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Ubungen

e Begriinden Sie grundsatzlich alle Behauptungen —
auBer die Aufgabe verlangt explizit keine Begriindung.

e Pseudocode allein geniigt nie!
Algorithmen immer (auch) mit Worten erklaren.
Verweisen Sie dabei auf Zeilen lhres Pseudocodes.

e Kommentieren Sie lhren Java-Code beim Programmieren!

Das hilft Fehler zu vermeiden. AuBerdem verstehen Sie Ihren Code
auch noch beim nachsten Mal, wenn Sie draufschauen :-)



What's the problem?

Worterbuch

Spezialfall einer dynamischen Menge
Anwendung: im Compiler Symboltabelle fiir Schliisselworter

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, Delete, Search

Implementierung

heute: Hashing (engl. to hash = zerhacken, kleinschneiden)

Suchzeit: — im schlechtesten Fall ©(n),

— erwartet O(1) unter akzeptablen Annahmen




Direkte Adressierung

Annahmen: — Schliissel aus kleinem Universum U={0, ..., m—1}

— Schliissel paarweise verschieden

Universum

Menge der
momentan
benutzten
Schlissel




Direkte Adressierung

Annahmen: — Schliissel aus kleinem Universum U=/{0, ..., m—1}
— Schliissel paarweise verschieden

Abs. Datentyp || Implementierung

HashDA(int m) || T = new info[0..m — 1]
for j=0to m—1do T[j] = nil

Insert(

T[k] = new info(/)

Delete( e Speicher freigeben, auf den T[k] zeigt
o T[k] = nil Laufzeiten?

Ins, Del, Search O(1)

Search(key k)| |return T[k] im schlechtesten Fall




Hashing mit Verkettung

Annahme: groBes Universum U, d.h. |U| > |K]|
Hashfunktion h: U — {0,1, ..., m—1}
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Hashing mit Verkettung
Voraussetzungen: |U| > |K|, Zugriff auf Hashfunktion h

Abs. Datentyp Implementierung

HashChaining( T = new List[0..m — 1] T

m)||for j =0to m— 1 do T[j] = List()
Insert(key k)

Aufgabe:
Schreiben Sie Insert, Delete & Search.

Delete(ptr x)
Search(key k)

Verwenden Sie Methoden der DS List!



Hashing mit Verkettung
Voraussetzungen: |U| > |K|, Zugriff auf Hashfunktion h

Abs. Datentyp Implementierung

HashChaining( T = new List[0..m — 1] T

m)||for j =0to m— 1 do T[j] = List()
Insert(key k) | |return T[h(k)].Insert(k)
T[h(x.key)].Delete(x)

return T [h(k)].Search(k)

Delete(ptr x)
Search(key k)




Analyse

Definition: Die Auslastung « einer Hashtabelle sei n/m,
also der Quotient der Anzahl der gespeicherten
Elemente und der TabellengrofBe.

Bemerkung: « ist die durchschnittliche Lange einer Kette.

o1—>o (o[ s| o

Laufzeit: ©(n) im schlimmsten Fall: z.B. h(k) =0 Vk € K.

Annahme: Einfaches uniformes Hashing:
jedes Element von U wird mit gleicher WK in
jeden der m Eintrage der Tabelle gehasht —

unabhangig von anderen Elementen.
D.h. Prlh(k) =i]=1/m



Suche

Falle: 1) erfolglose Suche
2) erfolgreiche Suche

Notation: n; = T|[j].length fir j=0,1,..., m—1.
Dann gilt: n=nyg+n+---+n,_1.

Eln]=n/m =«

Satz. Unter der Annahme des einfachen uniformen Hashings
durchsucht eine erfolglose Suche erwartet o Elemente.

Beweis. Wenn die Suche nach einem Schliissel k erfolglos ist,
muss T [h(k)] komplett durchsucht werden.

E| T[h(k)].length| = E[np)] = a



Erfolgreiche Suche

Satz.

Bewelrs.

Unter der Annahme des einfachen uniformen Hashings
durchsucht eine erfolgreiche Suche erwartet hochstens
1 4+ /2 Elemente.

Noch 'ne Annahme:
Jedes der n Elemente in T ist mit gleicher WK das
gesuchte Element x.

# durchsuchte Elem. = # Elem. vor x in T[h(x)] + 1
= # Elem., die‘nach x in T[h(x)] eingefliigt wurden + 1

Sei x1, %, ..., x, die Folge der Schliissel in der
Reihenfolge des Einfiigens.

