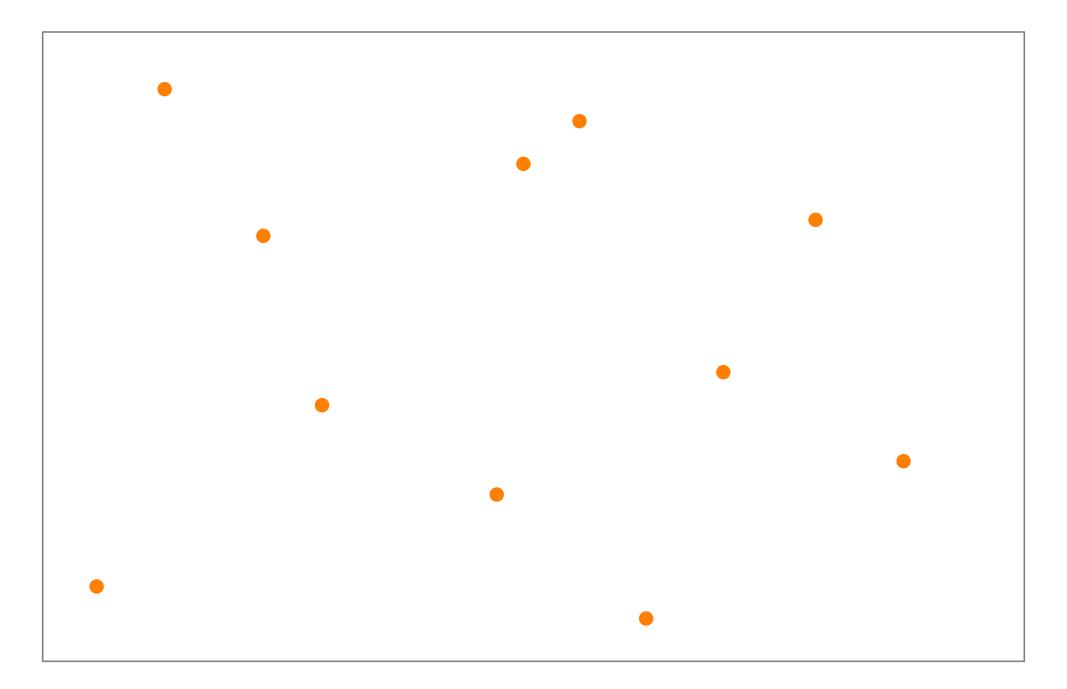
# **Computational Geometry**

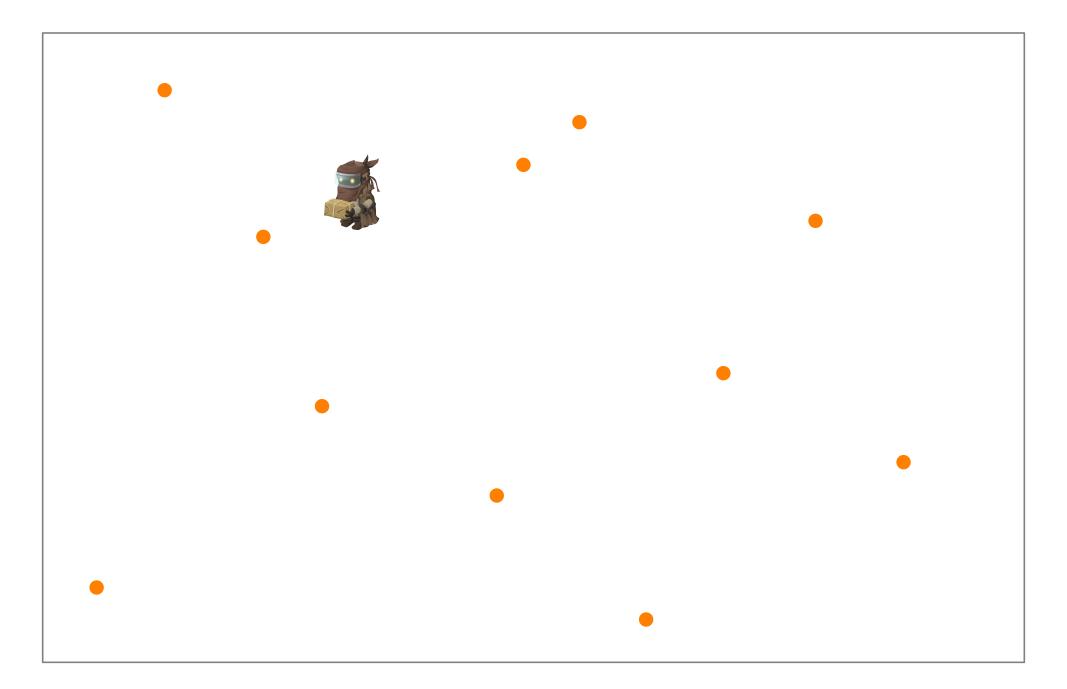
Lecture 7: Voronoi Diagrams or The Post-Office Problem

