
1

Algorithmen und Datenstrukturen

Wintersemester 2020/21

12. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Hashing

2

Übungen

• Pseudocode allein genügt nie!
Algorithmen immer (auch) mit Worten erklären.
Verweisen Sie dabei auf Zeilen Ihres Pseudocodes.

• Begründen Sie grundsätzlich alle Behauptungen –
außer die Aufgabe verlangt explizit keine Begründung.

Das hilft Fehler zu vermeiden. Außerdem verstehen Sie Ihren Code
auch noch beim nächsten Mal, wenn Sie draufschauen :-)

• Kommentieren Sie Ihren Java-Code beim Programmieren!

3

What’s the problem?

Wörterbuch

stellt folgende Operationen bereit:
Insert, Delete, Search

Spezialfall einer dynamischen Menge

Implementierung

Abstrakter Datentyp

heute: Hashing (engl. to hash = zerhacken, kleinschneiden)

Suchzeit:

– erwartet O(1) unter akzeptablen Annahmen

– im schlechtesten Fall Θ(n),

Anwendung: im Compiler Symboltabelle für Schlüsselwörter

4

Direkte Adressierung

Annahmen: – Schlüssel aus kleinem Universum U={0, . . . ,m−1}
– Schlüssel paarweise verschieden (dyn. Menge!)

0
1

2

3

m − 1

U

K

1

0
4

7
89 3

info1

info2

info5

info6

info4

Universum

Menge der
momentan
benutzten
Schlüssel

1 2
5

6

4

Direkte Adressierung

Annahmen: – Schlüssel aus kleinem Universum U={0, . . . ,m−1}
– Schlüssel paarweise verschieden (dyn. Menge!)

Abs. Datentyp Implementierung

HashDA(int m)

Delete(key k)

ptr Insert(key k,

T = new info[0..m − 1]

// T [j] = Zeiger auf j . Datensatz

ptr[] T

ptr Search(key k)

T [k] = new info(i)
info i)

• Speicher freigeben, auf den T [k] zeigt

• T [k] = nil

return T [k]

// lege neuen Datensatz an
// und initialisiere ihn mit i

Laufzeiten?
Ins, Del, Search O(1)
im schlechtesten Fall

for j = 0 to m − 1 do T [j] = nil

5

Hashing mit Verkettung

U

K

0

m − 1

k1

k2 k3

k4 k5

Kollision

Annahme: großes Universum U, d.h. |U| � |K |
Hashfunktion h : U → {0, 1, . . . , m − 1}

k1k5

k3

k2

k4

6

Abs. Datentyp Implementierung

Hashing mit Verkettung

Delete(ptr x)

ptr Insert(key k)

ptr Search(key k)

HashChaining(T = new List[0..m − 1] ptr[] T

for j = 0 to m − 1 do T [j] = List()int m)

Voraussetzungen: |U| � |K |, Zugriff auf Hashfunktion h

Aufgabe:
Schreiben Sie Insert, Delete & Search.
Verwenden Sie Methoden der DS List!

6

Abs. Datentyp Implementierung

Hashing mit Verkettung

Delete(ptr x)

ptr Insert(key k)

ptr Search(key k)

HashChaining(T = new List[0..m − 1] ptr[] T

for j = 0 to m − 1 do T [j] = List()int m)

return T [h(k)].Insert(k)

T [h(x .key)].Delete(x)

return T [h(k)].Search(k)

Voraussetzungen: |U| � |K |, Zugriff auf Hashfunktion h

7

Analyse

Definition: Die Auslastung α einer Hashtabelle sei n/m,
also der Quotient der Anzahl der gespeicherten
Elemente und der Tabellengröße.

Bemerkung: α ist die durchschnittliche Länge einer Kette.

Θ(n) im schlimmsten Fall:Laufzeit:

Annahme: Einfaches uniformes Hashing :
jedes Element von U wird mit gleicher WK in
jeden der m Einträge der Tabelle gehasht –
unabhängig von anderen Elementen.

D.h. Pr[h(k) = i] = 1/m

z.B. h(k) = 0 ∀k ∈ K .

