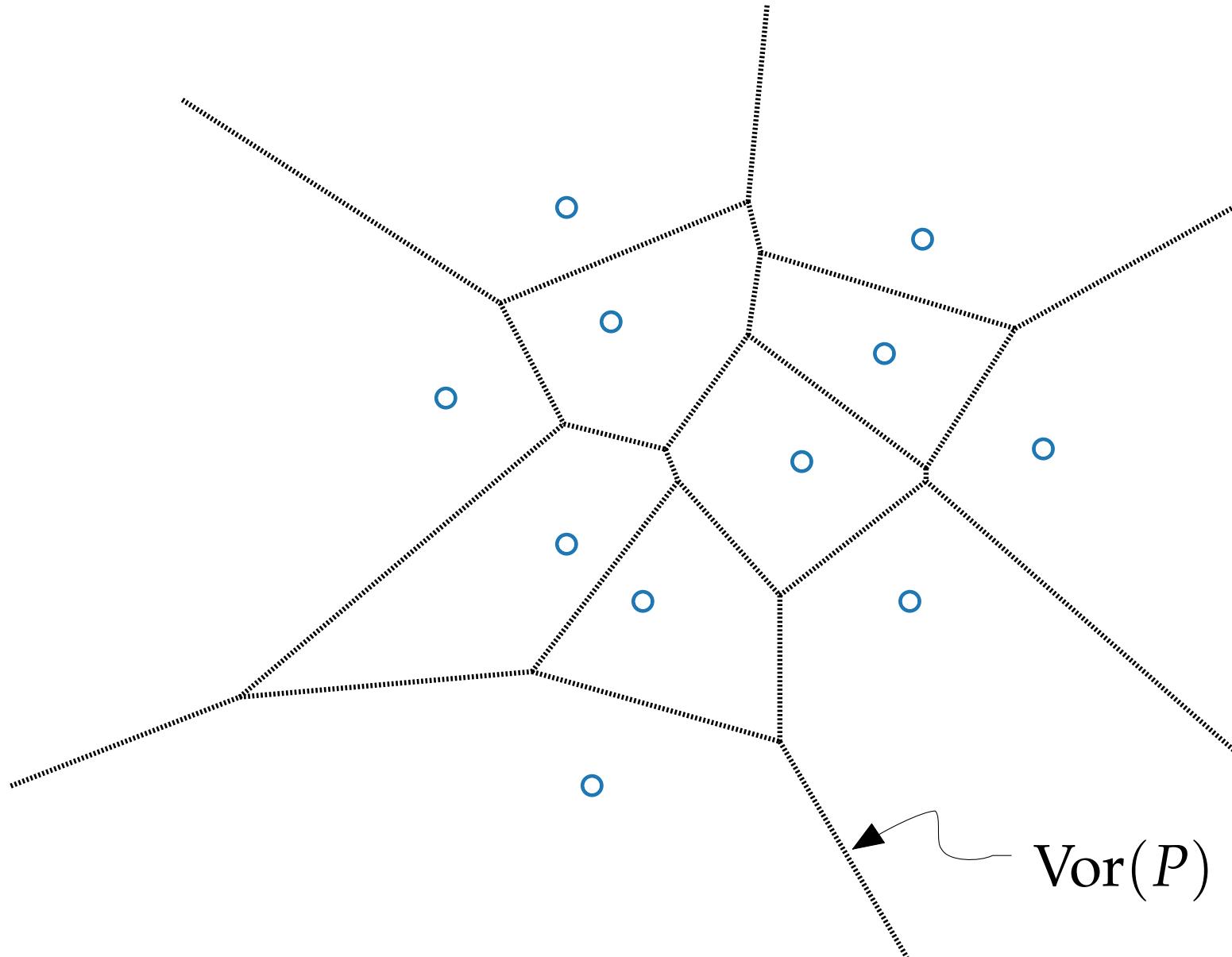
From Voronoi to Delaunay

$$P \subset \mathbb{R}^2$$



From Voronoi to Delaunay

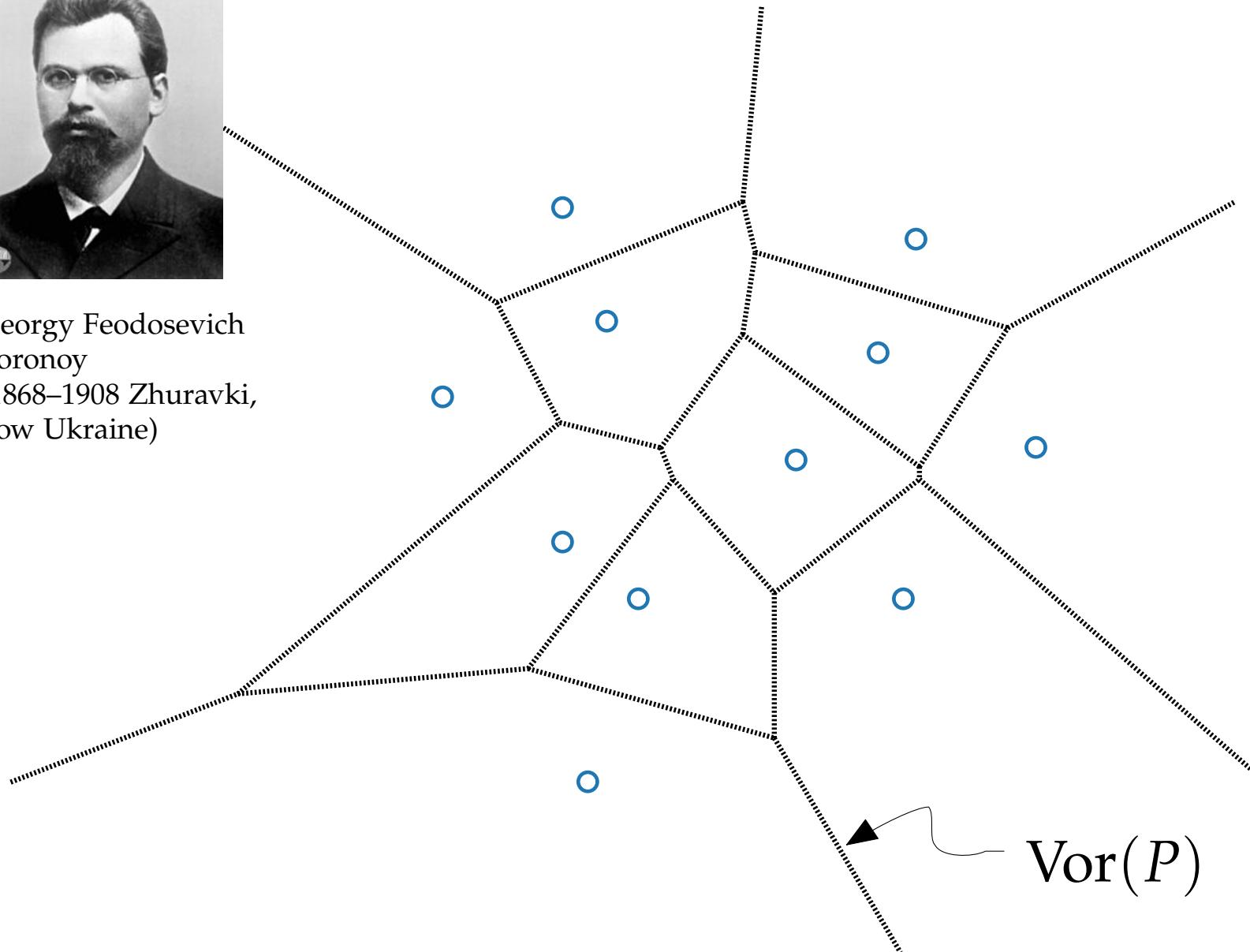
$$P \subset \mathbb{R}^2$$



From Voronoi to Delaunay

$$\textcolor{blue}{P} \subset \mathbb{R}^2$$

Georgy Feodosevich
Voronoy
(1868–1908 Zhuravki,
now Ukraine)



$\text{Vor}(P)$

From Voronoi to Delaunay

$$P \subset \mathbb{R}^2$$

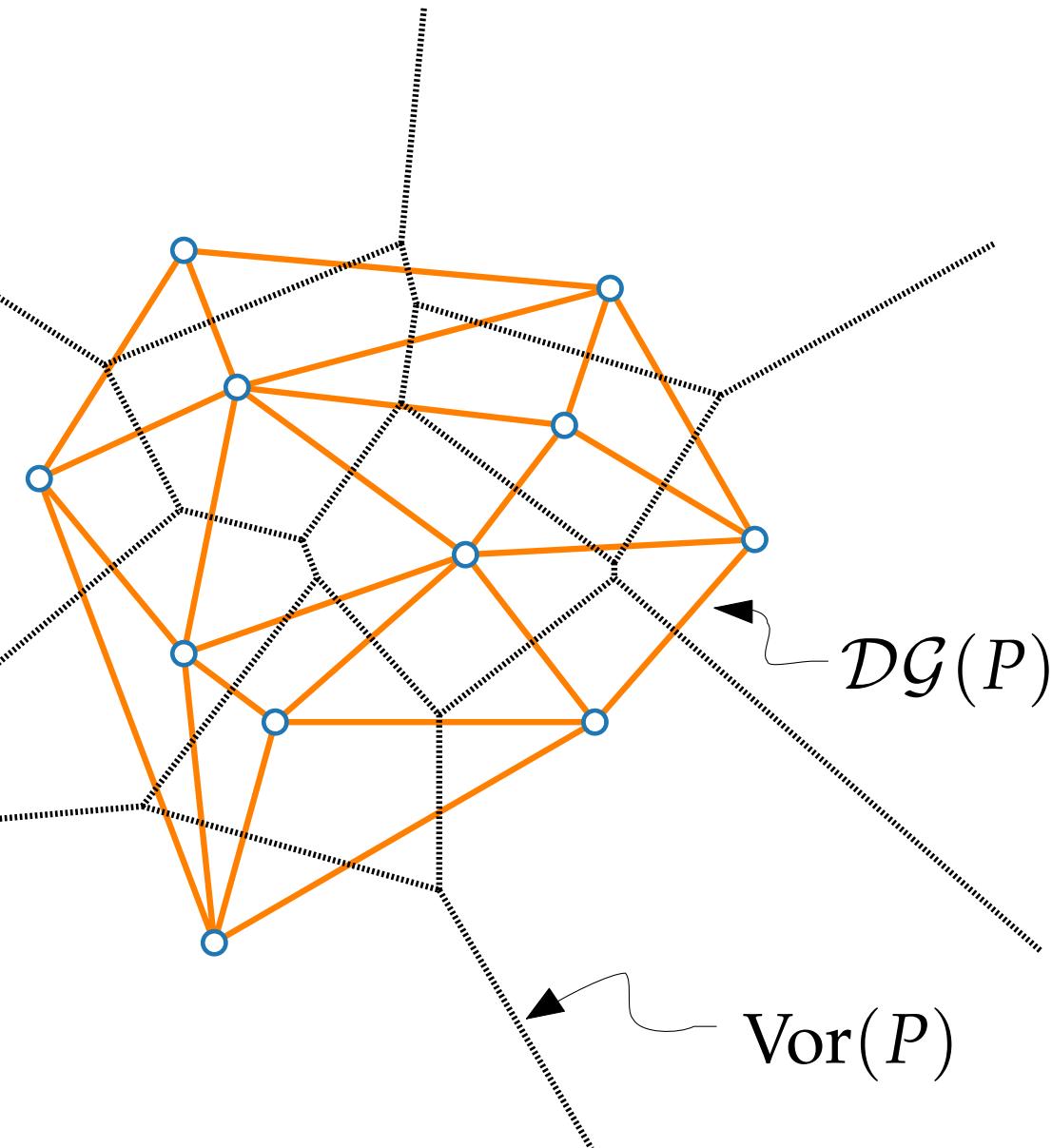
Georgy Feodosevich
Voronoy
(1868–1908 Zhuravki,
now Ukraine)