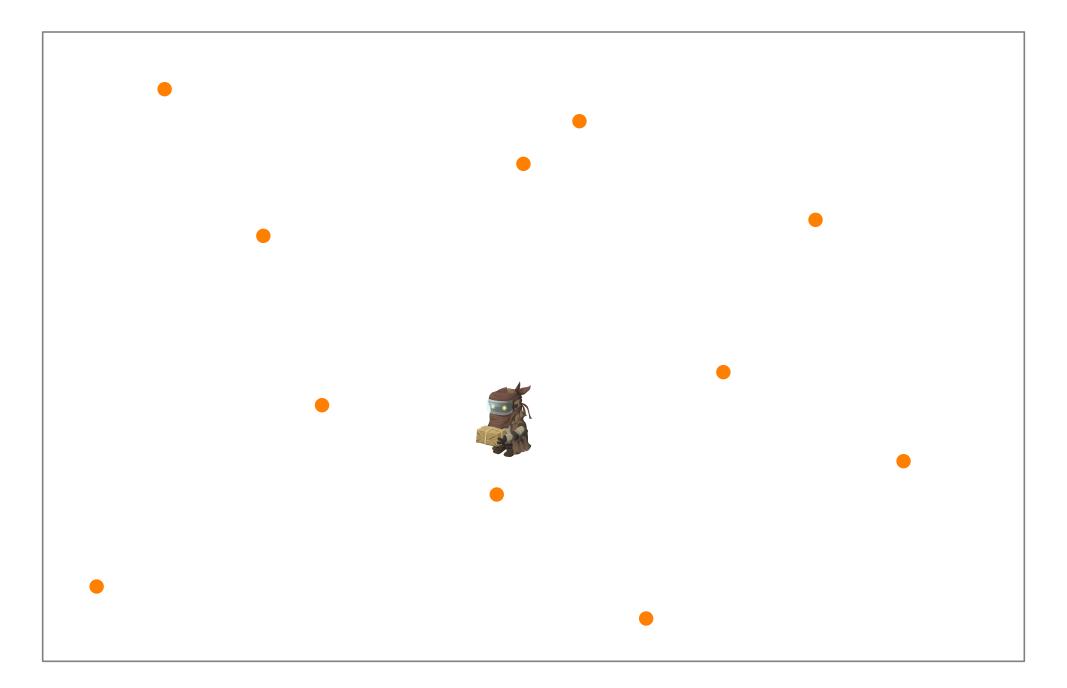
#### Part I: The Post-Office Problem

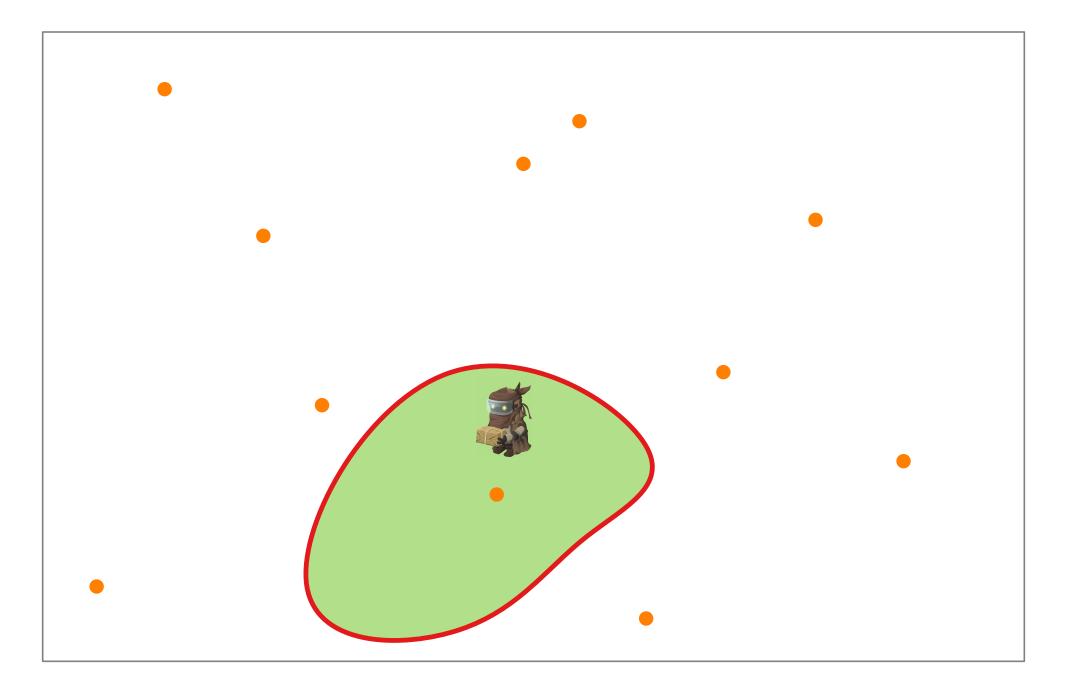
