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In other words: avoid small angles!
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Definition. Let T be a triangulation. An edge e of T is

illegal if the minimum angle in the two
triangles adjacent to e increases when flipping.
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flip e

Observe. Let e be an illegal edge of T , and T ′ = flip(T , e).
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type of triangulation. . .
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Vor(P) = subdivision of the plane into
Voronoi cells, edges, and vertices

V(p) = {x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}}
Voronoi cell of p ∈ P

Definition: The graph G = (P, E) with
{p, q} ∈ E ⇔ V(p) and V(q) share an edge

is the dual graph of Vor(P)

Definition: The Delaunay graph DG(P) is the straight-line
drawing of G.
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Proof of Main Result (cont’d)
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Proof of Main Result (cont’d)

Wlog. let e′ = qt be the edge of ∆pqt that s sees.
⇒ β = ∠tsq > α = ∠psq
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Consider the triangle ∆pqt adjacent to e in T .
T legal⇒ e legal⇒ t 6∈ int(C(∆pqr))
⇒ C(∆pqt) contains C(∆pqr) ∩ e+.
⇒ s ∈ C(∆pqt)

t

halfplane
supported by e
that contains s

{

�
β

e′

p

q

r

s

e

α

C



21 - 1

Main Result
Theorem. P ⊂ R2 finite, T triangulation of P.

Then T legal ⇔ T Delaunay.



21 - 2

Main Result

Observation. Suppose P is in general position. . .

Theorem. P ⊂ R2 finite, T triangulation of P.
Then T legal ⇔ T Delaunay.



21 - 3

Main Result

Observation. Suppose P is in general position. . .
no 4 pts on an
empty circle!

Theorem. P ⊂ R2 finite, T triangulation of P.
Then T legal ⇔ T Delaunay.



21 - 4

Main Result

Observation. Suppose P is in general position. . .
Delaunay triangulation unique⇒

no 4 pts on an
empty circle!

Theorem. P ⊂ R2 finite, T triangulation of P.
Then T legal ⇔ T Delaunay.



21 - 5

Main Result

Observation. Suppose P is in general position. . .
Delaunay triangulation unique⇒ [DG(P)!]

no 4 pts on an
empty circle!

Theorem. P ⊂ R2 finite, T triangulation of P.
Then T legal ⇔ T Delaunay.



21 - 6

Main Result

Observation. Suppose P is in general position. . .
Delaunay triangulation unique⇒
legal triangulation unique⇒

[DG(P)!]

no 4 pts on an
empty circle!

Theorem. P ⊂ R2 finite, T triangulation of P.
Then T legal ⇔ T Delaunay.



21 - 7

Main Result

Observation. Suppose P is in general position. . .
Delaunay triangulation unique⇒
legal triangulation unique⇒

[DG(P)!]

⇓

no 4 pts on an
empty circle!

Theorem. P ⊂ R2 finite, T triangulation of P.
Then T legal ⇔ T Delaunay.



21 - 8

Main Result

Observation. Suppose P is in general position. . .
Delaunay triangulation unique⇒
legal triangulation unique⇒

[DG(P)!]

⇓ angle-optimal⇒ legal

no 4 pts on an
empty circle!

Theorem. P ⊂ R2 finite, T triangulation of P.
Then T legal ⇔ T Delaunay.



21 - 9

Main Result

Observation. Suppose P is in general position. . .
Delaunay triangulation unique⇒
legal triangulation unique⇒

[DG(P)!]

⇓ angle-optimal⇒ legal [by def.]

no 4 pts on an
empty circle!

Theorem. P ⊂ R2 finite, T triangulation of P.
Then T legal ⇔ T Delaunay.



21 - 10

Main Result

Observation. Suppose P is in general position. . .
Delaunay triangulation unique⇒
legal triangulation unique⇒

[DG(P)!]

Delaunay triangulation is angle-optimal!
⇓ angle-optimal⇒ legal [by def.]

no 4 pts on an
empty circle!

Theorem. P ⊂ R2 finite, T triangulation of P.
Then T legal ⇔ T Delaunay.



21 - 11

Main Result

Observation. Suppose P is in general position. . .
Delaunay triangulation unique⇒
legal triangulation unique⇒

[DG(P)!]

Delaunay triangulation is angle-optimal!
⇓ angle-optimal⇒ legal [by def.]

Suppose P is not in general position. . .

no 4 pts on an
empty circle!

Theorem. P ⊂ R2 finite, T triangulation of P.
Then T legal ⇔ T Delaunay.



21 - 12

Main Result

Observation. Suppose P is in general position. . .
Delaunay triangulation unique⇒
legal triangulation unique⇒

[DG(P)!]

Delaunay triangulation is angle-optimal!
⇓ angle-optimal⇒ legal [by def.]

Suppose P is not in general position. . .
Delaunay graph has convex “holes”
bounded by co-circular pts

⇒

no 4 pts on an
empty circle!

Theorem. P ⊂ R2 finite, T triangulation of P.
Then T legal ⇔ T Delaunay.



21 - 13

Main Result

Observation. Suppose P is in general position. . .
Delaunay triangulation unique⇒
legal triangulation unique⇒

[DG(P)!]

Delaunay triangulation is angle-optimal!
⇓ angle-optimal⇒ legal [by def.]

Suppose P is not in general position. . .
Delaunay graph has convex “holes”
bounded by co-circular pts

⇒

⇓ Thales++

no 4 pts on an
empty circle!

homework exercise!

Theorem. P ⊂ R2 finite, T triangulation of P.
Then T legal ⇔ T Delaunay.



21 - 14

Main Result

Observation. Suppose P is in general position. . .
Delaunay triangulation unique⇒
legal triangulation unique⇒

[DG(P)!]

Delaunay triangulation is angle-optimal!
⇓ angle-optimal⇒ legal [by def.]

Suppose P is not in general position. . .
Delaunay graph has convex “holes”
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Computation

Corollary.

Corollary.

Given an arbitrary set of n pts, a triangulation
maximizing the minimum angle can be
computed in O(n log n) time.

[How?]

[Use Theorem.]

[DG!]

[Compute dual of Vor(P), fill holes.]
An angle-optimal triangulation of a set of n pts
in general position can be computed in
O(n log n) time.

A Delaunay triangulation of an arbitrary set
of n pts in the plane can be computed in
O(n log n) time.

Theorem.

Corollary. An angle-optimal triangulation of an arbitrary
set of n pts can be computed in O(n2) time.
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