Definiere Indikator-ZV: X;; = 1 falls h(x;) = h(x;).
Klar: E[X,J] = PI’[X,'J' = 1] = 1/m




Erfolgreiche Suche

X = # Elem., die nach x in T[h(x)] eingefiigt wurden + 1

E[X]

1 n
— E E[l + # Elem., die nach x; in T[h(x;)] eingefiigt Wurden]
n

=1
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Definiere Indikator-ZV: X;; = 1 falls h(x;) = h(x;). _
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Erfolgreiche Suche

X = # Elem., die nach x in T[h(x)] eingefiigt wurden + 1

E[X] % Z E[1 + # Elem., die nach x; in T[h(x;)] eingefiigt wurden|

=1

1 < 1
:—E 1 —E E |# Elem. x; mit j > i h(x;) = h(x;
s + n |# Elem. x; mit j > i und h(x;) (x;)]

=1 N /

1
1 —|—;§ E .ZXU

L= n—i
1 < 1 N -
— 14 = ] = i
+n.>4.>.4E[XJ] 1+nm.4..41
=1 j=i+1 =1 j=i+1

1 2 2
:1+—<n2—” +”> =1+—— =14+ 51 <1+3

nm 2
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/usammenfassung Ergebnisse

Satz. Unter der Annahme des einfachen uniformen Hashings
durchsucht beim Hashing mit Verkettung eine

— erfolgreiche Suche erwartet héch. 1 + a/2 Elemente

— erfolglose Suche erwartet a Elemente.

Und Einfiigen? Und Loschen?

Satz. Unter der Annahme des einfachen uniformen Hashings
laufen alle Wérterbuch-Operationen in (erwartet)
konstanter Zeit, falls n = O(m).
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Was ist eine gute Hashfunktion?

1. so ,,zufallig” wie moglich — um der Annahme des einfachen
uniformen Hashings moglichst nahe zu kommen.

e Hashfunktion sollte die Schliissel aus dem Universum U
moglichst gleichmaBig tiber die m Platze der Hashtabelle
verteilen.

e Hashfunktion sollte Muster in der Schliisselmenge K gut
auflosen.

Beispiel: U = Zeichenketten, K = Wobrter der dt. Sprache

h : nimm die ersten drei Buchstaben — Zahl

schlecht: — viele Worter fangen mit ,,sch” an
= selber Hashwert
— andere Buchst. haben keinen Einfluss

2. einfach zu berechnen!



Annahme: Alle Schliissel sind (natiirliche) Zahlen.
Suche also Hashfunktionen: N — {0,..., m— 1}

Rechtfertigung:
33 | 49 1 65 A 81 Q 97 a 113 g
34 50 2 66 B 82 R 98 b 114
35 # 51 3 67 C 83 S 99 ¢ 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u :
38 & 54 6 70 F 86 V 102 £ 118 v American
39 55 7 71 G 87 W 103 g 119 w Standard
40 ( 56 8 72 H 88 X 104 h 120 x
a1 ) 57 9 73 1 89 Y 105 i 121 y Code of
42 x 58 74 ] 90 z 106 j 122 =z | nformation
43 + 59 75 K 91 [ 107 k 123 { | nterchange
a4 60 < 76 L 92 \ 108 1 124 |
45 - 61 = 77 M 93 ] 109 m 125 }
a6 . 62 > 78 N 94 - 110 n 126 -
a7/ 63 7 79 0 95 111 o 127 _
48 0 64 @ 80 P 96 112 p

Zum Beispiel:

AW — (65,87)10 = (1000001,1010111), — 10000011010111,
= 65128 + 87 = 840719
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Divisionsmethode

Hashfunktion h: N — {0,..., m—1}
k— k mod m
Beispiel: h(k) = k mod 1024
h(1026) =2 102610 = 010000000010,
h(2050) =2 2050, = 100000000010,

D.h. die 2 hoherwertigsten Stellen werden von h ignoriert

Moral: vermeide m = Zweierpotenz

Strategie: wahle fiir m eine Primzahl, entfernt von Zweierpotenz

v

lost Muster gut auf
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Multiplikationsmethode

Hashfunktion h: N — {0,..., m—1}

ks |m-(kAmod1)|, wobei0< A< 1.
N’

gebrochener Anteil von kA
d.h. kKA— | kA]

e Verschiedene Werte von A , funktionieren™ verschieden gut.

.  V5—1
gut: z.B. Ax 5

e Vorteil ggii. Divisionsmethode: Wahl von m relativ beliebig.
Insbesondere m = Zweierpotenz moglich.