8

Suche

Fälle: 1) erfolglose Suche

2) erfolgreiche Suche

Notation: nj = T [j].length für j = 0, 1, . . . , m − 1.

Dann gilt: n = n0 + n1 + · · ·+ nm−1.

E[nj] = = α

Wenn die Suche nach einem Schlüssel k erfolglos ist,
muss T [h(k)] komplett durchsucht werden.

Beweis.

E
[
T [h(k)].length

]
= E[nh(k)] = α.

Satz. Unter der Annahme des einfachen uniformen Hashings
durchsucht eine erfolglose Suche erwartet α Elemente.

n/m

9

Erfolgreiche Suche

Satz. Unter der Annahme des einfachen uniformen Hashings
durchsucht eine erfolgreiche Suche erwartet höchstens
1 + α/2 Elemente.

Beweis. Noch ’ne Annahme:

Jedes der n Elemente in T ist mit gleicher WK das
gesuchte Element x .

durchsuchte Elem. = # Elem. vor x in T [h(x)] + 1

= # Elem., die nach x in T [h(x)] eingefügt wurden + 1

Sei x1, x2, . . . , xn die Folge der Schlüssel in der
Reihenfolge des Einfügens.

Definiere Indikator-ZV: Xi j = 1 falls h(xi) = h(xj).

Klar: E[Xi j] = Pr[Xi j = 1] = [einf. unif. Hashing!]

X

1/m

zeitlich

räumlich

10

Erfolgreiche Suche

= # Elem., die nach x in T [h(x)] eingefügt wurden + 1X

E[X] =
1

n

n∑
i=1

E
[
1 + # Elem., die nach xi in T [h(xi)] eingefügt wurden

]

Definiere Indikator-ZV: Xi j = 1 falls h(xi) = h(xj).

1

n

n∑
i=1

1 +
1

n

n∑
i=1

E
[
Elem. xj mit j > i und h(xi) = h(xj)

]
= ︸ ︷︷ ︸

=

E

 n∑
j=i+1

Xi j



10

Erfolgreiche Suche

=

= # Elem., die nach x in T [h(x)] eingefügt wurden + 1X

E[X] =
1

n

n∑
i=1

E
[
1 + # Elem., die nach xi in T [h(xi)] eingefügt wurden

]
1

n

n∑
i=1

1 +
1

n

n∑
i=1

E
[
Elem. xj mit j > i und h(xi) = h(xj)

]

1 +
1

n

n∑
i=1

=

=

︸ ︷︷ ︸

=

E

 n∑
j=i+1

Xi j


= 1 +

1

n

n∑
i=1

n∑
j=i+1

E[Xi j]︸ ︷︷ ︸
1/m

= 1 +
1

nm

n∑
i=1

n∑
j=i+1

1

n − i

= 1 +
1

nm

(
n2 −

n2 + n

2

)
= 1 +

n2 − n

2nm
1 + n−1

2m 1 + α
2<
�

11

Zusammenfassung Ergebnisse

Und Einfügen? Und Löschen?

Satz. Unter der Annahme des einfachen uniformen Hashings
durchsucht beim Hashing mit Verkettung eine

erfolglose Suche erwartet α Elemente.–

erfolgreiche Suche erwartet höch. 1 + α/2 Elemente–

Satz. Unter der Annahme des einfachen uniformen Hashings
laufen alle Wörterbuch-Operationen in (erwartet)
konstanter Zeit, falls n = O(m).

12

Was ist eine gute Hashfunktion?

1. so
”
zufällig“ wie möglich – um der Annahme des einfachen

uniformen Hashings möglichst nahe zu kommen.

• Hashfunktion sollte die Schlüssel aus dem Universum U
möglichst gleichmäßig über die m Plätze der Hashtabelle
verteilen.

• Hashfunktion sollte Muster in der Schlüsselmenge K gut
auflösen.

2.

Beispiel: U = Zeichenketten, K = Wörter der dt. Sprache

h : nimm die ersten drei Buchstaben −→ Zahl

schlecht: – viele Wörter fangen mit
”
sch“ an

⇒ selber Hashwert

– andere Buchst. haben keinen Einfluss

einfach zu berechnen!

