
Lehrstuhl für Informatik I
Algorithmen und Komplexität

Universität Würzburg

Würzburg, den 10. Dezember 2020

Prof. Dr. Alexander Wolff
Felix Klesen, M. Sc.

1. Kurztest zur Vorlesung
Algorithmen und Datenstrukturen

(Wintersemester 2020/2021)

Bitte beachten Sie die folgenden Hinweise!

1. Personalien: Bitte tragen Sie Ihre Daten gut lesbar ein.

Name

Vorname

Matrikelnummer

Übungsgruppe

2. Papier: Tragen Sie Ihre Lösungen direkt unterhalb der Aufgaben ein.
Verwenden Sie kein eigenes Papier.

3. Sie dürfen ein einseitig handgeschriebenes DIN-A4-Blatt mit Notizen
verwenden. Weitere Hilfsmittel sind nicht zugelassen.

4. Schreiben Sie nicht mit Bleistift oder einem roten Stift.

5. Die Bearbeitungszeit beträgt 60 Minuten.

Wir wünschen Ihnen viel Erfolg!

Aufgabe 1 2 3 4 5 6 Gesamt

Punkte 8 13 12 8 13 6 60

Ergebnis

B1

Algorithmen und Datenstrukturen

Aufgabe 1 — Laufzeitanalyse

Gegeben seien eine Methode f(n) mit Laufzeit Θ(logn) und eine Methode g(n) mit
LaufzeitΘ(n). Im Folgenden sind vier Schleifen gegeben, in deren Rumpf je eine dieser
Funktionen aufgerufen wird. Bestimmen Sie jeweils die Gesamtlaufzeit der Schleife in
Abhängigkeit von n und begründen Sie Ihre Antwort.

(a) / 2 P.for int i =n downto 1 do
f(n)

Laufzeit: Θ(), denn:

(b) / 2 P.for int i = 1 to n do
g(i)

Laufzeit: Θ(), denn:

(c) / 2 P.int i = n
while i > 1 do
f(n); i = i/2

Laufzeit: Θ(), denn:

(d) / 2 P.int i = 1
while i < n do
g(i); i = i · 2

Laufzeit: Θ(), denn:

B2 Lehrstuhl für Informatik I

Algorithmen und Datenstrukturen

Aufgabe 2 — O-Notation

(a) / 5 P.Ordnen Sie die folgenden Funktionen nach ihrem asymptotischen Wachstum. Sie
sollen Sie also in eine Reihenfolge f1, f2, . . . , f6 bringen, so dass O(f1) ⊆ O(f2) ⊆
· · · ⊆ O(f6) gilt.

5nn2 n(log
3
n)2 n

√
n

5n+ 50
√
n n+ n1,03 n!/n

(b) / 8 P.In der folgenden Menge von Funktionen sind vier Paare von Funktionen enthalten,
die asymptotisch gleich schnell wachsen, formaler ausgedrückt also Paare (f, g)
von Funktionen, für die O(f) = O(g) gilt. Verbinden Sie die jeweils zusammenge-
hörenden Funktionen mit einer Linie.
Wenn Sie mehr als 4 Linien einzeichnen, wird die Lösung nicht gewertet.

n+ log
2
n

n2(log
2
n)2

3n+log2 n

n2 log
2
(n2)

n log
2
(n5)

(n+ 3)5/2 + 2n

n2
√
n

(
√
25)log5 n

n · 3n + n2

2n + 2log2 n

n · 2n + n5

50n log
2
n

Lehrstuhl für Informatik I B3

Algorithmen und Datenstrukturen

Aufgabe 3 — Sortieralgorithmen

Gegeben sei folgender Sortieralgorithmus in Pseudocode, wobei die Methode Merge
aus MergeSort übernommen wurde.

SomeSort(int[] A)
k = 1
while k < A.length do

Merge(A, 1, k, k+ 1)
k = k+ 1

(a) / 4 P.Führen Sie zunächst SomeSort auf der folgenden Eingabe A aus. Verwenden Sie
dabei je eines der vorgedruckten Felder, um den Zustand vonA nach jedem Durch-
lauf der while-Schleife darzustellen.