Dualzahlendarstellung von a um s Stellen nach links)
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Hashing mit offener Adressierung

Alle Elemente werden direkt in der Hashtabelle gespeichert.
— Tabelle kann volllaufen = a <1

Strategie zur Kollisionsauflosung:

h(k,4)

h(k\1)

h(k, 0) - h(k,?2)

/ Sondier-

folge
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Hashing mit offener Adressierung

Abs. Datentyp Implementierung

HashOA(int m) || T = new key[0..m — 1]
for j=0tom—1do T[j]=—-1
Insert( k) ||i=0
repeat
Jj = h(k,i)
if T[j] == —1 then

LT[j]:k

return §

else 1 =1+1

until 1 ==m

error “table overflow” Aufgabe:
Search( k)| | Schreiben Sie Search mit repeat-Schleife!




Hashing mit offener Adressierung

Abs. Datentyp Implementierung

HashOA(int m) || T = new key[0..m — 1]

for j=0tom—1do T[j]=—-1

lnsert(key k) ||i=0

Search repeat
Jj = h(k, i)

...und Delete()? if T]j] = ﬁ-’then
L Il ;l — ke

return §

Umstandlich!

Dann lieber . .
Hashing mit else / =i+ 1

Verkettung! until i == m or T[] ==+1

| A
error_“Table overflopgtw'" ‘Aufgabe:

Search( k)| | Schreiben Sie Search mit repeat-Schleife!

17
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Berechnung von Sondierfolgen

Hashfkt. fur offene Adr. h: U x {0,..., m—1} —{0,..., m— 1}
(h(k,0), h(k,1),..., h(k, m — 1)) heiBt Sondierfolge (fiir k).

Voraussetzungen:

— eine Sondierfolge ist eine Permutation von (0,1, ..., m—1)

— Existenz von ,gewdhnlicher” Hashfkt hy: U — {0, ..., m—1}

Verschiedene Typen von Sondierfolgen:

— Lineares Sondieren: h(k, 1) = (ho(k) + i) mod m

— Quadratisches Sondieren:  h(k, i) = (ho(k) + c1i + ci?) mod m
— Doppeltes Hashing: h(k,i) = (ho(k) + i - hi(k)) mod m



Lineares Sondieren
Sondierfolge: h(k, i) = (ho(k) + i) mod m

Beispiel: ho(k) =k mod 9 und m=29
Flige Schliissel 4,5, 12 ein!

— 514

—w

Problem: Es bilden sich schnell groBe Blocke
von besetzten Eintragen.

primares

C/ustering = hohe durchschnittliche

Suchzeit!

12




Quadratisches Sondieren
Sondierfolge: h(k, i) = (ho(k) + c1i + ci?) mod m

Beispiel: ho(k) =kmod9 und m=9 und ¢g=c =1
Flige Schliissel 4,5, 12 ein!

Problem: Die GroBen m, ¢; und ¢, miissen
zu einander passen, sonst
besucht nicht jede Sondierfolge
alle Tabelleneintrage.

—

Problem:  Falls ho(k) = ho(k'), so haben —v /
A

und k" dieselbe Sondierfolge!

— hohe Suchzeit bei
schlechter Hilfshashfkt. hg!

12
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Doppeltes Hashing
Sondierfolge: h(k, i) = (ho(k) + i - h1(k)) mod m

Vorteile: e Sondierfolge hangt zweifach vom Schliissel k ab!

e potentiell m? verschiedene Sondierfolgen moglich

Frage: Was muss gelten, damit eine Sondierfolge alle
Tabelleneintrage durchlauft?

Antwort: k" = hy(k) und m miissen teilerfremd sein
d.h. ggT(k', m) =1.

Also: z.B. m = Zweierpotenz und h; immer ungerade.
oder m = prim und 0 < h;y(k) < m fiir alle k.
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Uniformes Hashing

Annahme:

Satz:

Die Sondierfolge jedes Schliissels ist gleich
wahrscheinlich eine der m! Permutationen von

(0,1,...,m—1).

Unter der Annahme von uniformem Hashing ist
die erwartete Anz. der versuchten Tabellenzugriffe

bei offener Adressierung und
1

1l — «

1 1

— erfolgreicher Suche < — In
a 1—«

— erfolgloser Suche <

d.h. Suche dauert erwartet O(1) Zeit, falls a konst.
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/usammenfassung Hashing

mit Verkettung

+ funktioniert fiir n € O(m)

+ gute erwartete Suchzeit:
erfolglos: |«
erfolgreich:|1 + &

— Listenoperationen langsam

10

mit offener Adressierung

— funktioniert nur fir n < m

— langsam, wenn n =~ m

Sondiermethoden:
e lineares Sondieren
e quadratisches Sondieren

e doppeltes Hashing

+ gute erwartete Suchzeit:

1
11—«
1
/6"

erfolglos:

1

11—«

erfolgreich:
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