Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT  Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen und Datenstrukturen

Wintersemester 2020/21
12. Vorlesung

Hashing

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |



Ubungen

e Begriinden Sie grundsatzlich alle Behauptungen —
auBer die Aufgabe verlangt explizit keine Begriindung.

e Pseudocode allein geniigt nie!
Algorithmen immer (auch) mit Worten erklaren.
Verweisen Sie dabei auf Zeilen lhres Pseudocodes.

e Kommentieren Sie lhren Java-Code beim Programmieren!

Das hilft Fehler zu vermeiden. AuBerdem verstehen Sie Ihren Code
auch noch beim nachsten Mal, wenn Sie draufschauen :-)



What's the problem?

Worterbuch

Spezialfall einer dynamischen Menge
Anwendung: im Compiler Symboltabelle fiir Schliisselworter

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, Delete, Search

Implementierung

heute: Hashing (engl. to hash = zerhacken, kleinschneiden)

Suchzeit: — im schlechtesten Fall ©(n),

— erwartet O(1) unter akzeptablen Annahmen




Direkte Adressierung

Annahmen: — Schliissel aus kleinem Universum U={0, ..., m—1}

— Schliissel paarweise verschieden

Universum

Menge der
momentan
benutzten
Schlissel




Direkte Adressierung

Annahmen: — Schliissel aus kleinem Universum U=/{0, ..., m—1}
— Schliissel paarweise verschieden

Abs. Datentyp || Implementierung

HashDA(int m) || T = new info[0..m — 1]
for j=0to m—1do T[j] = nil

Insert(

T[k] = new info(/)

Delete( e Speicher freigeben, auf den T[k] zeigt
o T[k] = nil Laufzeiten?

Ins, Del, Search O(1)

Search(key k)| |return T[k] im schlechtesten Fall




Hashing mit Verkettung

Annahme: groBes Universum U, d.h. |U| > |K]|
Hashfunktion h: U — {0,1, ..., m—1}

U o

® -|0k4o

¢ Kollision

Ko o[k [ o[

— ® -|0k3o

/ *: ~eo| k, [0




Hashing mit Verkettung
Voraussetzungen: |U| > |K|, Zugriff auf Hashfunktion h

Abs. Datentyp Implementierung

HashChaining( T = new List[0..m — 1] T

m)||for j =0to m— 1 do T[j] = List()
Insert(key k)

Aufgabe:
Schreiben Sie Insert, Delete & Search.

Delete(ptr x)
Search(key k)

Verwenden Sie Methoden der DS List!



Hashing mit Verkettung
Voraussetzungen: |U| > |K|, Zugriff auf Hashfunktion h

Abs. Datentyp Implementierung

HashChaining( T = new List[0..m — 1] T

m)||for j =0to m— 1 do T[j] = List()
Insert(key k) | |return T[h(k)].Insert(k)
T[h(x.key)].Delete(x)

return T [h(k)].Search(k)

Delete(ptr x)
Search(key k)




Analyse

Definition: Die Auslastung « einer Hashtabelle sei n/m,
also der Quotient der Anzahl der gespeicherten
Elemente und der TabellengrofBe.

Bemerkung: « ist die durchschnittliche Lange einer Kette.

o1—>o (o[ s| o

Laufzeit: ©(n) im schlimmsten Fall: z.B. h(k) =0 Vk € K.

Annahme: Einfaches uniformes Hashing:
jedes Element von U wird mit gleicher WK in
jeden der m Eintrage der Tabelle gehasht —

unabhangig von anderen Elementen.
D.h. Prlh(k) =i]=1/m



Suche

Falle: 1) erfolglose Suche
2) erfolgreiche Suche

Notation: n; = T|[j].length fir j=0,1,..., m—1.
Dann gilt: n=nyg+n+---+n,_1.

Eln]=n/m =«

Satz. Unter der Annahme des einfachen uniformen Hashings
durchsucht eine erfolglose Suche erwartet o Elemente.

Beweis. Wenn die Suche nach einem Schliissel k erfolglos ist,
muss T [h(k)] komplett durchsucht werden.

E| T[h(k)].length| = E[np)] = a



Erfolgreiche Suche

Satz.

Bewelrs.

Unter der Annahme des einfachen uniformen Hashings
durchsucht eine erfolgreiche Suche erwartet hochstens
1 4+ /2 Elemente.

Noch 'ne Annahme:
Jedes der n Elemente in T ist mit gleicher WK das
gesuchte Element x.

# durchsuchte Elem. = # Elem. vor x in T[h(x)] + 1
= # Elem., die‘nach x in T[h(x)] eingefliigt wurden + 1

Sei x1, %, ..., x, die Folge der Schliissel in der
Reihenfolge des Einfiigens.