Philipp Kindermann

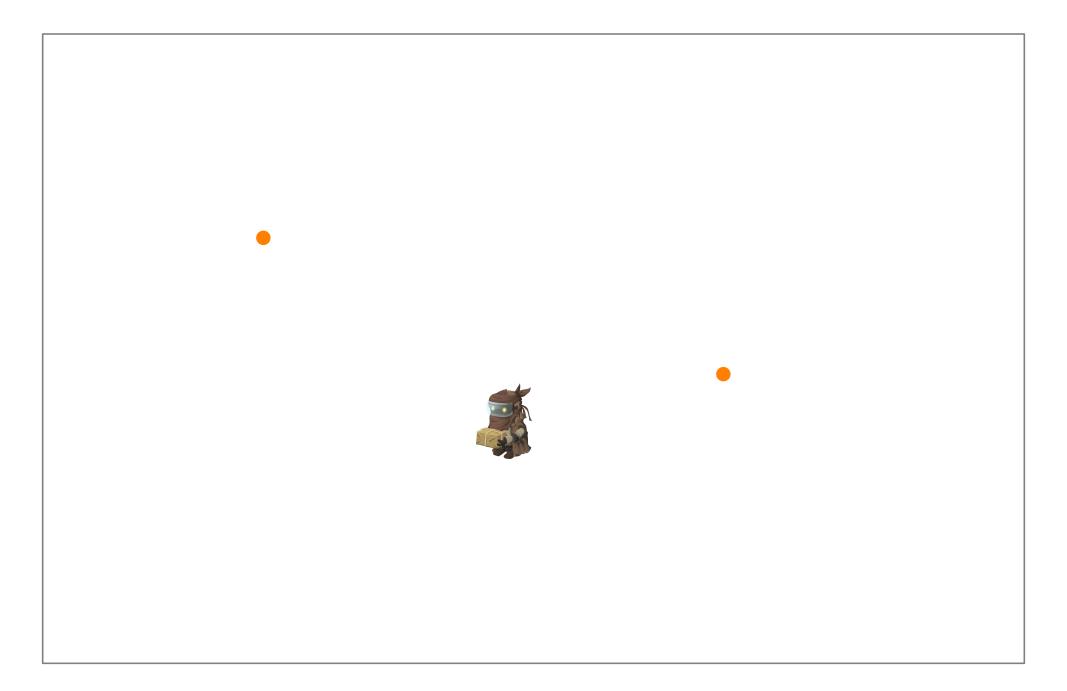
Winter Semester 2020

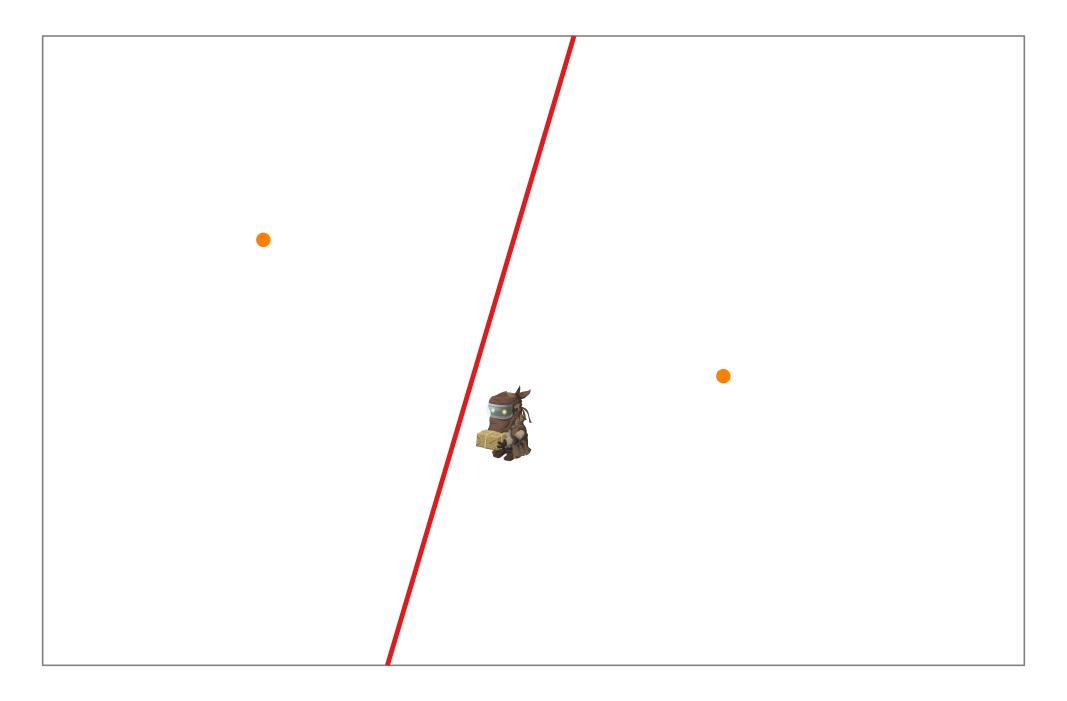