From Voronoi to Delaunay

$$P \subset \mathbb{R}^2$$

Georgy Feodosevich
Voronoy
(1868–1908 Zhuravki,
now Ukraine)

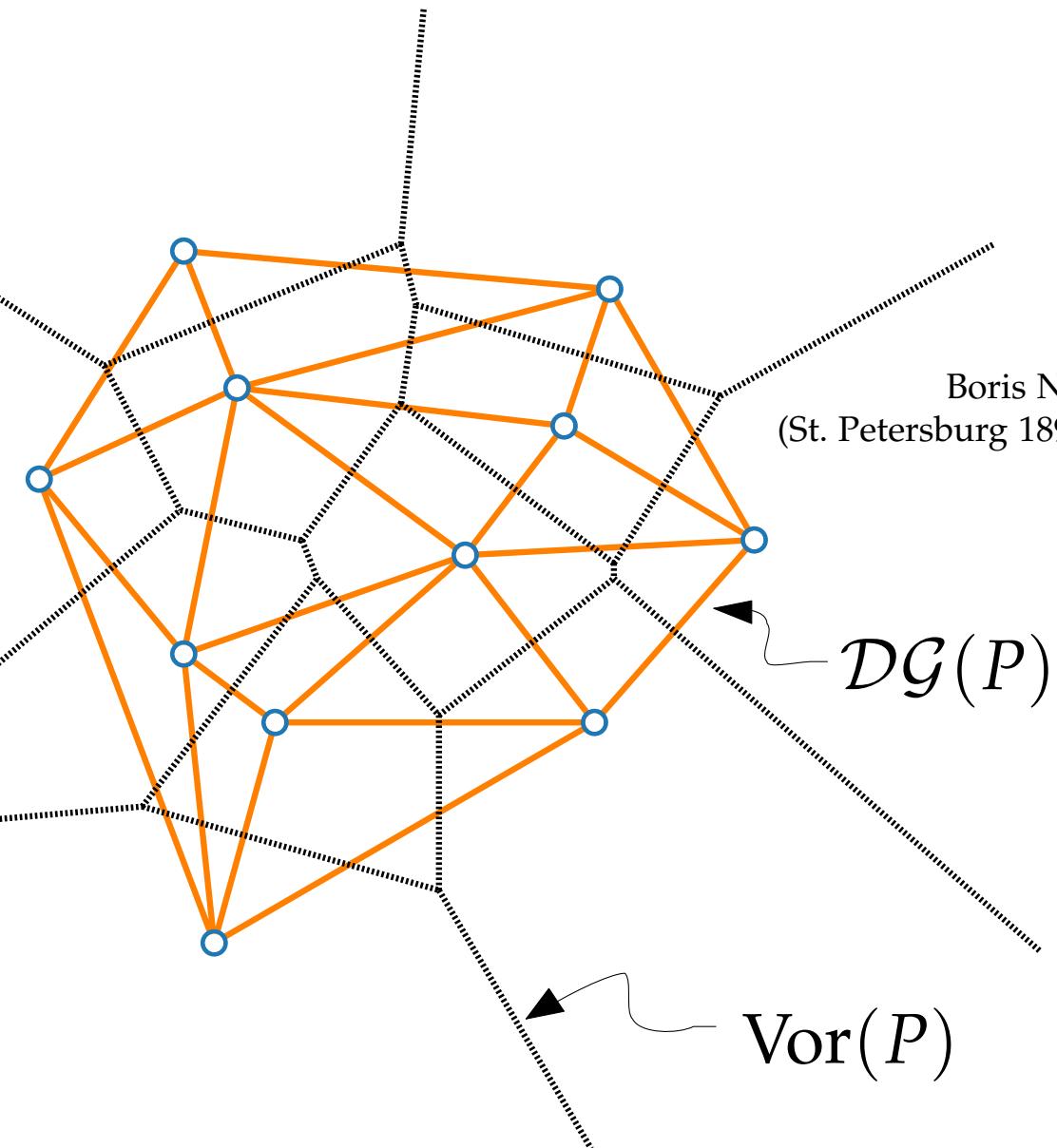


From Voronoi to Delaunay

$$P \subset \mathbb{R}^2$$

Georgy Feodosevich
Voronoy
(1868–1908 Zhuravki,
now Ukraine)

Boris Nikolaevich Delone
(St. Petersburg 1890–1980 Moscow)

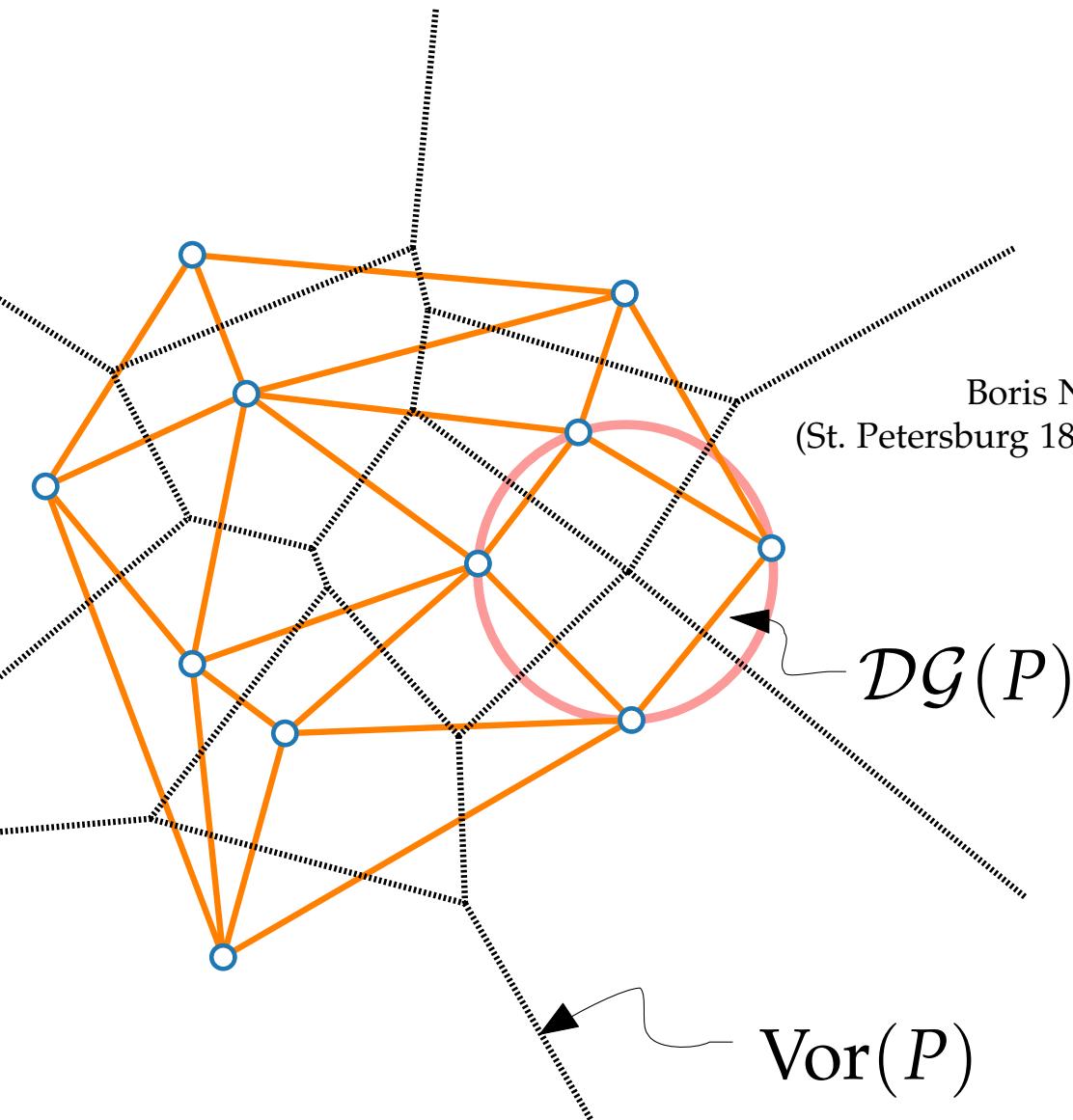


From Voronoi to Delaunay

$$P \subset \mathbb{R}^2$$

Georgy Feodosevich
Voronoy
(1868–1908 Zhuravki,
now Ukraine)

Boris Nikolaevich Delone
(St. Petersburg 1890–1980 Moscow)