Definiere Indikator-ZV: X;; = 1 falls h(x;) = h(x;).
Klar: E[X,J] = PI’[X,'J' = 1] = 1/m




Erfolgreiche Suche

X = # Elem., die nach x in T[h(x)] eingefiigt wurden + 1

E[X]

1 n
— E E[l + # Elem., die nach x; in T[h(x;)] eingefiigt Wurden]
n

=1

1 1 e
St i) )

_J/

r_ L
=1 -~

nII <+ ™)

Definiere Indikator-ZV: X;; = 1 falls h(x;) = h(x;). _

10



10

Erfolgreiche Suche

X = # Elem., die nach x in T[h(x)] eingefiigt wurden + 1

E[X] % Z E[1 + # Elem., die nach x; in T[h(x;)] eingefiigt wurden|

=1

1 < 1
:—E 1 —E E |# Elem. x; mit j > i h(x;) = h(x;
s + n |# Elem. x; mit j > i und h(x;) (x;)]

=1 N /

1
1 —|—;§ E .ZXU

L= n—i
1 < 1 N -
— 14 = ] = i
+n.>4.>.4E[XJ] 1+nm.4..41
=1 j=i+1 =1 j=i+1

1 2 2
:1+—<n2—” +”> =1+—— =14+ 51 <1+3

nm 2




11

/usammenfassung Ergebnisse

Satz. Unter der Annahme des einfachen uniformen Hashings
durchsucht beim Hashing mit Verkettung eine

— erfolgreiche Suche erwartet héch. 1 + a/2 Elemente

— erfolglose Suche erwartet a Elemente.

Und Einfiigen? Und Loschen?

Satz. Unter der Annahme des einfachen uniformen Hashings
laufen alle Wérterbuch-Operationen in (erwartet)
konstanter Zeit, falls n = O(m).



12

Was ist eine gute Hashfunktion?

1. so ,,zufallig” wie moglich — um der Annahme des einfachen
uniformen Hashings moglichst nahe zu kommen.

e Hashfunktion sollte die Schliissel aus dem Universum U
moglichst gleichmaBig tiber die m Platze der Hashtabelle
verteilen.

e Hashfunktion sollte Muster in der Schliisselmenge K gut
auflosen.

Beispiel: U = Zeichenketten, K = Wobrter der dt. Sprache

h : nimm die ersten drei Buchstaben — Zahl

schlecht: — viele Worter fangen mit ,,sch” an
= selber Hashwert
— andere Buchst. haben keinen Einfluss

2. einfach zu berechnen!



Annahme: Alle Schliissel sind (natiirliche) Zahlen.
Suche also Hashfunktionen: N — {0,..., m— 1}

Rechtfertigung:
33 | 49 1 65 A 81 Q 97 a 113 g
34 50 2 66 B 82 R 98 b 114
35 # 51 3 67 C 83 S 99 ¢ 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u :
38 & 54 6 70 F 86 V 102 £ 118 v American
39 55 7 71 G 87 W 103 g 119 w Standard
40 ( 56 8 72 H 88 X 104 h 120 x
a1 ) 57 9 73 1 89 Y 105 i 121 y Code of
42 x 58 74 ] 90 z 106 j 122 =z | nformation
43 + 59 75 K 91 [ 107 k 123 { | nterchange
a4 60 < 76 L 92 \ 108 1 124 |
45 - 61 = 77 M 93 ] 109 m 125 }
a6 . 62 > 78 N 94 - 110 n 126 -
a7/ 63 7 79 0 95 111 o 127 _
48 0 64 @ 80 P 96 112 p

Zum Beispiel:

AW — (65,87)10 = (1000001,1010111), — 10000011010111,
= 65128 + 87 = 840719



14

Divisionsmethode

Hashfunktion h: N — {0,..., m—1}
k— k mod m
Beispiel: h(k) = k mod 1024
h(1026) =2 102610 = 010000000010,
h(2050) =2 2050, = 100000000010,

D.h. die 2 hoherwertigsten Stellen werden von h ignoriert

Moral: vermeide m = Zweierpotenz

Strategie: wahle fiir m eine Primzahl, entfernt von Zweierpotenz

v

lost Muster gut auf



15

Multiplikationsmethode

Hashfunktion h: N — {0,..., m—1}

ks |m-(kAmod1)|, wobei0< A< 1.
N’

gebrochener Anteil von kA
d.h. kKA— | kA]

e Verschiedene Werte von A , funktionieren™ verschieden gut.

.  V5—1
gut: z.B. Ax 5

e Vorteil ggii. Divisionsmethode: Wahl von m relativ beliebig.
Insbesondere m = Zweierpotenz moglich.

Dualzahlendarstellung von a um s Stellen nach links)



16

Hashing mit offener Adressierung

Alle Elemente werden direkt in der Hashtabelle gespeichert.
— Tabelle kann volllaufen = a <1

Strategie zur Kollisionsauflosung:

h(k,4)

h(k\1)

h(k, 0) - h(k,?2)

/ Sondier-

folge




17

Hashing mit offener Adressierung

Abs. Datentyp Implementierung

HashOA(int m) || T = new key[0..m — 1]
for j=0tom—1do T[j]=—-1
Insert( k) ||i=0
repeat
Jj = h(k,i)
if T[j] == —1 then

LT[j]:k

return §

else 1 =1+1

until 1 ==m

error “table overflow” Aufgabe:
Search( k)| | Schreiben Sie Search mit repeat-Schleife!




