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Übungen

• Pseudocode allein genügt nie!
Algorithmen immer (auch) mit Worten erklären.
Verweisen Sie dabei auf Zeilen Ihres Pseudocodes.

• Begründen Sie grundsätzlich alle Behauptungen –
außer die Aufgabe verlangt explizit keine Begründung.

Das hilft Fehler zu vermeiden. Außerdem verstehen Sie Ihren Code
auch noch beim nächsten Mal, wenn Sie draufschauen :-)

• Kommentieren Sie Ihren Java-Code beim Programmieren!
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What’s the problem?

Wörterbuch

stellt folgende Operationen bereit:
Insert, Delete, Search

Spezialfall einer dynamischen Menge

Implementierung

Abstrakter Datentyp

heute: Hashing (engl. to hash = zerhacken, kleinschneiden)

Suchzeit:

– erwartet O(1) unter akzeptablen Annahmen

– im schlechtesten Fall Θ(n),

Anwendung: im Compiler Symboltabelle für Schlüsselwörter
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Direkte Adressierung

Annahmen: – Schlüssel aus kleinem Universum U={0, . . . ,m−1}
– Schlüssel paarweise verschieden (dyn. Menge!)
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Direkte Adressierung

Annahmen: – Schlüssel aus kleinem Universum U={0, . . . ,m−1}
– Schlüssel paarweise verschieden (dyn. Menge!)

Abs. Datentyp Implementierung

HashDA(int m)

Delete(key k)

ptr Insert(key k,

T = new info[0..m − 1]

// T [j ] = Zeiger auf j . Datensatz

ptr[ ] T

ptr Search(key k)

T [k] = new info(i)
info i)

• Speicher freigeben, auf den T [k] zeigt

• T [k] = nil

return T [k]

// lege neuen Datensatz an
// und initialisiere ihn mit i

Laufzeiten?
Ins, Del, Search O(1)
im schlechtesten Fall

for j = 0 to m − 1 do T [j ] = nil



5

Hashing mit Verkettung
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Kollision

Annahme: großes Universum U, d.h. |U| � |K |
Hashfunktion h : U → {0, 1, . . . , m − 1}
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Abs. Datentyp Implementierung

Hashing mit Verkettung

Delete(ptr x)

ptr Insert(key k)

ptr Search(key k)

HashChaining( T = new List[0..m − 1] ptr[ ] T

for j = 0 to m − 1 do T [j ] = List()int m)

Voraussetzungen: |U| � |K |, Zugriff auf Hashfunktion h

Aufgabe:
Schreiben Sie Insert, Delete & Search.
Verwenden Sie Methoden der DS List!
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Abs. Datentyp Implementierung

Hashing mit Verkettung

Delete(ptr x)

ptr Insert(key k)

ptr Search(key k)

HashChaining( T = new List[0..m − 1] ptr[ ] T

for j = 0 to m − 1 do T [j ] = List()int m)

return T [h(k)].Insert(k)

T [h(x .key)].Delete(x)

return T [h(k)].Search(k)

Voraussetzungen: |U| � |K |, Zugriff auf Hashfunktion h
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Analyse

Definition: Die Auslastung α einer Hashtabelle sei n/m,
also der Quotient der Anzahl der gespeicherten
Elemente und der Tabellengröße.

Bemerkung: α ist die durchschnittliche Länge einer Kette.

Θ(n) im schlimmsten Fall:Laufzeit:

Annahme: Einfaches uniformes Hashing :
jedes Element von U wird mit gleicher WK in
jeden der m Einträge der Tabelle gehasht –
unabhängig von anderen Elementen.

D.h. Pr[h(k) = i ] = 1/m

z.B. h(k) = 0 ∀k ∈ K .
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Suche

Fälle: 1) erfolglose Suche

2) erfolgreiche Suche

Notation: nj = T [ j ].length für j = 0, 1, . . . , m − 1.

Dann gilt: n = n0 + n1 + · · ·+ nm−1.

E[nj ] = = α

Wenn die Suche nach einem Schlüssel k erfolglos ist,
muss T [h(k)] komplett durchsucht werden.

Beweis.

E
[
T [h(k)].length

]
= E[nh(k)] = α.

Satz. Unter der Annahme des einfachen uniformen Hashings
durchsucht eine erfolglose Suche erwartet α Elemente.

n/m
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Erfolgreiche Suche

Satz. Unter der Annahme des einfachen uniformen Hashings
durchsucht eine erfolgreiche Suche erwartet höchstens
1 + α/2 Elemente.

Beweis. Noch ’ne Annahme:

Jedes der n Elemente in T ist mit gleicher WK das
gesuchte Element x .

# durchsuchte Elem. = # Elem. vor x in T [h(x)] + 1

= # Elem., die nach x in T [h(x)] eingefügt wurden + 1

Sei x1, x2, . . . , xn die Folge der Schlüssel in der
Reihenfolge des Einfügens.

Definiere Indikator-ZV: Xi j = 1 falls h(xi ) = h(xj ).

Klar: E[Xi j ] = Pr[Xi j = 1] = [einf. unif. Hashing!]

