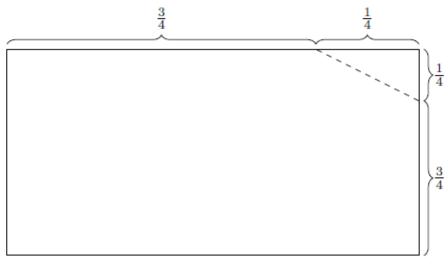
Problem E

A problem of packaging

Marco Lauer, Luca Lauer

Aufgabenstellung

- Sophie hat einen Kuchen mit konvexer Form für die Hochzeit ihrer Freundin gebacken
- Leider ist der Kuchen zu schwer für den Transportservice
- Sophie muss Teile abschneiden, um den Kuchen leichter zu machen
- Sie muss eine Zahl s ($2 \le s \le 1000$) wählen, die die Größe der abzuschneidenden Ecken darstellt
- Für jede Ecke markiert sie 2 Stellen, die jeweils Länge der Kante/s auf den inzidenten Kanten entfernt sind
- Diese markieren die Gerade für den Schnitt
- Sie möchte s so wählen, dass möglichst viel vom Kuchen übrig bleibt, er aber leicht genug für den Transportservice ist



Einer der vier Schnitte für s = 4 bei einem Rechteck

Input

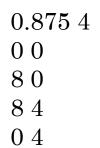
1. Zeile:

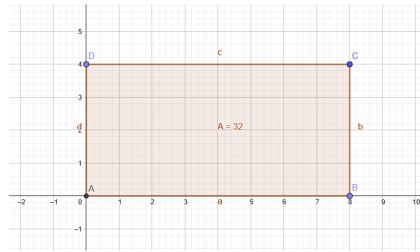
- Float a: Verhältnis, auf welches Gewicht des Kuchens mindestens verringert werden muss $(0.25 \le a < 1)$
- Integer N: Anzahl der Ecken des Kuchen (3 \leq N \leq 100)

N Zeilen:

- Integer x_i, y_i : Koordinaten der jeweiligen Ecke $(0 \le x_i, y_i \le 10^8)$
- Die Ecken werden in der Reihenfolge gegeben, in der sie eine konvexe

Form bilden





Output

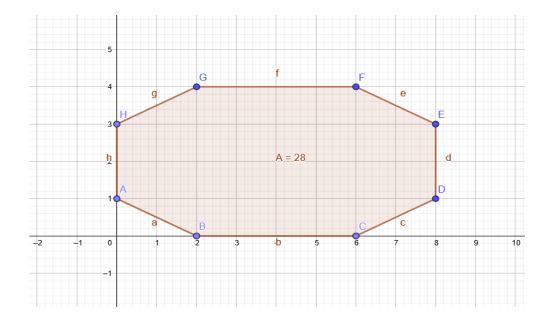
• Größtmögliche s (2 $\leq s \leq$ 1000), sodass der Flächeninhalt höchstens a*ursprünglichen Flächeninhalt ist

Erlaubter absoluter Fehler: 10^{-4} , d.h. |berechneter Wert - gesuchter Wert| $\leq 10^{-4}$

Ursprünglicher Flächeninhalt: 32

Gesuchter Flächeninhalt: 32 * 0.875 = 28

Diesen erreichen wir bei s = 4



Herausforderungen

- · Berechnung des Flächeninhalts eines konvexen Polygons
- Finden des besten s

Berechnung des Flächeninhalts

Shoelace Formula:

Berechnet Flächeninhalt eines einfachen Polygons:

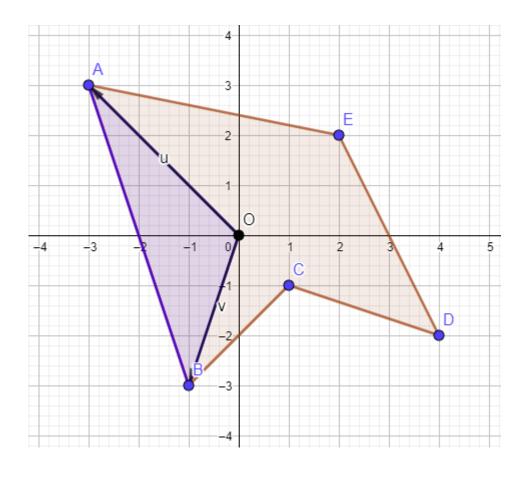
$$A = \frac{1}{2} \left| \sum_{i=1}^{n} (x_i y_{i+1} - y_i x_{i+1}) \right|$$

Wobei:

- n: Anzahl der Knoten
- (x_i, y_i) : Koordinaten des Knoten i
- $x_{n+1} = x_1$ und $y_{n+1} = y_1$

Funktionsweise

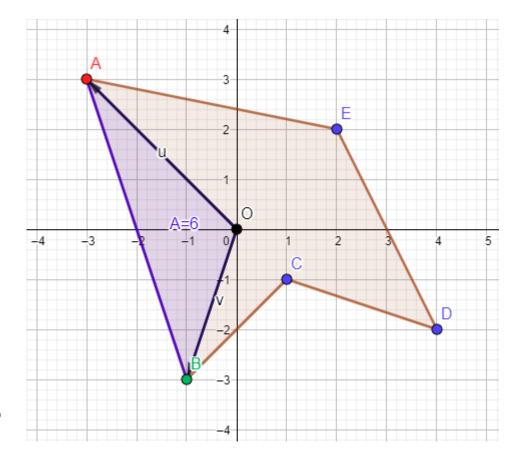
In
$$\mathbb{R}^2$$
: $A_{\blacktriangle} = \frac{1}{2} |det(\vec{u}\vec{v})| = \frac{1}{2} |(u_x v_y - u_y v_x)|$