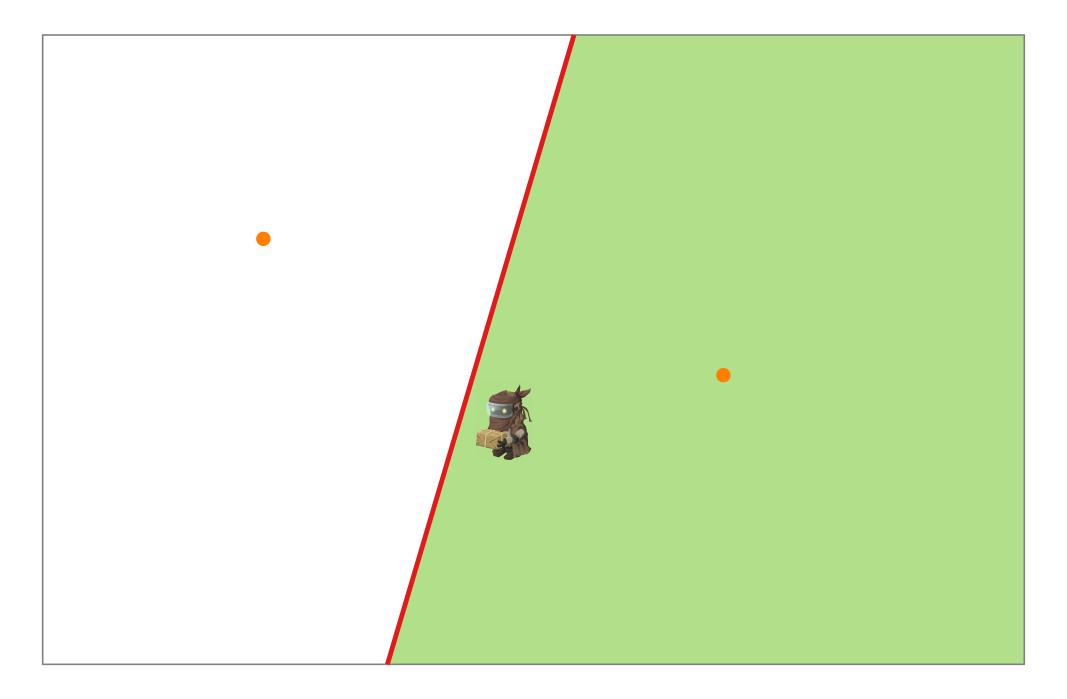


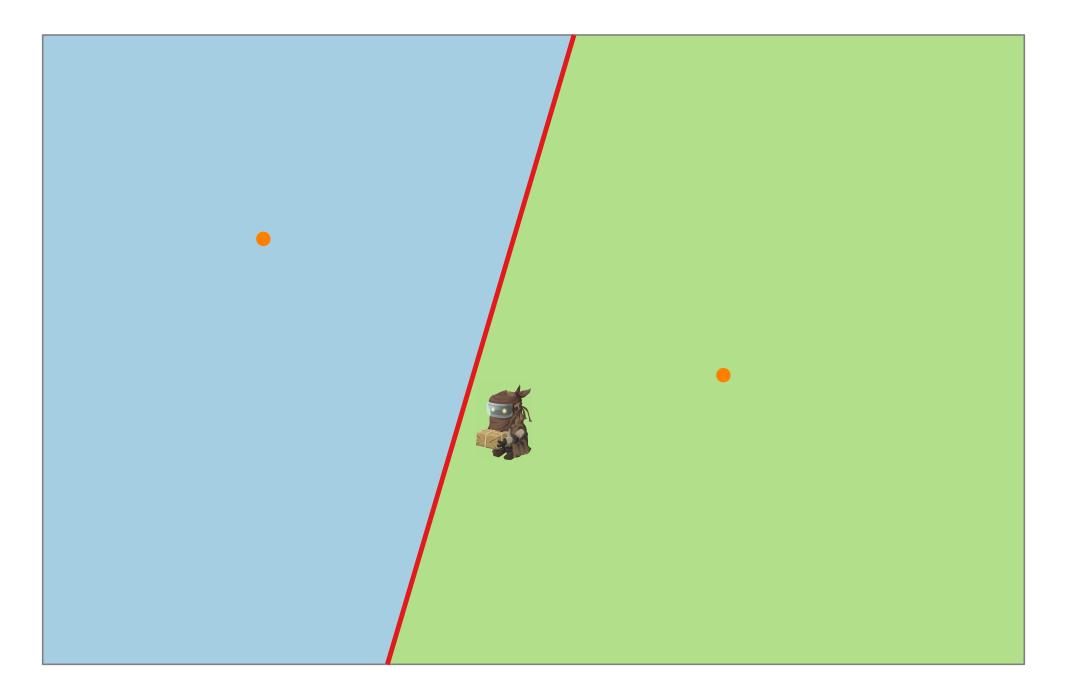