X

1/m

zeitlich

räumlich
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Erfolgreiche Suche

= # Elem., die nach x in T [h(x)] eingefügt wurden + 1X

E[X ] =
1

n

n∑
i=1

E
[
1 + # Elem., die nach xi in T [h(xi )] eingefügt wurden

]

Definiere Indikator-ZV: Xi j = 1 falls h(xi ) = h(xj ).

1

n

n∑
i=1

1 +
1

n

n∑
i=1

E
[
# Elem. xj mit j > i und h(xi ) = h(xj )

]
= ︸ ︷︷ ︸

=

E

 n∑
j=i+1

Xi j


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Erfolgreiche Suche

=

= # Elem., die nach x in T [h(x)] eingefügt wurden + 1X

E[X ] =
1

n

n∑
i=1

E
[
1 + # Elem., die nach xi in T [h(xi )] eingefügt wurden

]
1

n

n∑
i=1

1 +
1

n

n∑
i=1

E
[
# Elem. xj mit j > i und h(xi ) = h(xj )

]

1 +
1

n

n∑
i=1

=

=

︸ ︷︷ ︸

=

E

 n∑
j=i+1

Xi j


= 1 +

1

n

n∑
i=1

n∑
j=i+1

E[Xi j ]︸ ︷︷ ︸
1/m

= 1 +
1

nm

n∑
i=1

n∑
j=i+1

1

n − i

= 1 +
1

nm

(
n2 −

n2 + n

2

)
= 1 +

n2 − n

2nm
1 + n−1

2m 1 + α
2<
�



11

Zusammenfassung Ergebnisse

Und Einfügen? Und Löschen?

Satz. Unter der Annahme des einfachen uniformen Hashings
durchsucht beim Hashing mit Verkettung eine

erfolglose Suche erwartet α Elemente.–

erfolgreiche Suche erwartet höch. 1 + α/2 Elemente–

Satz. Unter der Annahme des einfachen uniformen Hashings
laufen alle Wörterbuch-Operationen in (erwartet)
konstanter Zeit, falls n = O(m).
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Was ist eine gute Hashfunktion?

1. so
”
zufällig“ wie möglich – um der Annahme des einfachen

uniformen Hashings möglichst nahe zu kommen.

• Hashfunktion sollte die Schlüssel aus dem Universum U
möglichst gleichmäßig über die m Plätze der Hashtabelle
verteilen.

• Hashfunktion sollte Muster in der Schlüsselmenge K gut
auflösen.

2.

Beispiel: U = Zeichenketten, K = Wörter der dt. Sprache

h : nimm die ersten drei Buchstaben −→ Zahl

schlecht: – viele Wörter fangen mit
”
sch“ an

⇒ selber Hashwert

– andere Buchst. haben keinen Einfluss

einfach zu berechnen!
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33 ! 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 ( 56 8 72 H 88 X 104 h 120 x
41 ) 57 9 73 I 89 Y 105 i 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [ 107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93 ] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _111 o 127 _
48 0 64 @ 80 P 96 ‘ 112 p

Annahme: Alle Schlüssel sind (natürliche) Zahlen.

Suche also Hashfunktionen: N→ {0, . . . , m − 1}

American
Standard
Code of
I nformation
I nterchange

Rechtfertigung:

= (1000001, 1010111)2 → 1000001 10101112AW

Zum Beispiel:

= 65 · 128 + 87 = 840710

→ (65, 87)10
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Divisionsmethode

Hashfunktion h : N→ {0, . . . , m − 1}
k 7→ k mod m

Beispiel: h(k) = k mod 1024

h(1026) = 2

h(2050) = 2

102610 = 0100000000102

205010 = 1000000000102

︷ ︸︸ ︷10 niedrigwertigste Stellen

Moral:

Strategie:

vermeide m = Zweierpotenz

wähle für m eine Primzahl, entfernt von Zweierpotenz

löst Muster gut auf

D.h. die 2 höherwertigsten Stellen werden von h ignoriert
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Multiplikationsmethode

Hashfunktion h : N→ {0, . . . , m − 1}
k 7→ bm · ( kA mod 1 )c, wobei 0 < A < 1.︸ ︷︷ ︸

gebrochener Anteil von kA
d.h. kA− bkAc

• Verschiedene Werte von A
”
funktionieren“ verschieden gut.

gut: z.B. A ≈
√
5−1
2

• Vorteil ggü. Divisionsmethode: Wahl von m relativ beliebig.

Insbesondere m = Zweierpotenz möglich.
⇒ schnell berechenbar (in Java verschiebt a << s die

Dualzahlendarstellung von a um s Stellen nach links)

[Knuth: The Art of Computer Programming III, ’73]
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Hashing mit offener Adressierung

Alle Elemente werden direkt in der Hashtabelle gespeichert.

⇒ Tabelle kann volllaufen ⇒ α ≤ 1

Strategie zur Kollisionsauflösung:

U

K

k

k

h(k, 1)

h(k, 0) h(k, 2)
h(k, 3)

h(k, 4)

Sondier-
folge
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Hashing mit offener Adressierung

Abs. Datentyp Implementierung

HashOA(int m)

int Insert(key k)

T = new key[0..m − 1] key[ ] T

int Search(key k)

for j = 0 to m − 1 do T [j ] = −1

Schreiben Sie Search mit repeat-Schleife!