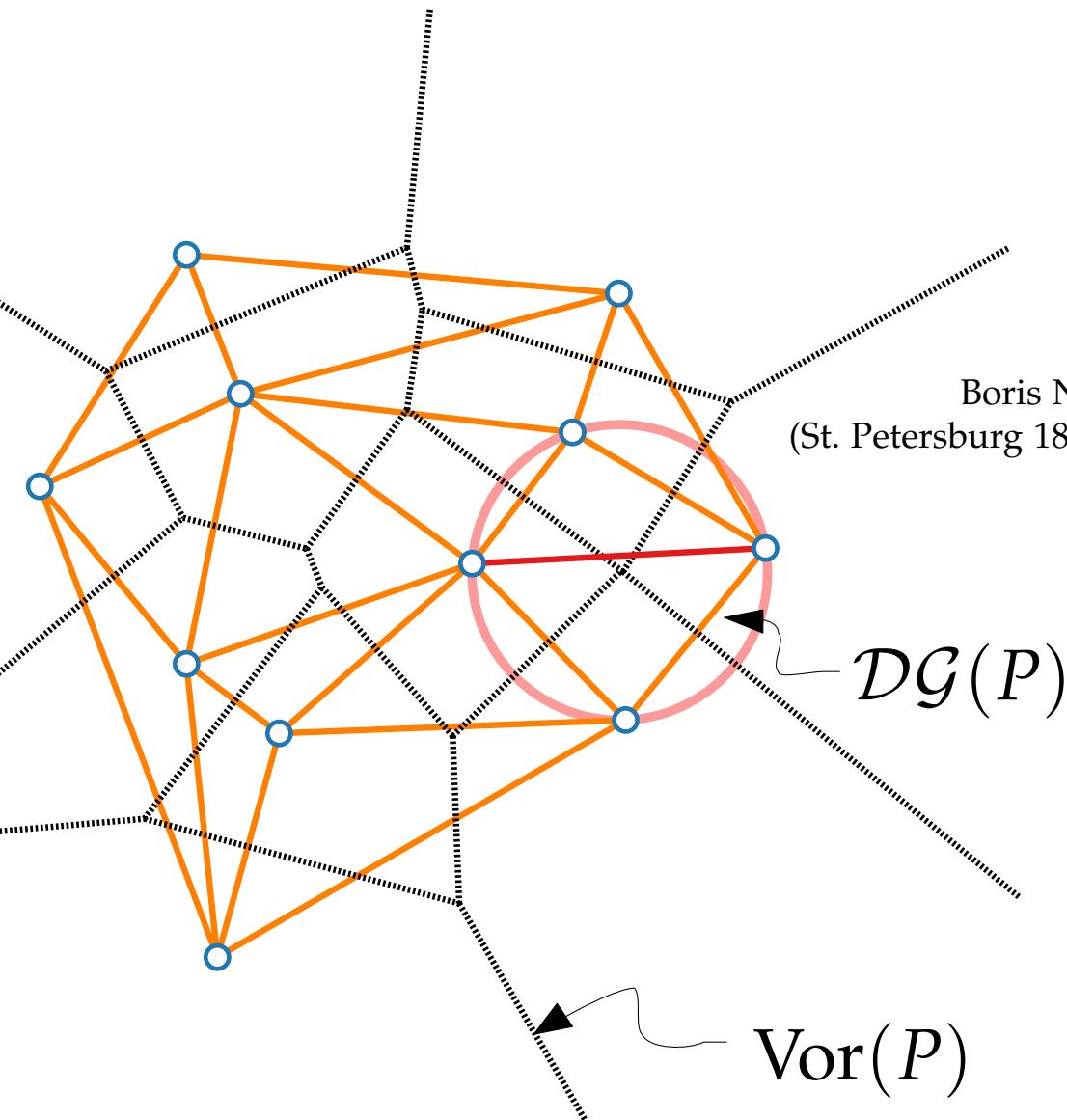


From Voronoi to Delaunay

$$P \subset \mathbb{R}^2$$

Georgy Feodosevich
Voronoy
(1868–1908 Zhuravki,
now Ukraine)

Boris Nikolaevich Delone
(St. Petersburg 1890–1980 Moscow)

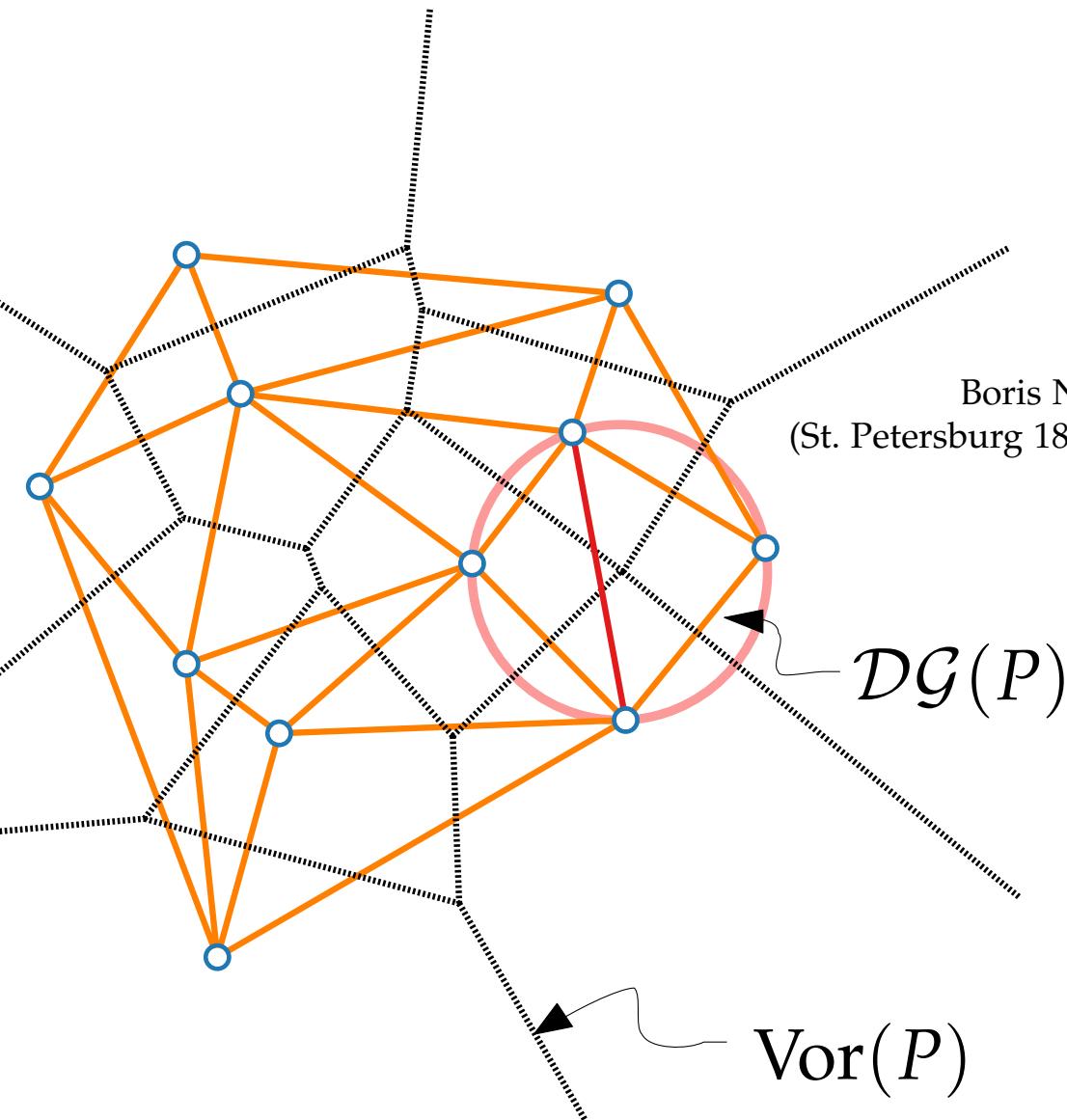


From Voronoi to Delaunay

$$P \subset \mathbb{R}^2$$

Georgy Feodosevich
Voronoy
(1868–1908 Zhuravki,
now Ukraine)

Boris Nikolaevich Delone
(St. Petersburg 1890–1980 Moscow)



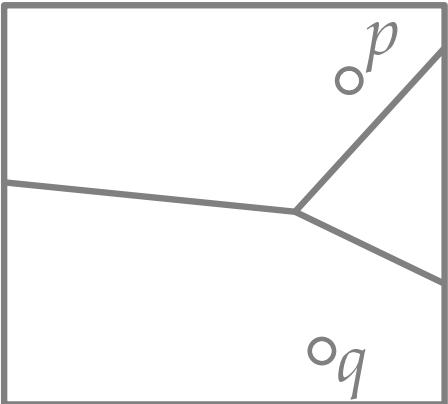
Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof. Recall property of Voronoi edges:



Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ \Leftrightarrow



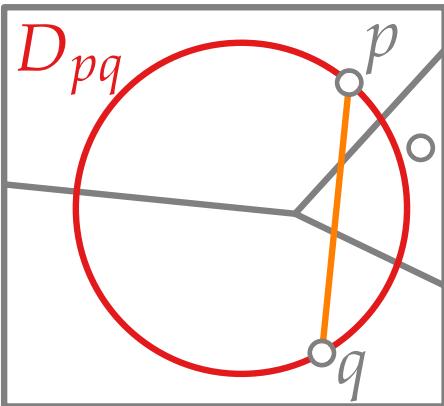
Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.



Planarity

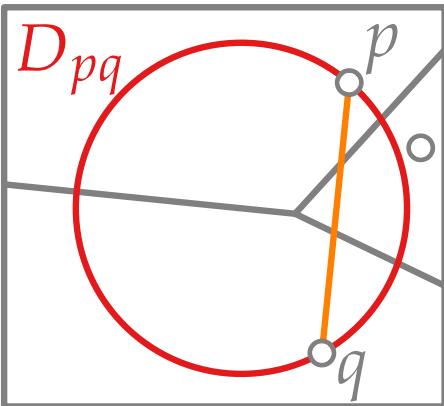
Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

■ $p, q \in \partial D_{pq}$ and



Planarity

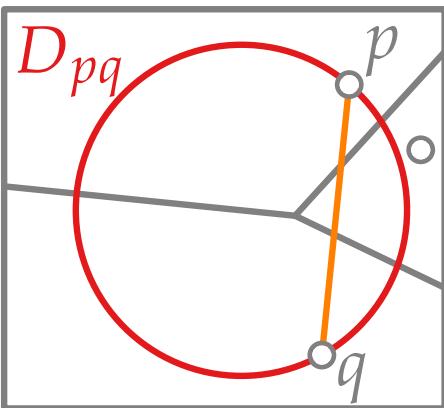
Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.



Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

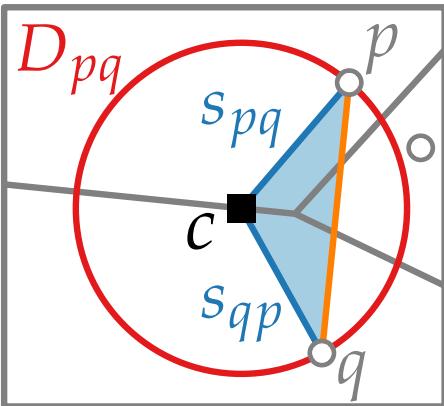
Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.



Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

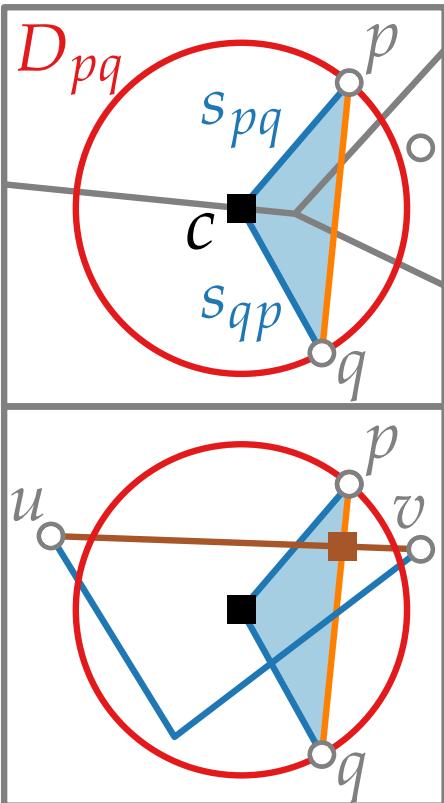
Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq .



Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

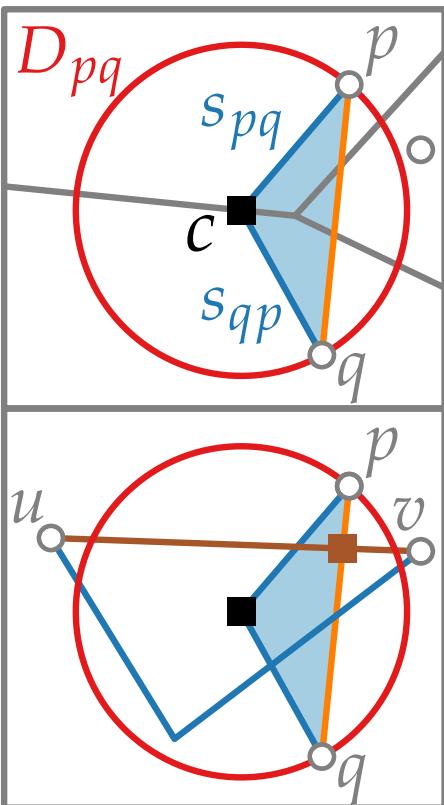
Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq .

$u, v \notin D_{pq} \Rightarrow$



Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

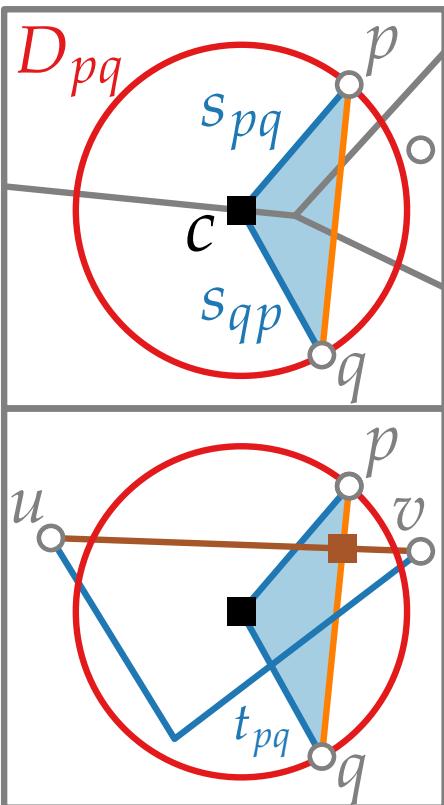
Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq .

$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$



Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

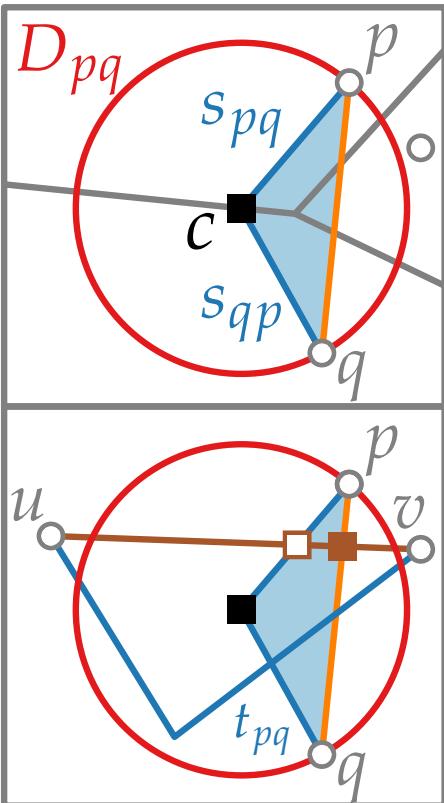
- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq .

$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

uv crosses another edge of t_{pq}



Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

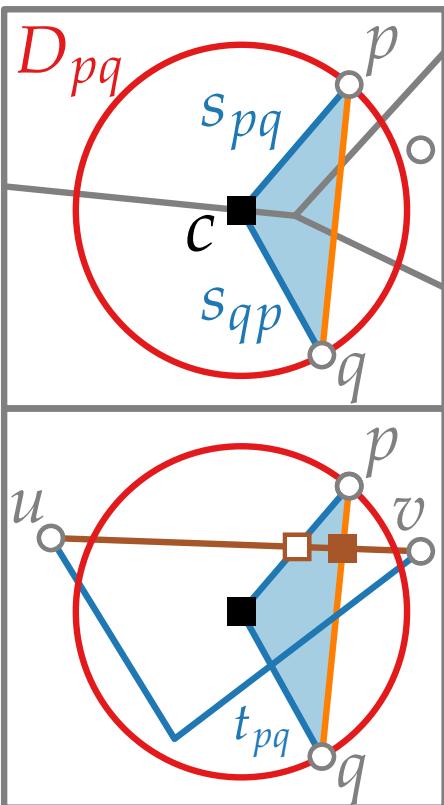
$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq .

$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

uv crosses another edge of t_{pq}

$p, q \notin D_{uv} \Rightarrow$



Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

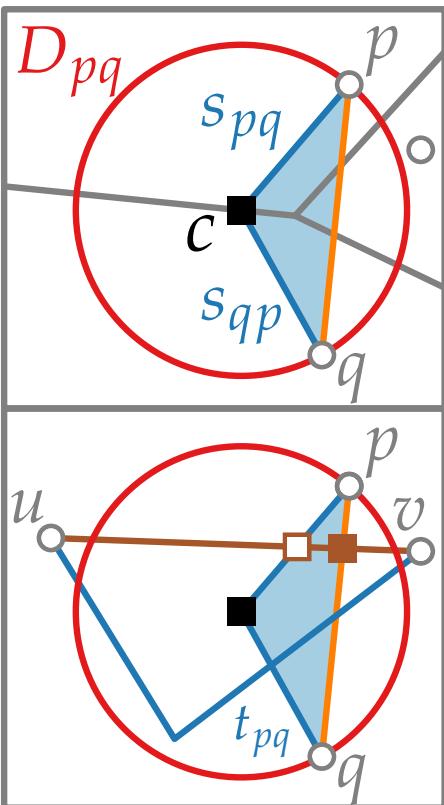
$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq .

$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

uv crosses another edge of t_{pq}

$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$



Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

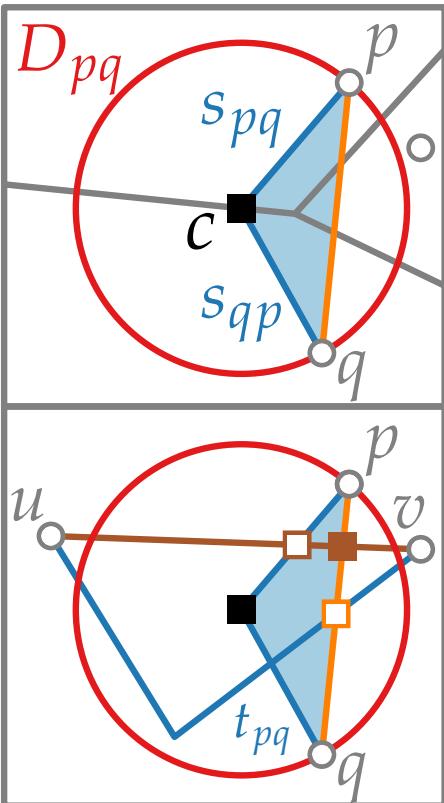
Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq .

$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

uv crosses another edge of t_{pq}

$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$

pq crosses another edge of t_{uv}



Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq .

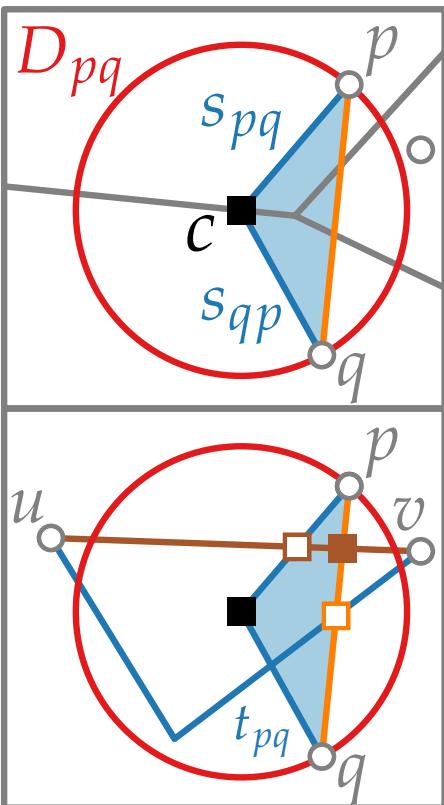
$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

uv crosses another edge of t_{pq}

$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$

pq crosses another edge of t_{uv}

\Rightarrow one of s_{pq} or s_{qp} crosses one of s_{uv} or s_{vu}



Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq .

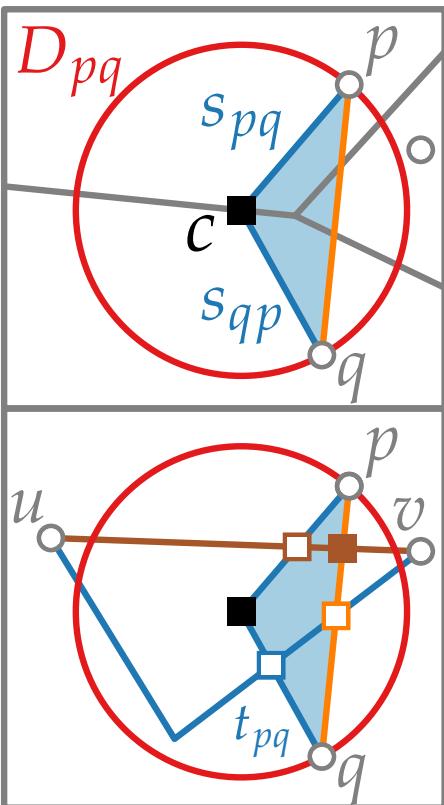
$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

uv crosses another edge of t_{pq}

$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$

pq crosses another edge of t_{uv}

\Rightarrow one of s_{pq} or s_{qp} crosses one of s_{uv} or s_{vu}



Planarity

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq .

$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

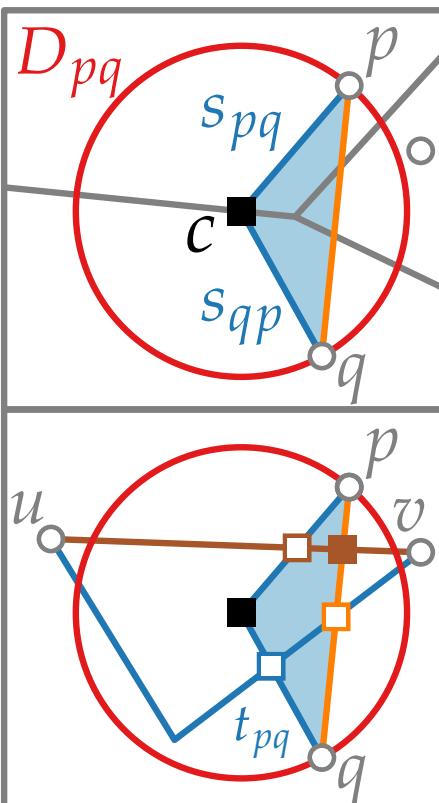
uv crosses another edge of t_{pq}

$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$

pq crosses another edge of t_{uv}

\Rightarrow one of s_{pq} or s_{qp} crosses one of s_{uv} or s_{vu}

$s_{pq} \subset \mathcal{V}(p), s_{qp} \subset \mathcal{V}(q), s_{uv} \subset \mathcal{V}(u), s_{vu} \subset \mathcal{V}(v)$.