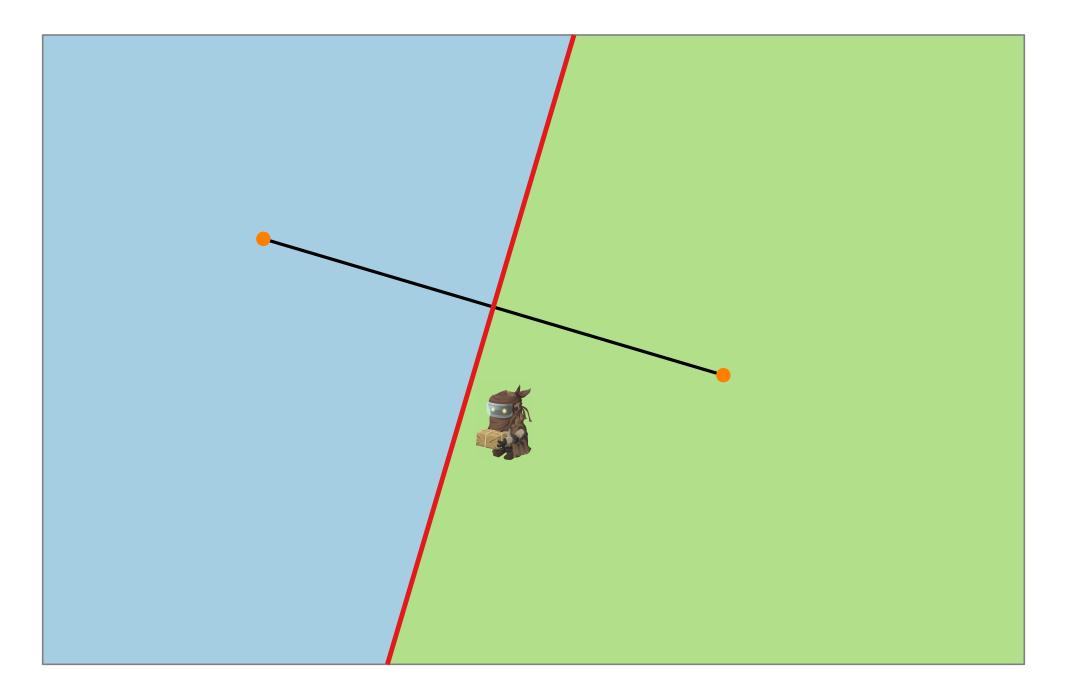


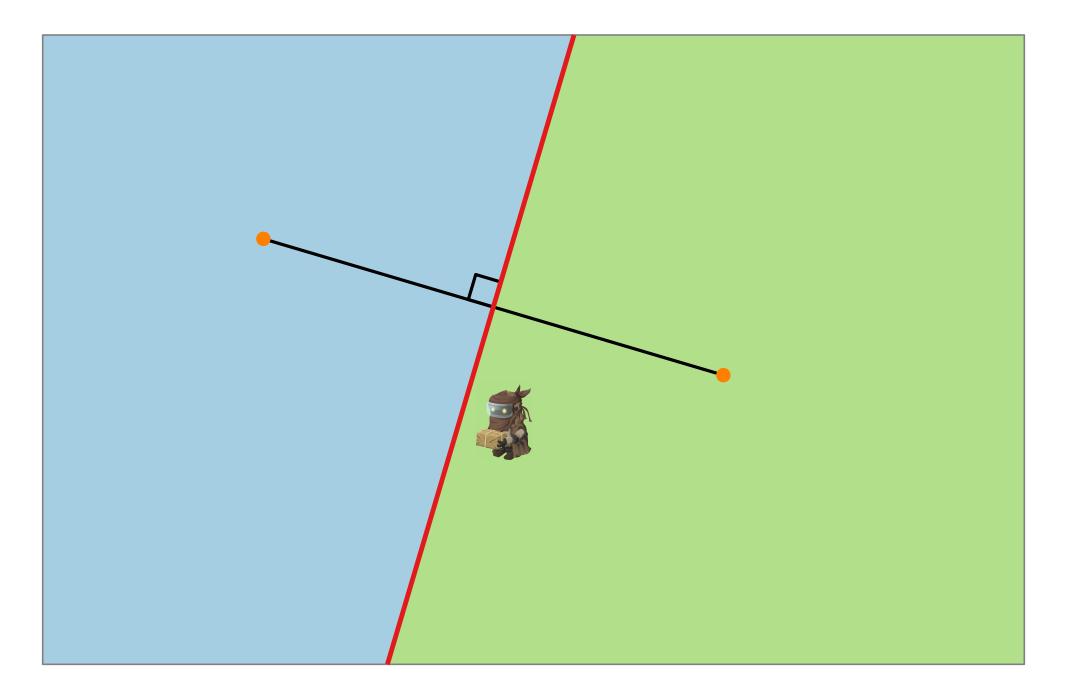


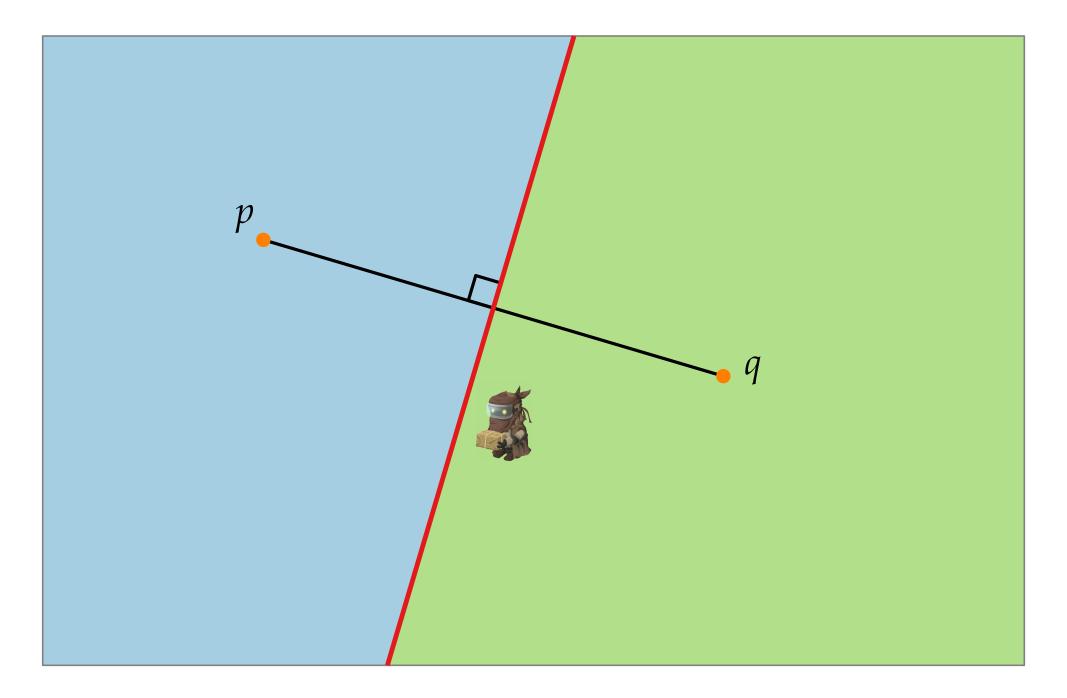