Aufgabe:

i = 0
repeat

j = h(k, i)
if T [j ] == −1 then

T [j ] = k
return j

else i = i + 1

until i == m
error “table overflow”
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Hashing mit offener Adressierung

Abs. Datentyp Implementierung

HashOA(int m)

int Insert(key k)

T = new key[0..m − 1] key[ ] T

int Search(key k)

for j = 0 to m − 1 do T [j ] = −1

Schreiben Sie Search mit repeat-Schleife!

Aufgabe:

k

T [j ] == −1or

Search

return −1

i = 0
repeat

j = h(k, i)
if T [j ] == −1 then

T [j ] = k
return j

else i = i + 1

until i == m
error “table overflow”

Umständlich!
Dann lieber
Hashing mit
Verkettung!

...und Delete()?
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Berechnung von Sondierfolgen

Verschiedene Typen von Sondierfolgen:

〈h(k, 0), h(k, 1), . . . , h(k, m − 1)〉 heißt Sondierfolge (für k).

Hashfkt. für offene Adr. h : U × {0, . . . , m − 1} → {0, . . . , m − 1}

– eine Sondierfolge ist eine Permutation von 〈0, 1, . . . , m − 1〉
Voraussetzungen:

h(k, i) = (h0(k) + c1i + c2i2) mod m

h(k, i) = (h0(k) + i · h1(k)) mod m

– Lineares Sondieren:

– Quadratisches Sondieren:

– Doppeltes Hashing:

h(k, i) = (h0(k) + i) mod m

– Existenz von
”
gewöhnlicher“ Hashfkt h0 : U → {0, . . . , m − 1}

(Sonst durchläuft die Folge nicht alle Tabelleneinträge genau 1×!)
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Lineares Sondieren

Sondierfolge: h(k, i) = (h0(k) + i) mod m

Beispiel: h0(k) = k mod 9 und m = 9

0

1

2

3

4

5

6

7

8
Füge Schlüssel 4, 5, 12 ein!

4

5

12

Problem: Es bilden sich schnell große Blöcke
von besetzten Einträgen.

⇒ hohe durchschnittliche
Suchzeit!

primäres
Clustering
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Quadratisches Sondieren

Sondierfolge: h(k, i) = (h0(k) + c1i + c2i2) mod m

Beispiel: h0(k) = k mod 9 und m = 9

0

1

2

3

4

5

6

7

8
Füge Schlüssel 4, 5, 12 ein!

und c1 = c2 = 1

4

5

12

Problem: Die Größen m, c1 und c2 müssen
zu einander passen, sonst
besucht nicht jede Sondierfolge
alle Tabelleneinträge.

Problem: Falls h0(k) = h0(k ′), so haben k
und k ′ dieselbe Sondierfolge!

sekundäres
Clustering ⇒ hohe Suchzeit bei

schlechter Hilfshashfkt. h0!
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Doppeltes Hashing

Was muss gelten, damit eine Sondierfolge alle
Tabelleneinträge durchläuft?

k ′ = h1(k) und m müssen teilerfremd sein

d.h. ggT(k ′, m) = 1.

Sondierfolge: h(k, i) = (h0(k) + i · h1(k)) mod m

Vorteile: • Sondierfolge hängt zweifach vom Schlüssel k ab!

• potentiell m2 verschiedene Sondierfolgen möglich
(bei linearem & quadratischem Sondieren nur m.)

Frage:

Antwort:

[ggT(a, b) =Def. max{t : t|a und t|b}]

Also: z.B. m = Zweierpotenz und h1 immer ungerade.

oder m = prim und 0 < h1(k) < m für alle k.

,
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Uniformes Hashing

[kein neues Hashverfahren, sondern eine (idealisierte) Annahme...]

Annahme: Die Sondierfolge jedes Schlüssels ist gleich
wahrscheinlich eine der m! Permutationen von
〈0, 1, . . . , m − 1〉.

Satz: Unter der Annahme von uniformem Hashing ist
die erwartete Anz. der versuchten Tabellenzugriffe
bei offener Adressierung und

– erfolgloser Suche ≤ 1

1− α

– erfolgreicher Suche ≤ 1

α
ln

1

1− α
d.h. Suche dauert erwartet O(1) Zeit, falls α konst.
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Zusammenfassung Hashing

mit Verkettung mit offener Adressierung

+ funktioniert für n ∈ O(m) – funktioniert nur für n ≤ m

– Listenoperationen langsam

– langsam, wenn n ≈ m+ gute erwartete Suchzeit:

erfolglos:
erfolgreich: 1 + α

2

α
Sondiermethoden:

• lineares Sondieren

• quadratisches Sondieren

• doppeltes Hashing

[Modell: einfaches uniformes Hashing]

[Modell: uniformes Hashing]

erfolglos:

erfolgreich: 1
α ln 1

1−α

1
1−α

+ gute erwartete Suchzeit:

[= n/m]

0

2

4

6

8

10

0.1 0.5 0.9 α
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