Planarity

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ $\Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq .

$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

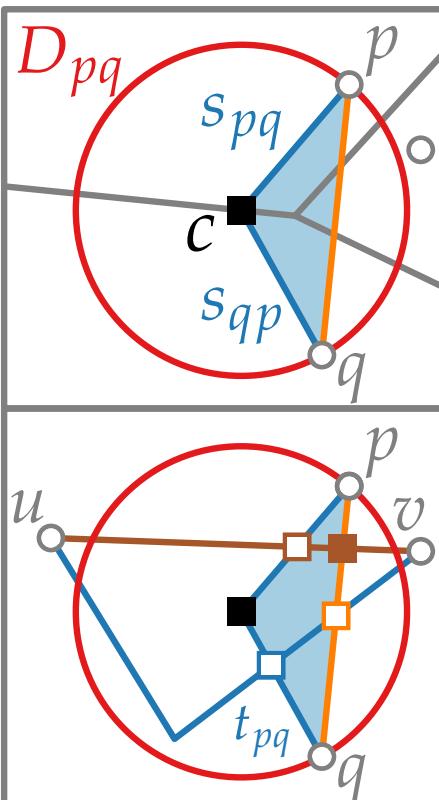
uv crosses another edge of t_{pq}

$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$

pq crosses another edge of t_{uv}

\Rightarrow one of s_{pq} or s_{qp} crosses one of s_{uv} or s_{vu}

$\hookleftarrow s_{pq} \subset \mathcal{V}(p), s_{qp} \subset \mathcal{V}(q), s_{uv} \subset \mathcal{V}(u), s_{vu} \subset \mathcal{V}(v)$.



Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

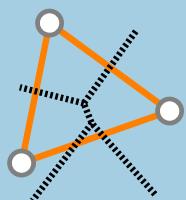
Lemma. $P \subset \mathbb{R}^2$ finite. Then

- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ \Leftrightarrow

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then

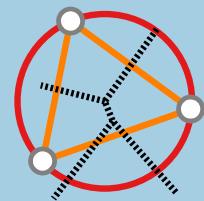


(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ \Leftrightarrow

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then

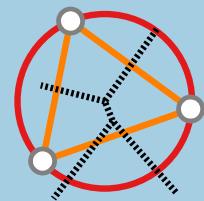


(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ \Leftrightarrow

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then

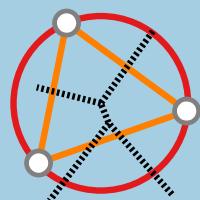


(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ $\Leftrightarrow \text{int}(C(p, q, r)) \cap P = \emptyset$

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then

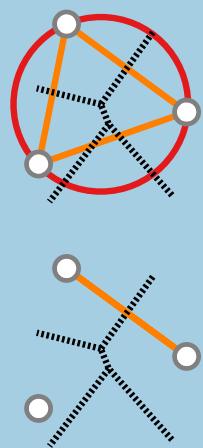


- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ $\Leftrightarrow \text{int}(C(p, q, r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P)$ \Leftrightarrow there is a disk D with

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then

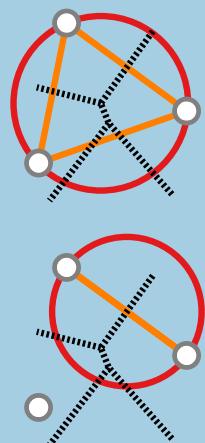


- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ $\Leftrightarrow \text{int}(C(p, q, r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P)$ \Leftrightarrow there is a disk D with

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then

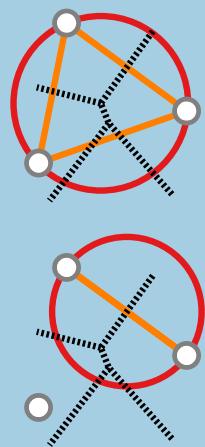


- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ $\Leftrightarrow \text{int}(C(p, q, r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P)$ \Leftrightarrow there is a disk D with

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then

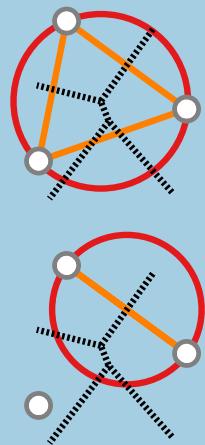


- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ $\Leftrightarrow \text{int}(C(p, q, r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P)$ \Leftrightarrow there is a disk D with
 - $\partial D \cap P = \{p, q\}$ and
 - $\text{int}(D) \cap P = \emptyset$.

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then



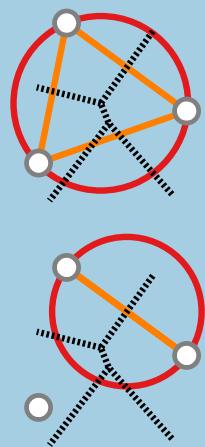
- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ $\Leftrightarrow \text{int}(C(p, q, r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P)$ \Leftrightarrow there is a disk D with
 - $\partial D \cap P = \{p, q\}$ and
 - $\text{int}(D) \cap P = \emptyset$.

Lemma. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P . Then
 \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} :

Characterization

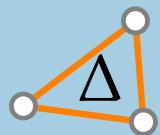
Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then



- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ $\Leftrightarrow \text{int}(C(p, q, r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P)$ \Leftrightarrow there is a disk D with
 - $\partial D \cap P = \{p, q\}$ and
 - $\text{int}(D) \cap P = \emptyset$.

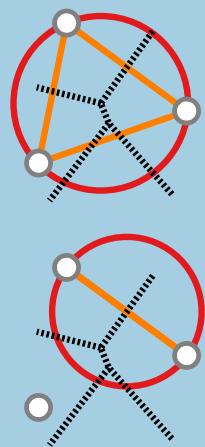
Lemma. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P . Then \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} :



Characterization

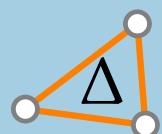
Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then



- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ $\Leftrightarrow \text{int}(C(p, q, r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P)$ \Leftrightarrow there is a disk D with
 - $\partial D \cap P = \{p, q\}$ and
 - $\text{int}(D) \cap P = \emptyset$.

Lemma. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P . Then

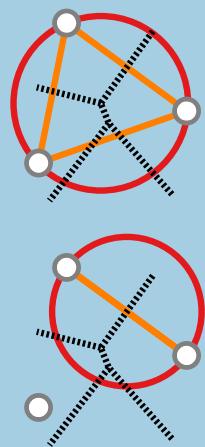


\mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} :
 $\text{int}(C(\Delta)) \cap P = \emptyset$.

Characterization

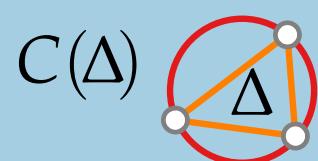
Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then



- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ $\Leftrightarrow \text{int}(C(p, q, r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P)$ \Leftrightarrow there is a disk D with
 - $\partial D \cap P = \{p, q\}$ and
 - $\text{int}(D) \cap P = \emptyset$.

Lemma. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P . Then

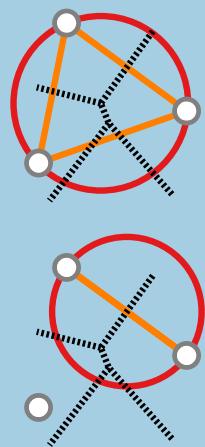


\mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} :
 $\text{int}(C(\Delta)) \cap P = \emptyset$.

Characterization

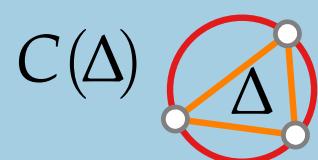
Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma. $P \subset \mathbb{R}^2$ finite. Then



- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P)$ $\Leftrightarrow \text{int}(C(p, q, r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P)$ \Leftrightarrow there is a disk D with
 - $\partial D \cap P = \{p, q\}$ and
 - $\text{int}(D) \cap P = \emptyset$.

Lemma. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P . Then



\mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} :
 $\text{int}(C(\Delta)) \cap P = \emptyset$.

("empty-circumcircle property")

Computational Geometry

Lecture 8: Delaunay Triangulations or Height Interpolation

Part V: Correctness & Computation

Philipp Kindermann

Summer Semester 2020

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal \Leftrightarrow

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal \Leftrightarrow \mathcal{T} Delaunay.

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal \Leftrightarrow \mathcal{T} Delaunay.

Proof. “ \Leftarrow ”

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++

“ \Rightarrow ”

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++
“ \Rightarrow ” by contradiction:

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++
“ \Rightarrow ” by contradiction:
Assume \mathcal{T} is legal triang. of P , but *not* Delaunay.

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++
“ \Rightarrow ” by contradiction:

Assume \mathcal{T} is legal triang. of P , but *not* Delaunay.
 $\Rightarrow \exists \Delta pqr$ such that $\text{int}(C(\Delta pqr))$ contains $s \in P$.

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++

“ \Rightarrow ” by contradiction:

Assume \mathcal{T} is legal triang. of P , but *not* Delaunay.

$\Rightarrow \exists \Delta pqr$ such that $\text{int}(C(\Delta pqr))$ contains $s \in P$.

Main Result

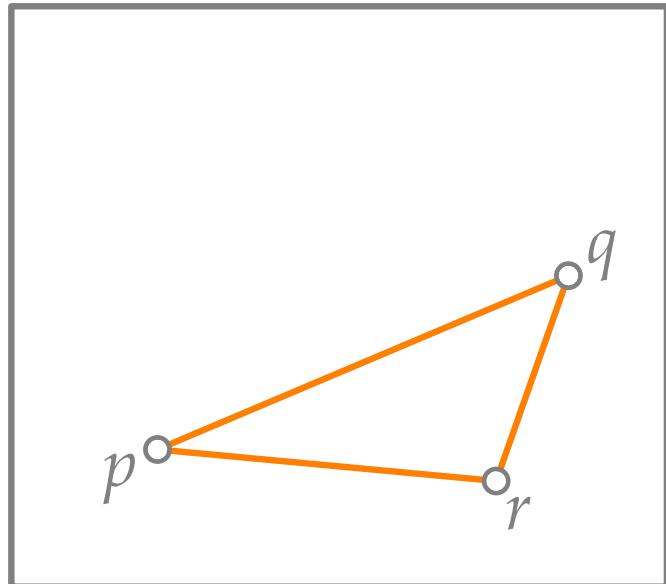
Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
 Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++

“ \Rightarrow ” by contradiction:

Assume \mathcal{T} is legal triang. of P , but *not* Delaunay.

$\Rightarrow \exists \Delta pqr$ such that $\text{int}(C(\Delta pqr))$ contains $s \in P$.