Hashing mit offener Adressierung

Abs. Datentyp Implementierung

HashOA(int m) || T = new key[0..m — 1]

for j=0tom—1do T[j]=—-1

lnsert(key k) ||i=0

Search repeat
Jj = h(k, i)

...und Delete()? if T]j] = ﬁ-’then
L Il ;l — ke

return §

Umstandlich!

Dann lieber . .
Hashing mit else / =i+ 1

Verkettung! until i == m or T[] ==+1

| A
error_“Table overflopgtw'" ‘Aufgabe:

Search( k)| | Schreiben Sie Search mit repeat-Schleife!

17



18

Berechnung von Sondierfolgen

Hashfkt. fur offene Adr. h: U x {0,..., m—1} —{0,..., m— 1}
(h(k,0), h(k,1),..., h(k, m — 1)) heiBt Sondierfolge (fiir k).

Voraussetzungen:

— eine Sondierfolge ist eine Permutation von (0,1, ..., m—1)

— Existenz von ,gewdhnlicher” Hashfkt hy: U — {0, ..., m—1}

Verschiedene Typen von Sondierfolgen:

— Lineares Sondieren: h(k, 1) = (ho(k) + i) mod m

— Quadratisches Sondieren:  h(k, i) = (ho(k) + c1i + ci?) mod m
— Doppeltes Hashing: h(k,i) = (ho(k) + i - hi(k)) mod m



Lineares Sondieren
Sondierfolge: h(k, i) = (ho(k) + i) mod m

Beispiel: ho(k) =k mod 9 und m=29
Flige Schliissel 4,5, 12 ein!

— 514

—w

Problem: Es bilden sich schnell groBe Blocke
von besetzten Eintragen.

primares

C/ustering = hohe durchschnittliche

Suchzeit!

12




Quadratisches Sondieren
Sondierfolge: h(k, i) = (ho(k) + c1i + ci?) mod m

Beispiel: ho(k) =kmod9 und m=9 und ¢g=c =1
Flige Schliissel 4,5, 12 ein!

Problem: Die GroBen m, ¢; und ¢, miissen
zu einander passen, sonst
besucht nicht jede Sondierfolge
alle Tabelleneintrage.

—

Problem:  Falls ho(k) = ho(k'), so haben —v /
A

und k" dieselbe Sondierfolge!

— hohe Suchzeit bei
schlechter Hilfshashfkt. hg!

12




21

Doppeltes Hashing
Sondierfolge: h(k, i) = (ho(k) + i - h1(k)) mod m

Vorteile: e Sondierfolge hangt zweifach vom Schliissel k ab!

e potentiell m? verschiedene Sondierfolgen moglich

Frage: Was muss gelten, damit eine Sondierfolge alle
Tabelleneintrage durchlauft?

Antwort: k" = hy(k) und m miissen teilerfremd sein
d.h. ggT(k', m) =1.

Also: z.B. m = Zweierpotenz und h; immer ungerade.
oder m = prim und 0 < h;y(k) < m fiir alle k.



22

Uniformes Hashing

Annahme:

Satz:

Die Sondierfolge jedes Schliissels ist gleich
wahrscheinlich eine der m! Permutationen von

(0,1,...,m—1).

Unter der Annahme von uniformem Hashing ist
die erwartete Anz. der versuchten Tabellenzugriffe

bei offener Adressierung und
1

1l — «

1 1

— erfolgreicher Suche < — In
a 1—«

— erfolgloser Suche <

d.h. Suche dauert erwartet O(1) Zeit, falls a konst.



23

/usammenfassung Hashing

mit Verkettung

+ funktioniert fiir n € O(m)

+ gute erwartete Suchzeit:
erfolglos: |«
erfolgreich:|1 + &

— Listenoperationen langsam

10

mit offener Adressierung

— funktioniert nur fir n < m

— langsam, wenn n =~ m

Sondiermethoden:
e lineares Sondieren
e quadratisches Sondieren

e doppeltes Hashing

+ gute erwartete Suchzeit:

1
11—«
1
/6"

erfolglos:

1

11—«

erfolgreich:




	Titel
	Übungen
	What's the problem?
	Direkte Adressierung
	Hashing mit Verkettung
	Analyse
	Suche
	Zusammenfassung Ergebnisse
	Was ist eine gute Hashfunktion?
	Divisionsmethode
	Multiplikationsmethode
	Hashing mit offener Adressierung
	Berechnung von Sondierfolgen
	Lineares Sondieren
	Quadratisches Sondieren
	Doppeltes Hashing
	Uniformes Hashing
	Zusammenfassung Hashing