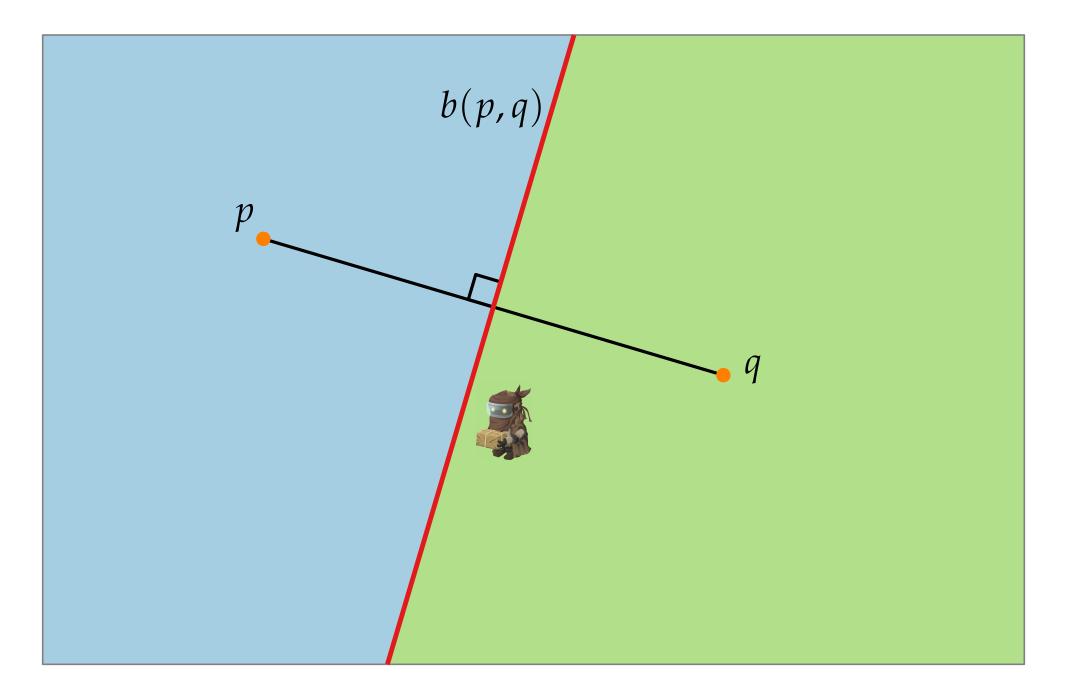


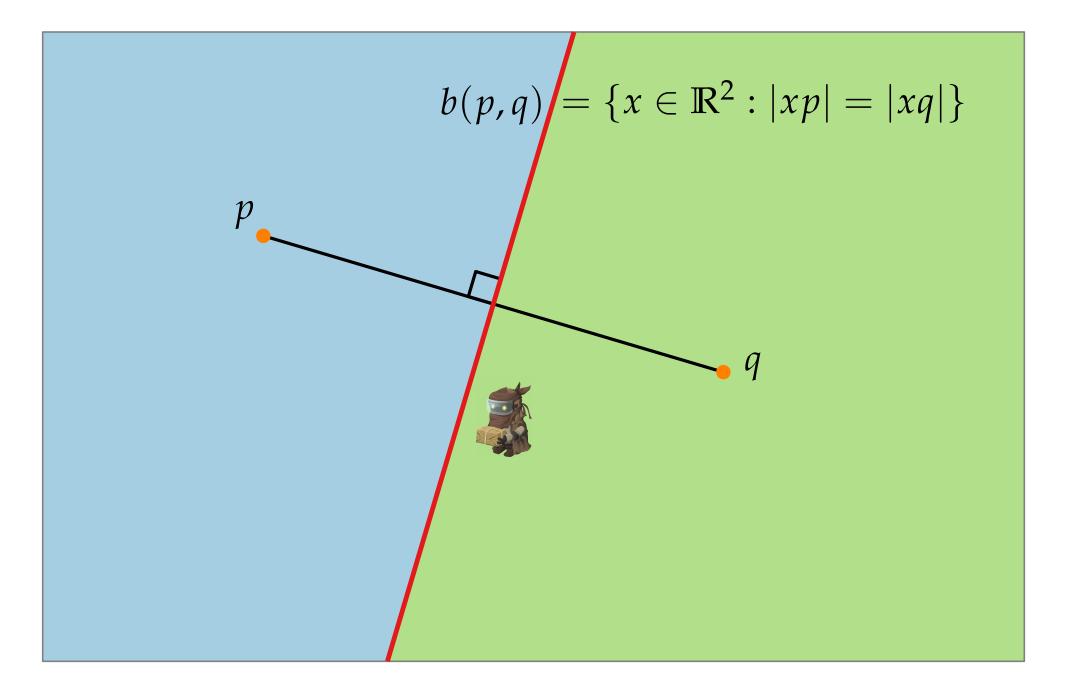


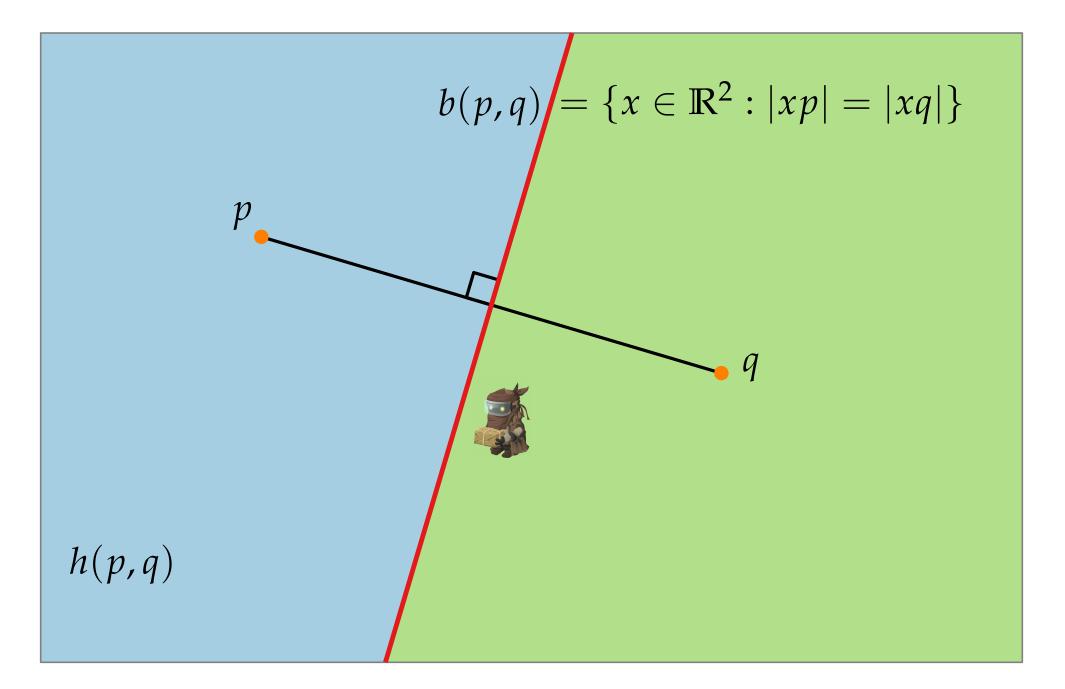