Main Result

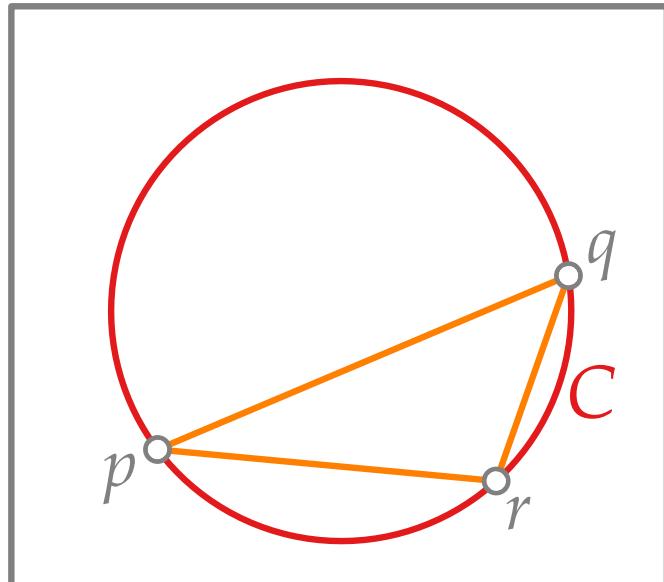
Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
 Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++

“ \Rightarrow ” by contradiction:

Assume \mathcal{T} is legal triang. of P , but *not* Delaunay.

$\Rightarrow \exists \Delta pqr$ such that $\text{int}(C(\Delta pqr))$ contains $s \in P$.



Main Result

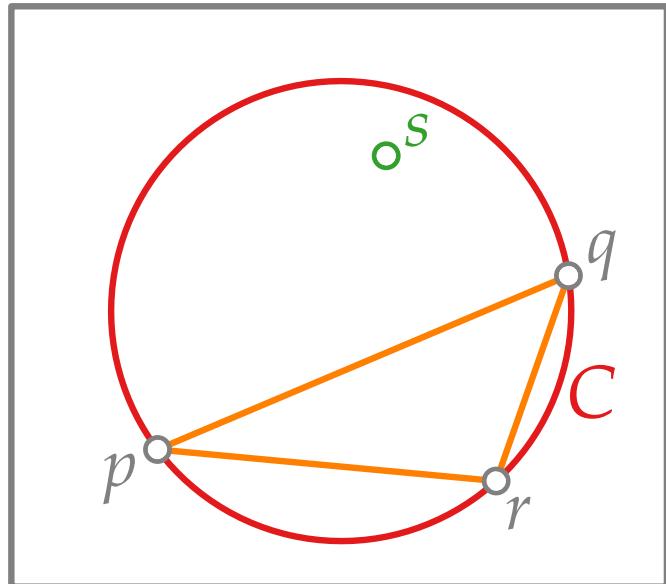
Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
 Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++

“ \Rightarrow ” by contradiction:

Assume \mathcal{T} is legal triang. of P , but *not* Delaunay.

$\Rightarrow \exists \Delta pqr$ such that $\text{int}(C(\Delta pqr))$ contains $s \in P$.



Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
 Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

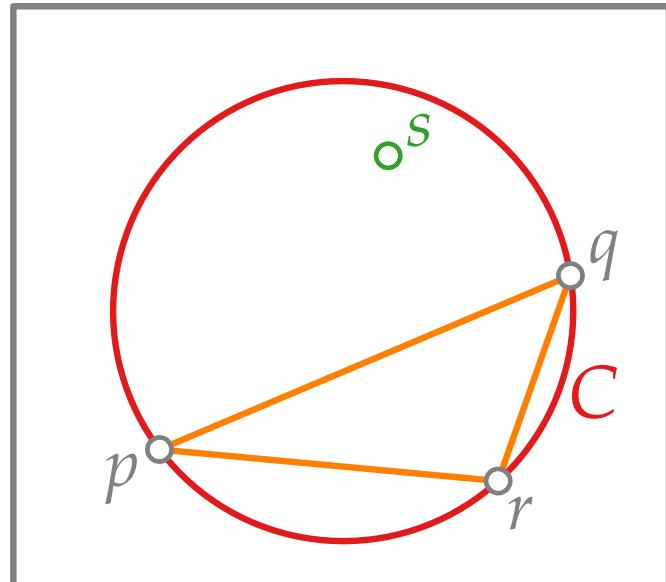
Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++

“ \Rightarrow ” by contradiction:

Assume \mathcal{T} is legal triang. of P , but *not* Delaunay.

$\Rightarrow \exists \Delta pqr$ such that $\text{int}(C(\Delta pqr))$ contains $s \in P$.

Wlog. let $e = pq$ be the edge of Δpqr such that s “sees” pq before the other edges of Δpqr .



Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
 Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

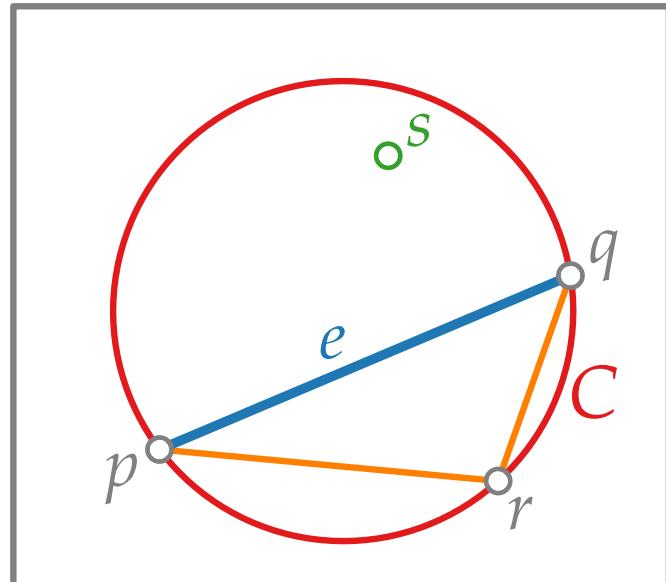
Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++

“ \Rightarrow ” by contradiction:

Assume \mathcal{T} is legal triang. of P , but *not* Delaunay.

$\Rightarrow \exists \Delta pqr$ such that $\text{int}(C(\Delta pqr))$ contains $s \in P$.

Wlog. let $e = pq$ be the edge of Δpqr such that s “sees” pq before the other edges of Δpqr .



Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
 Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++

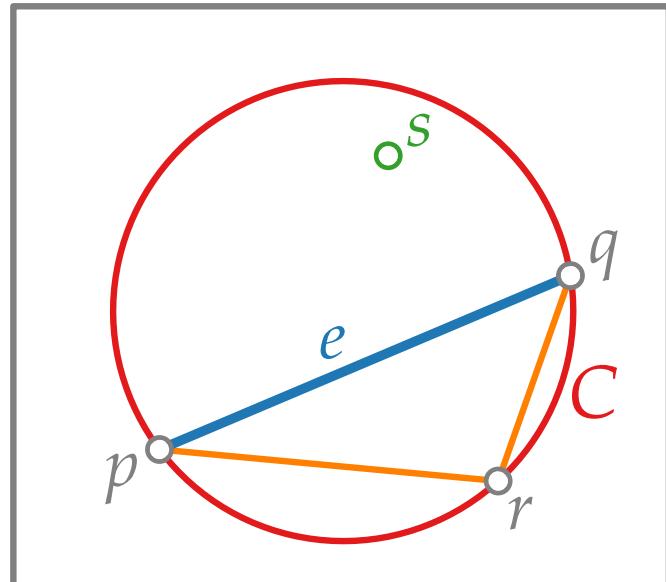
“ \Rightarrow ” by contradiction:

Assume \mathcal{T} is legal triang. of P , but *not* Delaunay.

$\Rightarrow \exists \Delta pqr$ such that $\text{int}(C(\Delta pqr))$ contains $s \in P$.

Wlog. let $e = pq$ be the edge of Δpqr such that s “sees” pq before the other edges of Δpqr .

Among all such pairs $(\Delta pqr, s)$ in \mathcal{T} choose one that maximizes $\alpha = \angle psq$.



Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
 Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. “ \Leftarrow ” implied by empty-circumcircle prop. & Thales++

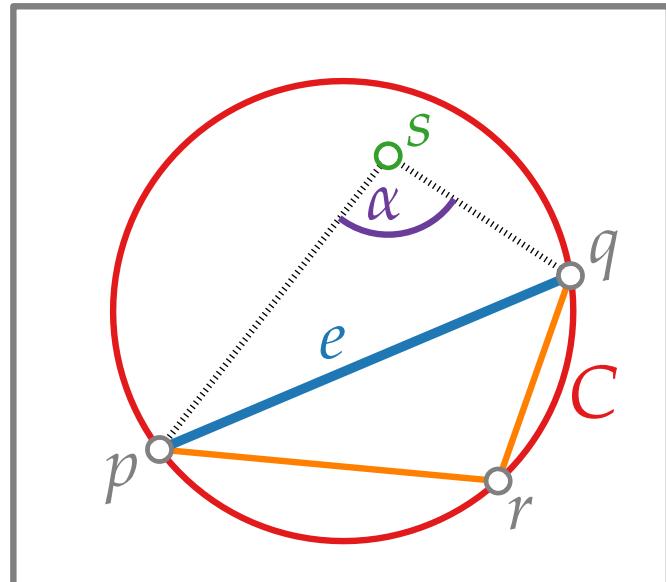
“ \Rightarrow ” by contradiction:

Assume \mathcal{T} is legal triang. of P , but *not* Delaunay.

$\Rightarrow \exists \Delta pqr$ such that $\text{int}(C(\Delta pqr))$ contains $s \in P$.

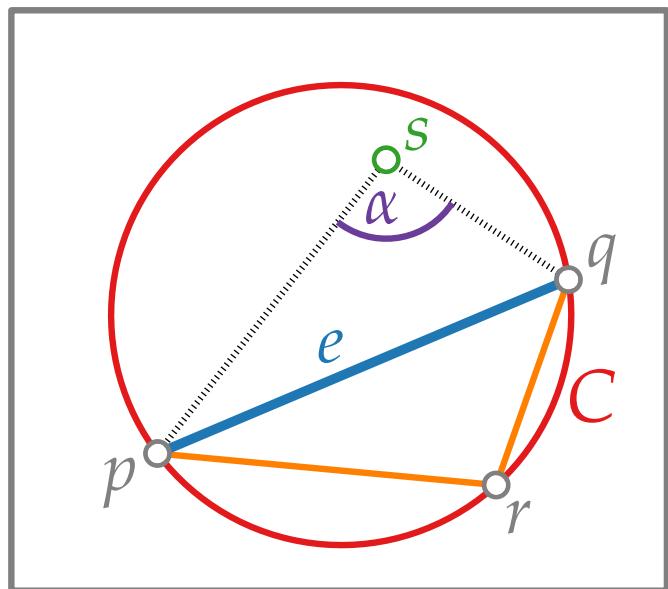
Wlog. let $e = pq$ be the edge of Δpqr such that s “sees” pq before the other edges of Δpqr .