13

33 ! 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 x
41) 57 9 73 I 89 Y 105 i 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _111 o 127 _
48 0 64 @ 80 P 96 ‘ 112 p

Annahme: Alle Schlüssel sind (natürliche) Zahlen.

Suche also Hashfunktionen: N→ {0, . . . , m − 1}

American
Standard
Code of
I nformation
I nterchange

Rechtfertigung:

= (1000001, 1010111)2 → 1000001 10101112AW

Zum Beispiel:

= 65 · 128 + 87 = 840710

→ (65, 87)10

14

Divisionsmethode

Hashfunktion h : N→ {0, . . . , m − 1}
k 7→ k mod m

Beispiel: h(k) = k mod 1024

h(1026) = 2

h(2050) = 2

102610 = 0100000000102

205010 = 1000000000102

︷ ︸︸ ︷10 niedrigwertigste Stellen

Moral:

Strategie:

vermeide m = Zweierpotenz

wähle für m eine Primzahl, entfernt von Zweierpotenz

löst Muster gut auf

D.h. die 2 höherwertigsten Stellen werden von h ignoriert

15

Multiplikationsmethode

Hashfunktion h : N→ {0, . . . , m − 1}
k 7→ bm · (kA mod 1)c, wobei 0 < A < 1.︸ ︷︷ ︸

gebrochener Anteil von kA
d.h. kA− bkAc

• Verschiedene Werte von A
”
funktionieren“ verschieden gut.

gut: z.B. A ≈
√
5−1
2

• Vorteil ggü. Divisionsmethode: Wahl von m relativ beliebig.

Insbesondere m = Zweierpotenz möglich.
⇒ schnell berechenbar (in Java verschiebt a << s die

Dualzahlendarstellung von a um s Stellen nach links)

[Knuth: The Art of Computer Programming III, ’73]

16

Hashing mit offener Adressierung

Alle Elemente werden direkt in der Hashtabelle gespeichert.

⇒ Tabelle kann volllaufen ⇒ α ≤ 1

Strategie zur Kollisionsauflösung:

U

K

k

k

h(k, 1)

h(k, 0) h(k, 2)
h(k, 3)

h(k, 4)

Sondier-
folge

17

Hashing mit offener Adressierung

Abs. Datentyp Implementierung

HashOA(int m)

int Insert(key k)

T = new key[0..m − 1] key[] T

int Search(key k)

for j = 0 to m − 1 do T [j] = −1

Schreiben Sie Search mit repeat-Schleife!

Aufgabe:

i = 0
repeat

j = h(k, i)
if T [j] == −1 then

T [j] = k
return j

else i = i + 1

until i == m
error “table overflow”

17

Hashing mit offener Adressierung

Abs. Datentyp Implementierung

HashOA(int m)

int Insert(key k)

T = new key[0..m − 1] key[] T

int Search(key k)

for j = 0 to m − 1 do T [j] = −1

Schreiben Sie Search mit repeat-Schleife!

Aufgabe:

k

T [j] == −1or

Search

return −1

i = 0
repeat

j = h(k, i)
if T [j] == −1 then

T [j] = k
return j

else i = i + 1

until i == m
error “table overflow”

Umständlich!
Dann lieber
Hashing mit
Verkettung!

...und Delete()?

18

Berechnung von Sondierfolgen

Verschiedene Typen von Sondierfolgen:

〈h(k, 0), h(k, 1), . . . , h(k, m − 1)〉 heißt Sondierfolge (für k).

Hashfkt. für offene Adr. h : U × {0, . . . , m − 1} → {0, . . . , m − 1}

– eine Sondierfolge ist eine Permutation von 〈0, 1, . . . , m − 1〉
Voraussetzungen:

h(k, i) = (h0(k) + c1i + c2i2) mod m

h(k, i) = (h0(k) + i · h1(k)) mod m

– Lineares Sondieren:

– Quadratisches Sondieren:

– Doppeltes Hashing:

h(k, i) = (h0(k) + i) mod m

– Existenz von
”
gewöhnlicher“ Hashfkt h0 : U → {0, . . . , m − 1}

(Sonst durchläuft die Folge nicht alle Tabelleneinträge genau 1×!)