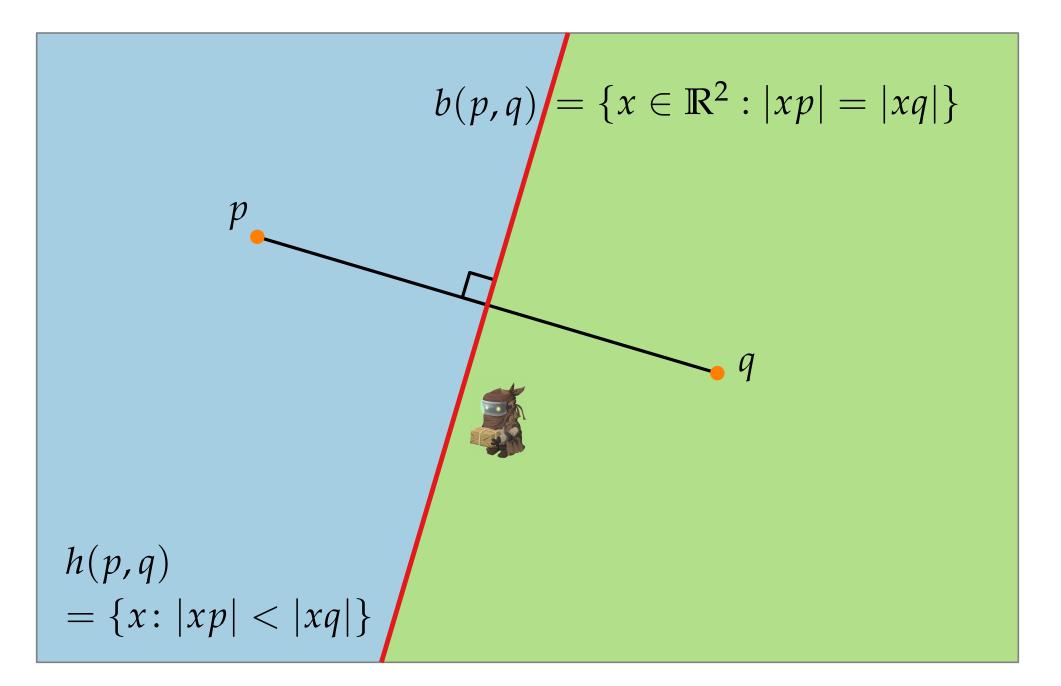


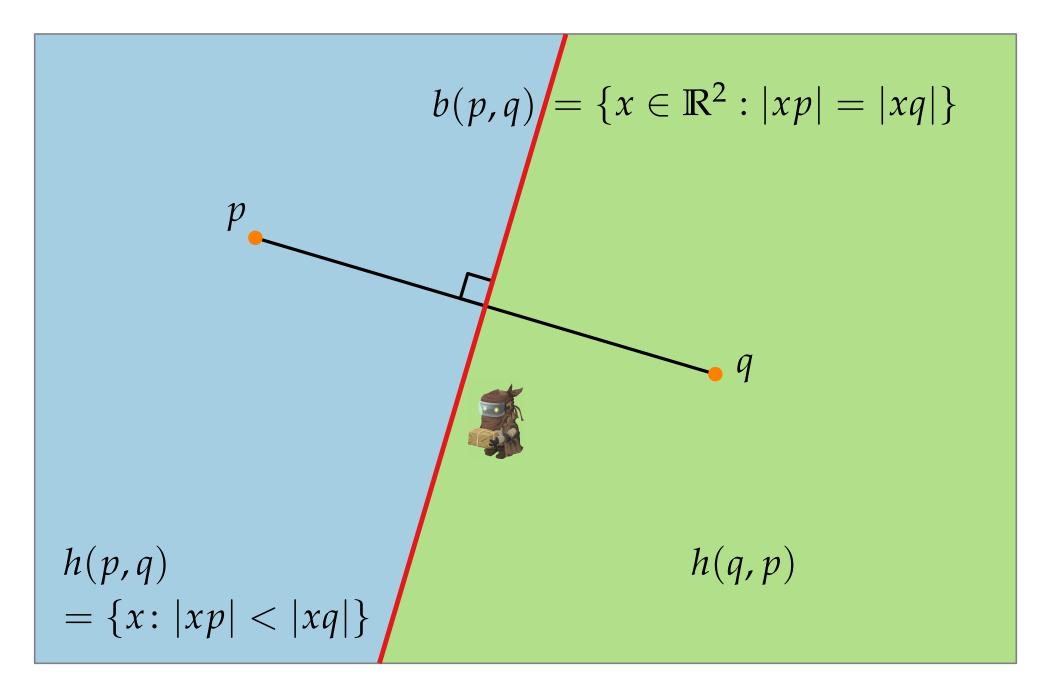