Funktionsweise

In
$$\mathbb{R}^2$$
: $A_{\blacktriangle} = \frac{1}{2} |det(\vec{u}\vec{v})| = \frac{1}{2} |(u_x v_y - u_y v_x)|$

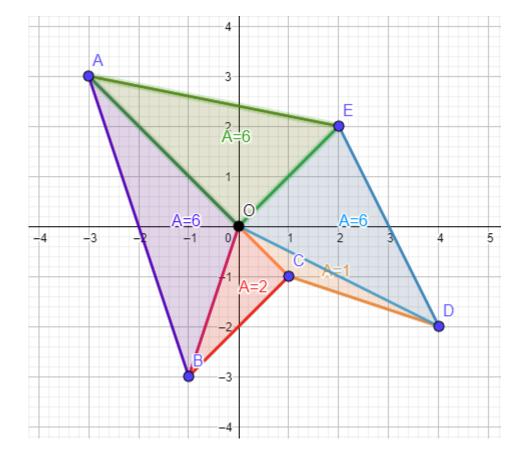
$$A = \frac{1}{2} \begin{vmatrix} -3 & -1 \\ 3 & -3 \end{vmatrix} = \frac{1}{2} * |(-3 * (-3) - (-1) * 3)| = 6$$



Funktionsweise

In
$$\mathbb{R}^2$$
: $A_{\blacktriangle} = \frac{1}{2} |det(\vec{u}\vec{v})| = \frac{1}{2} |(u_x v_y - u_y v_x)|$

$$\Rightarrow A = \frac{1}{2} \left| \sum_{i=1}^{n} (x_i y_{i+1} - y_i x_{i+1}) \right|$$

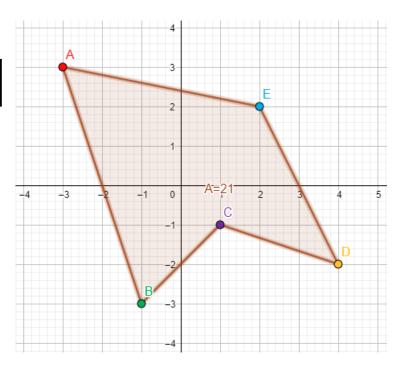


Berechnung des Flächeninhalts (Beispiel)

$$A = \frac{1}{2} \left| \sum_{i=1}^{n} (x_i y_{i+1} - y_i x_{i+1}) \right|$$

$$A = \frac{1}{2} \begin{vmatrix} -3 * (-3) - 3 * (-1) + (-1) * (-1) - (-3) * 1 + 1 * (-2) \\ -(-1) * 4 + 4 * 2 - (-2) * 2 + 2 * 3 - 2 * (-3) \end{vmatrix}$$

$$A = \frac{1}{2}|42| = 21$$



Finden des besten s

- Ausprobieren für alle Möglichkeiten von s (2 $\leq s \leq 1000)$ mit Fehlertoleranz 10^{-4}
- → Zu viele Berechnungen
- Mit steigendem s steigt die übrige Fläche monoton an
- → Binärsuche

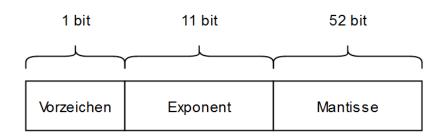
Binärsuche

Laufzeit:

- $\left[\log_2((high low) * 10^{Anzahl\ Nachkommastellen})\right]$
- Mit 6 Nachkommastellen: $\lceil \log_2(998 \cdot 10^6) \rceil = 30$ Durchläufe der while-Schleife

Weitere Herausforderung: Größe der Mantisse von double

- $2^{52} \approx 4.5 \cdot 10^{15}$
- Koordinate kann vor dem Komma schon 10⁸ groß sein
- In der Berechnung des Flächeninhalts müssen möglicherweise zwei solcher Zahlen multipliziert werden
- $10^{16} > 4.5 \cdot 10^{15}$
- → Größe der Mantisse reicht nicht aus



$$4,5 \cdot 10^{15}$$
Mantisse Exponent

Alternativen zum double

Java

Python

```
>>> from decimal import *
>>> context = Context(prec=50)
>>> setcontext(context)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857142857142857142
```

Laufzeit

- Binärsuche: Immer $\lceil \log_2(998 \cdot 10^6) \rceil = 30$ Durchläufe
- Shoelace-formula: $\Theta(n)$ (n: Anzahl der Ecken)
- $\Rightarrow \Theta(n)$
- Jedoch: kleiner Mehraufwand, da wir nicht einfach mit double rechnen können
- Die Laufzeitkomplexität ändert sich aber nicht, weil die Koordinaten in ihrer Größe begrenzt sind

Viel Erfolg beim Implementieren :-)