19

Lineares Sondieren

Sondierfolge: h(k, i) = (h0(k) + i) mod m

Beispiel: h0(k) = k mod 9 und m = 9

0

1

2

3

4

5

6

7

8
Füge Schlüssel 4, 5, 12 ein!

4

5

12

Problem: Es bilden sich schnell große Blöcke
von besetzten Einträgen.

⇒ hohe durchschnittliche
Suchzeit!

primäres
Clustering

20

Quadratisches Sondieren

Sondierfolge: h(k, i) = (h0(k) + c1i + c2i2) mod m

Beispiel: h0(k) = k mod 9 und m = 9

0

1

2

3

4

5

6

7

8
Füge Schlüssel 4, 5, 12 ein!

und c1 = c2 = 1

4

5

12

Problem: Die Größen m, c1 und c2 müssen
zu einander passen, sonst
besucht nicht jede Sondierfolge
alle Tabelleneinträge.

Problem: Falls h0(k) = h0(k ′), so haben k
und k ′ dieselbe Sondierfolge!

sekundäres
Clustering ⇒ hohe Suchzeit bei

schlechter Hilfshashfkt. h0!

21

Doppeltes Hashing

Was muss gelten, damit eine Sondierfolge alle
Tabelleneinträge durchläuft?

k ′ = h1(k) und m müssen teilerfremd sein

d.h. ggT(k ′, m) = 1.

Sondierfolge: h(k, i) = (h0(k) + i · h1(k)) mod m

Vorteile: • Sondierfolge hängt zweifach vom Schlüssel k ab!

• potentiell m2 verschiedene Sondierfolgen möglich
(bei linearem & quadratischem Sondieren nur m.)

Frage:

Antwort:

[ggT(a, b) =Def. max{t : t|a und t|b}]

Also: z.B. m = Zweierpotenz und h1 immer ungerade.

oder m = prim und 0 < h1(k) < m für alle k.

,

22

Uniformes Hashing

[kein neues Hashverfahren, sondern eine (idealisierte) Annahme...]

Annahme: Die Sondierfolge jedes Schlüssels ist gleich
wahrscheinlich eine der m! Permutationen von
〈0, 1, . . . , m − 1〉.

Satz: Unter der Annahme von uniformem Hashing ist
die erwartete Anz. der versuchten Tabellenzugriffe
bei offener Adressierung und

– erfolgloser Suche ≤ 1

1− α

– erfolgreicher Suche ≤ 1

α
ln

1

1− α
d.h. Suche dauert erwartet O(1) Zeit, falls α konst.

23

Zusammenfassung Hashing

mit Verkettung mit offener Adressierung

+ funktioniert für n ∈ O(m) – funktioniert nur für n ≤ m

– Listenoperationen langsam

– langsam, wenn n ≈ m+ gute erwartete Suchzeit:

erfolglos:
erfolgreich: 1 + α

2

α
Sondiermethoden:

• lineares Sondieren

• quadratisches Sondieren

• doppeltes Hashing

[Modell: einfaches uniformes Hashing]

[Modell: uniformes Hashing]

erfolglos:

erfolgreich: 1
α ln 1

1−α

1
1−α

+ gute erwartete Suchzeit:

[= n/m]

0

2

4

6

8

10

0.1 0.5 0.9 α

	Titel
	Übungen
	What's the problem?
	Direkte Adressierung
	Hashing mit Verkettung
	Analyse
	Suche
	Zusammenfassung Ergebnisse
	Was ist eine gute Hashfunktion?
	Divisionsmethode
	Multiplikationsmethode
	Hashing mit offener Adressierung
	Berechnung von Sondierfolgen
	Lineares Sondieren
	Quadratisches Sondieren
	Doppeltes Hashing
	Uniformes Hashing
	Zusammenfassung Hashing