Among all such pairs $(\Delta pqr, s)$ in \mathcal{T} choose one that maximizes $\alpha = \angle psq$.



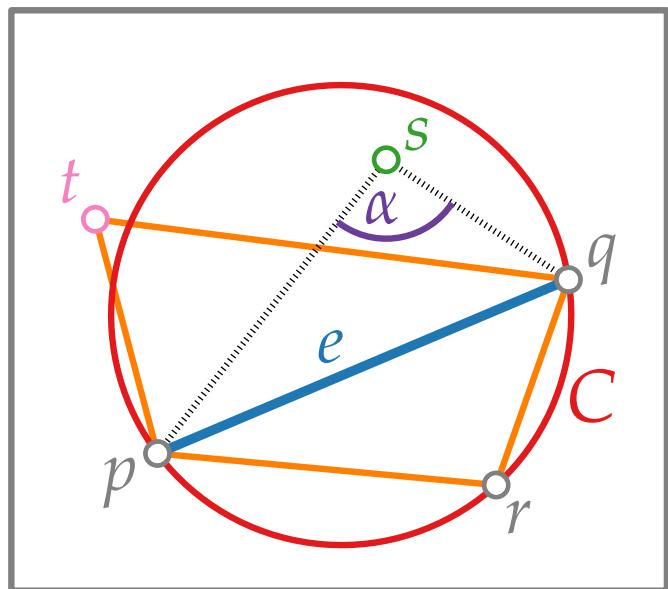
Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .



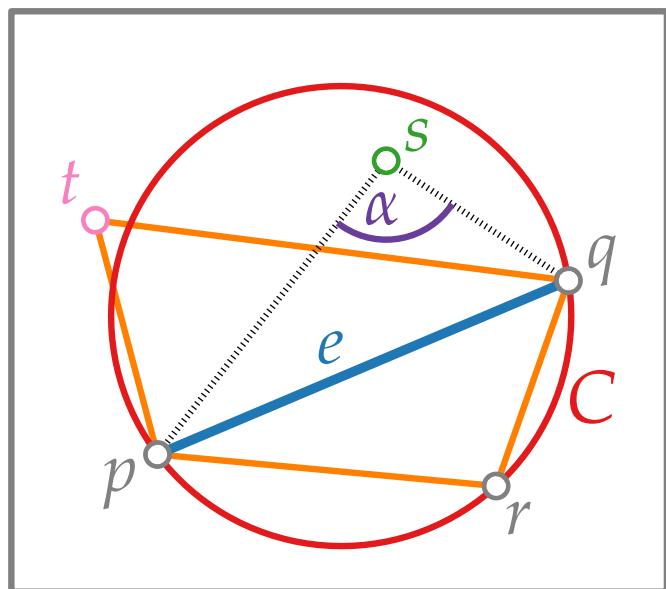
Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .



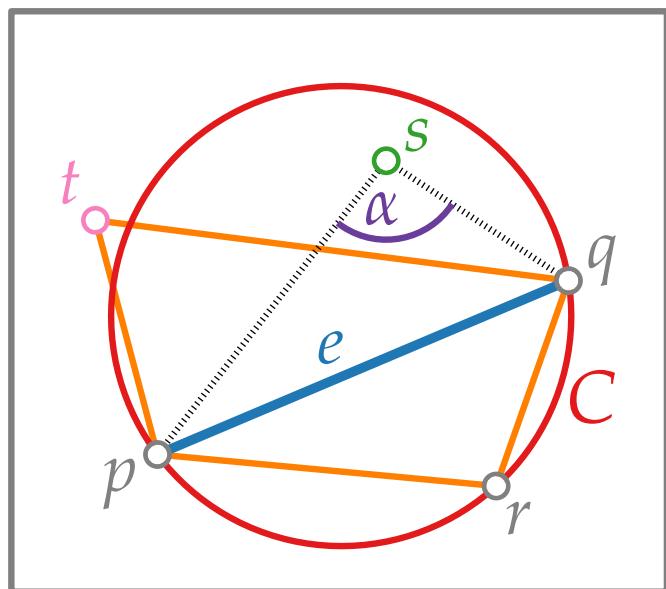
Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .
 \mathcal{T} legal \Rightarrow



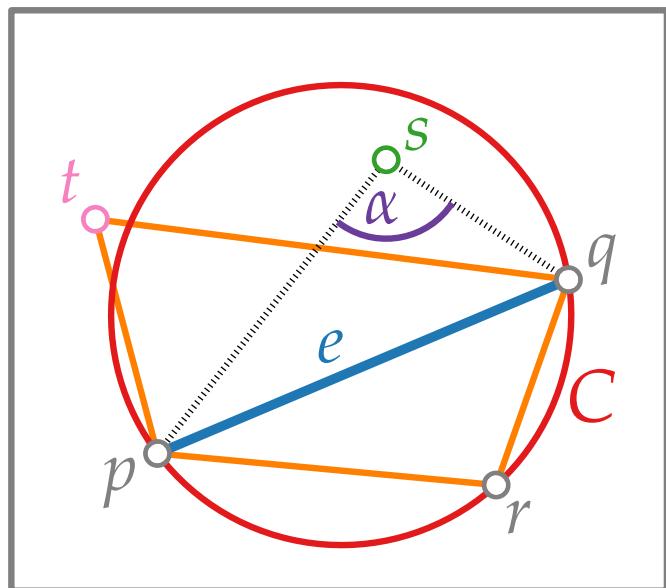
Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .
 \mathcal{T} legal \Rightarrow e legal \Rightarrow



Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .
 \mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

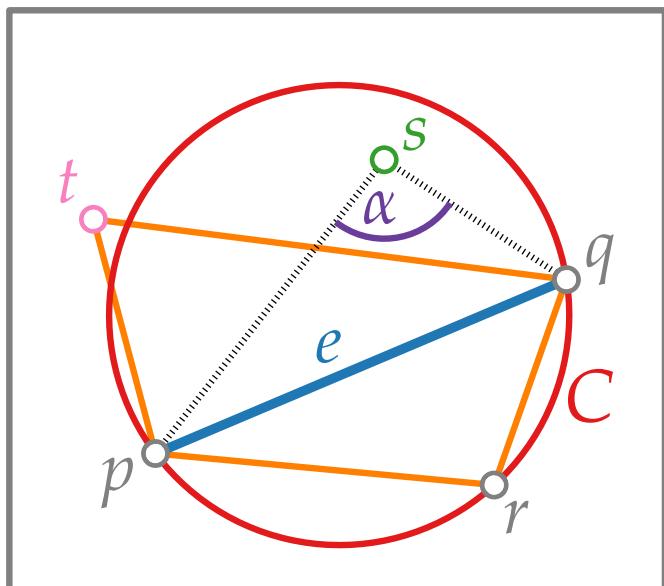


Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .

\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.

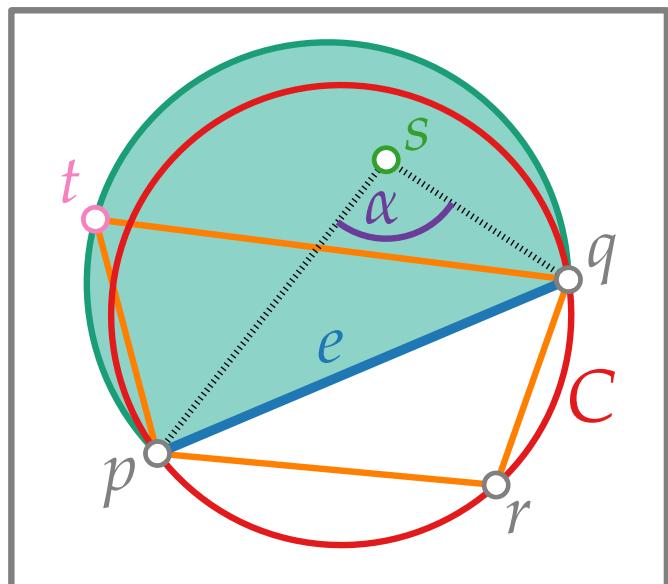


Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .

$\mathcal{T} \text{ legal} \Rightarrow e \text{ legal} \Rightarrow t \notin \text{int}(C(\Delta pqr))$

$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.

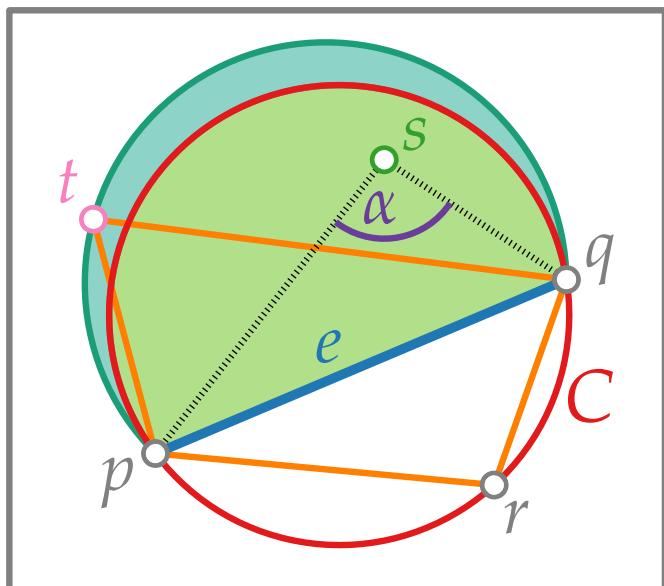


Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .

\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. halfplane supported by e that contains s

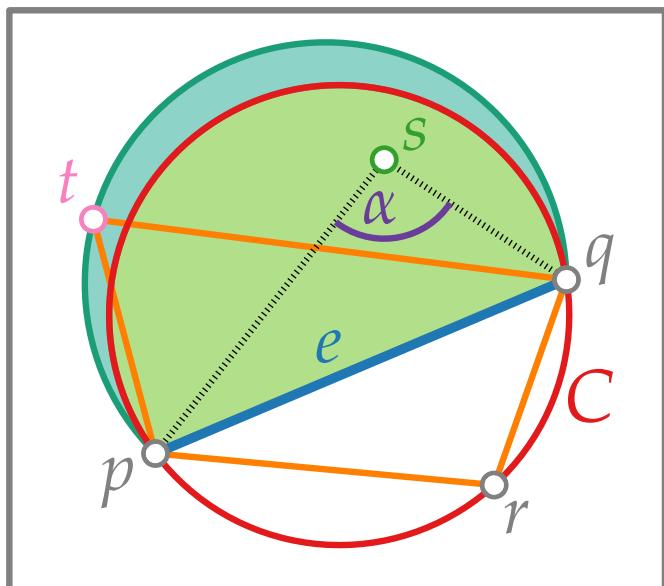


Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .

\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$
 $\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.
 $\Rightarrow s \in C(\Delta pqt)$

halfplane
 supported by e
 that contains s



Proof of Main Result (cont'd)

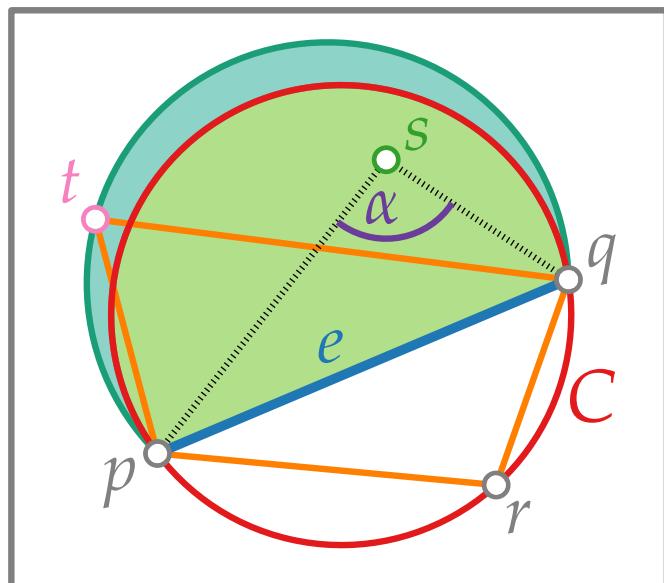
Consider the triangle Δpqt adjacent to e in \mathcal{T} .

\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\left\{ \begin{array}{l} \text{halfplane} \\ \text{supported by } e \\ \text{that contains } s \end{array} \right.$

$\Rightarrow s \in C(\Delta pqt)$

Wlog. let $e' = qt$ be the edge of Δpqt that s sees.



Proof of Main Result (cont'd)

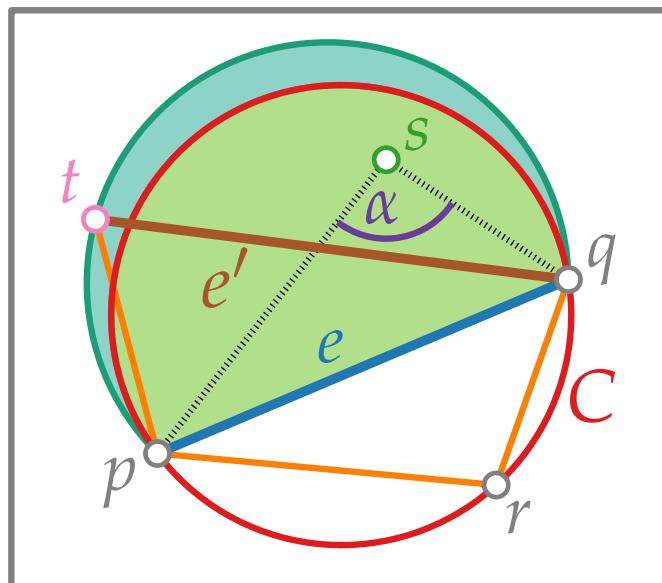
Consider the triangle Δpqt adjacent to e in \mathcal{T} .

\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\left\{ \begin{array}{l} \text{halfplane} \\ \text{supported by } e \\ \text{that contains } s \end{array} \right.$

$\Rightarrow s \in C(\Delta pqt)$

Wlog. let $e' = qt$ be the edge of Δpqt that s sees.



Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .

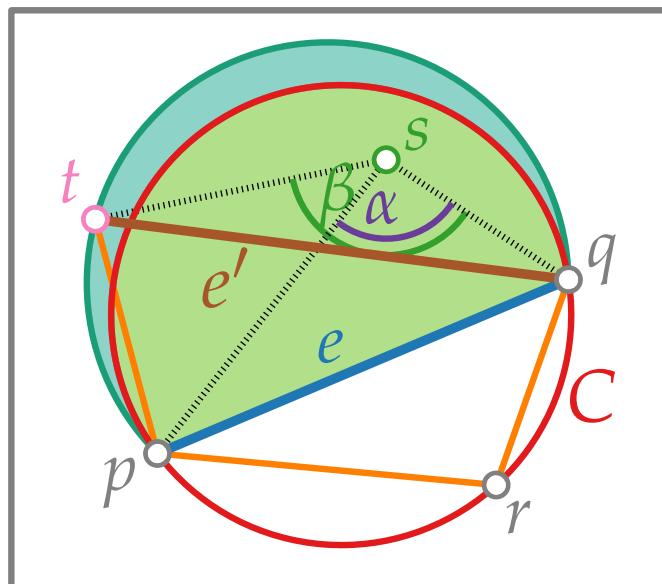
\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. { halfplane supported by e that contains s

$\Rightarrow s \in C(\Delta pqt)$

Wlog. let $e' = qt$ be the edge of Δpqt that s sees.

$\Rightarrow \beta = \angle tsq > \alpha = \angle psq$



Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .

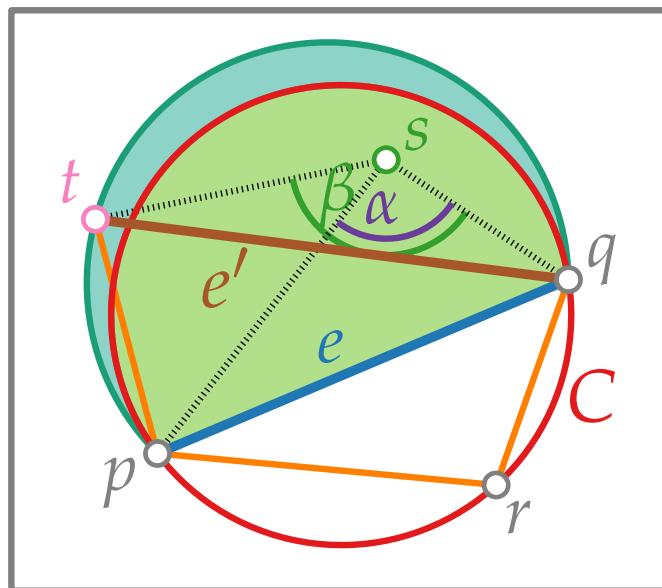
\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\left\{ \begin{array}{l} \text{halfplane} \\ \text{supported by } e \\ \text{that contains } s \end{array} \right.$

$\Rightarrow s \in C(\Delta pqt)$

Wlog. let $e' = qt$ be the edge of Δpqt that s sees.

$\Rightarrow \beta = \angle tsq > \alpha = \angle psq$



Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .

\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

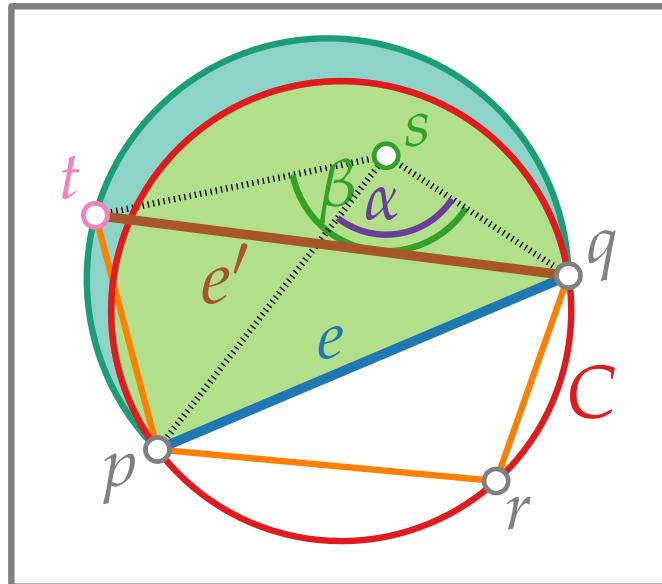
$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. halfplane supported by e that contains s

$\Rightarrow s \in C(\Delta pqt)$

Wlog. let $e' = qt$ be the edge of Δpqt that s sees.

$\Rightarrow \beta = \angle tsq > \alpha = \angle psq$

Contradiction to choice of the pair $(\Delta pqr, s)$. □



Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal \Leftrightarrow \mathcal{T} Delaunay.

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal \Leftrightarrow \mathcal{T} Delaunay.

Observation. Suppose P is in general position...

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position.

no 4 pts on an empty circle!

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position.
 \Rightarrow Delaunay triangulation unique

no 4 pts on an empty circle!

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position.
 \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$

no 4 pts on an empty circle!

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position.

no 4 pts on an empty circle!

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- \Rightarrow legal triangulation unique

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position.

no 4 pts on an empty circle!

\Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$

\Rightarrow legal triangulation unique

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position.

no 4 pts on an empty circle!

\Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$

\Rightarrow legal triangulation unique

\Downarrow angle-optimal \Rightarrow legal

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position. *no 4 pts on an empty circle!*

\Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$

\Rightarrow legal triangulation unique

\Downarrow angle-optimal \Rightarrow legal [by def.]

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
 Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position. *no 4 pts on an empty circle!*

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- \Rightarrow legal triangulation unique
- \Downarrow angle-optimal \Rightarrow legal [by def.]

Delaunay triangulation is angle-optimal!

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
 Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position. no 4 pts on an empty circle!

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- \Rightarrow legal triangulation unique
- \Downarrow angle-optimal \Rightarrow legal [by def.]
- Delaunay triangulation is angle-optimal!

Suppose P is *not* in general position...

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
 Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position. no 4 pts on an empty circle!

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- \Rightarrow legal triangulation unique
- \Downarrow angle-optimal \Rightarrow legal [by def.]

Delaunay triangulation is angle-optimal!

Suppose P is *not* in general position...

- \Rightarrow Delaunay graph has convex “holes” bounded by co-circular pts

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
 Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position. *no 4 pts on an empty circle!*

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- \Rightarrow legal triangulation unique
- \Downarrow angle-optimal \Rightarrow legal [by def.]

Delaunay triangulation is angle-optimal!

Suppose P is *not* in general position...

- \Rightarrow Delaunay graph has convex “holes” bounded by co-circular pts
- \Downarrow Thales++ *homework exercise!*

Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P .
 Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position. no 4 pts on an empty circle!

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- \Rightarrow legal triangulation unique
 - \Downarrow angle-optimal \Rightarrow legal [by def.]

Delaunay triangulation is angle-optimal!

Suppose P is *not* in general position...

- \Rightarrow Delaunay graph has convex “holes” bounded by co-circular pts
 - \Downarrow Thales++ homework exercise!

All Delaunay triang. have same min. angle.

Computation

Theorem. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

Computation

Theorem. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of $\text{Vor}(P)$, fill holes.]

Computation

Theorem. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of $\text{Vor}(P)$, fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time.

Computation

Theorem. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of $\text{Vor}(P)$, fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time. [DG!]

Computation

Theorem. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of $\text{Vor}(P)$, fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time. [DG!]

Corollary. Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time.

Computation

Theorem. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of $\text{Vor}(P)$, fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time. [DG!]

Corollary. Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. [Use Theorem.]

Computation

Theorem. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of $\text{Vor}(P)$, fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time. [DG!]

Corollary. Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. [Use Theorem.]

Corollary. An angle-optimal triangulation of an arbitrary set of n pts can be computed in $O(n^2)$ time.

Computation

Theorem. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of $\text{Vor}(P)$, fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time. [DG!]

Corollary. Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. [Use Theorem.]

Corollary. An angle-optimal triangulation of an arbitrary set of n pts can be computed in $O(n^2)$ time.

[How?]