Eingabe: A = 5 2 1 3 4

1. Durchlauf: A = 2 5 1 3 4

2. Durchlauf: A = 1 2 5 3 4

3. Durchlauf: A = 1 2 3 5 4

4. Durchlauf: A = 1 2 3 4 5

(b) / 2 P.Geben Sie die maximale und die minimale Laufzeit, die SomeSort auf einer Ein-
gabe A der Länge n = A.length benötigt, in Abhängigkeit von n an.

• Worst-Case: Θ()

• Best-Case: Θ()

B4 Lehrstuhl für Informatik I

Algorithmen und Datenstrukturen

(c) / 5 P.Beweisen Sie die Korrektheit des Algorithmus mit folgender Schleifeninvarianten:
Bei der k-ten Ausführung des while-Schleifenkopfes gilt folgendes:

(i) A[1..k] enthält dieselben Elemente wie zu Beginn der Ausführung des Algorithmus –
jedoch sortiert.

(ii) A[(k+ 1)..A.length] hat sich seit der Ausführung des Algorithmus nicht verändert.

Initialisierung:

Aufrechterhaltung:

Terminierung:

(d) / 1 P.Welchem Algorithmus, den Sie aus der Vorlesung kennen, ähnelt SomeSort? Be-
gründen Sie Ihre Antwort.

Lehrstuhl für Informatik I B5

Algorithmen und Datenstrukturen

Aufgabe 4 — Heaps

(a) / 1 P.Ist die Folge B = 〈24, 20, 22, 11, 17, 14, 9, 5, 12, 13, 15〉 ein Max-Heap? Begründen
Sie Ihre Antwort.

(b) / 5 P.Gegeben ist ein Feld B der Länge n. Geben Sie einen Algorithmus in Pseudocode an,
der in Linearzeit testet, ob B die Max-Heap-Eigenschaft erfüllt.

(c) / 2 P.Welcher Algorithmus aus der Vorlesung modifiziert ein beliebiges gegebenes Feld
D, so dass es die Max-Heap-Eigenschaft in jedem Fall erfüllt?

Geben Sie die asymptotische Worst-Case-Laufzeit dieses Algorithmus an:Θ()

B6 Lehrstuhl für Informatik I

Algorithmen und Datenstrukturen

Aufgabe 5 — Rekursionsgleichungen

Lösen Sie folgende Rekursionsgleichungen mittels der jeweils angegebenen Verfahren.

(a) / 4 P.Sei

T(n) =

{
8T(dn/2e) + n2 · log

2
n falls n > 1

1 sonst

T ∈ Θ(), denn mittels Meister-Methode (Fall) gilt

(b) / 5 P.Sei

T(n) =

{
4T(bn/4c) + n3 falls n > 1
1 sonst

Zeigen Sie mit Hilfe der Rekursionsbaum-Methode, dass T ∈ Θ(n3) gilt.

Lehrstuhl für Informatik I B7

Algorithmen und Datenstrukturen

(c) / 4 P.Beweisen Sie mittels vollständiger Induktion, dass für

T(n) =

{
T(n− 1) + bn/3c falls n > 1
1 sonst

gilt: T ∈ O(n2).
Behauptung: Es gibt ein c > 0, so dass für alle n ≥ 1 gilt T(n) ≤ cn2.
Induktionsanfang:

Induktionsvoraussetzung:

Induktionsschritt:

B8 Lehrstuhl für Informatik I

Algorithmen und Datenstrukturen

Aufgabe 6 — Teile & Herrsche

Gegeben sei der folgende Algorithmus:

AlgoX(int[] A, int ` = 1, int r = A.length)
if ` < r then
m = b(`+ r)/2c
AlgoX(A, `,m)
AlgoX(A,m+ 1, r)
if A[`] ≤ A[m+ 1] then

Swap(A, `,m+ 1) // Vertausche A[`] und A[m+ 1]

(a) / 2 P.Stellen Sie die genaue Rekursionsgleichung für die Anzahl von Vergleichen von
Elementen der Eingabe auf, die der Aufruf von AlgoX(A, `, r) auf einem (Teil-)Feld
A[`..r] der Länge n = r− `+ 1 ausführt. Vergessen Sie den Basisfall nicht.

T(n) =

(b) / 4 P.Nach einem Aufruf von AlgoX(A, `, r) befindet sich das Maximum des (Teil-)Feldes
A[`..r] in A[`]. Beweisen Sie dies mittels vollständiger Induktion.
Induktionsanfang:

Induktionsvoraussetzung:

Induktionsschritt:

Lehrstuhl für Informatik I B9