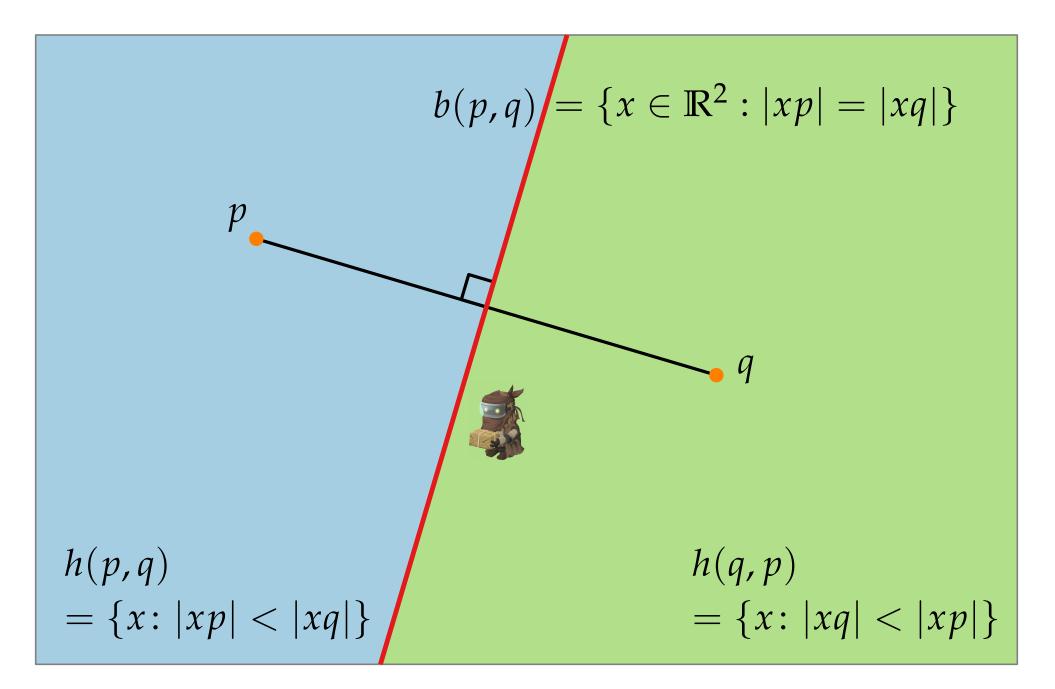


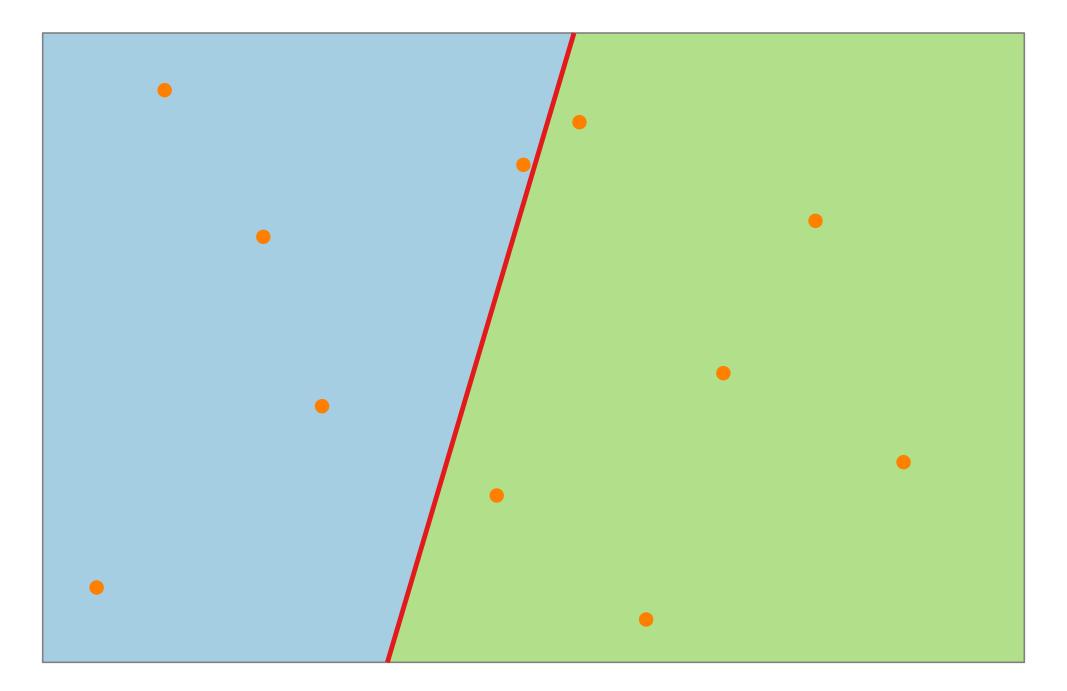


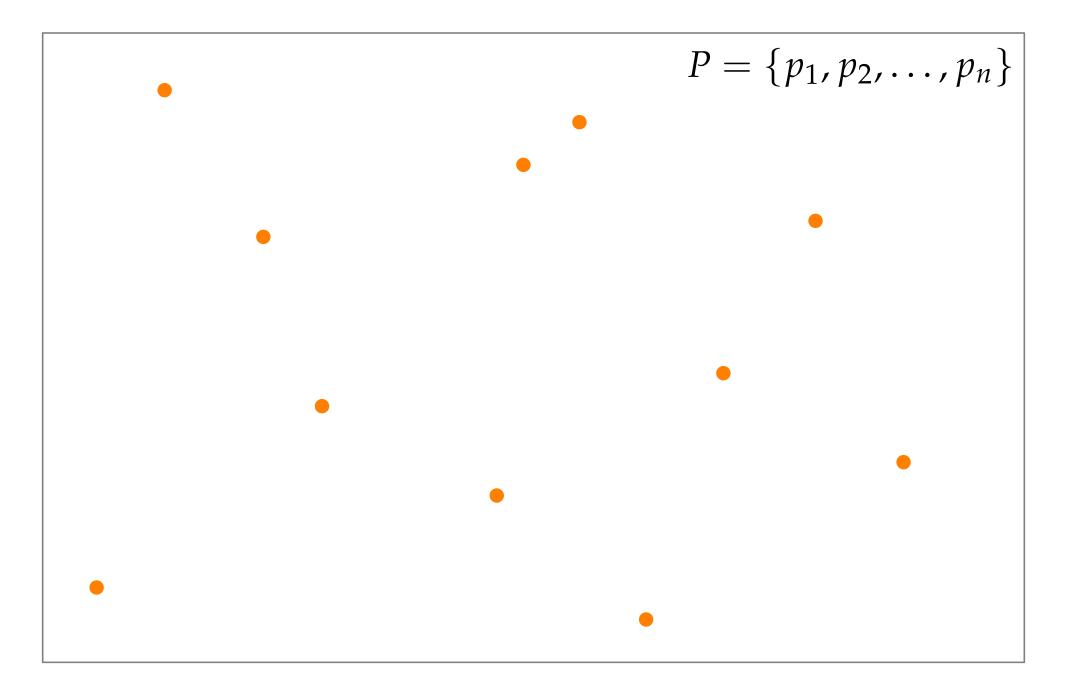


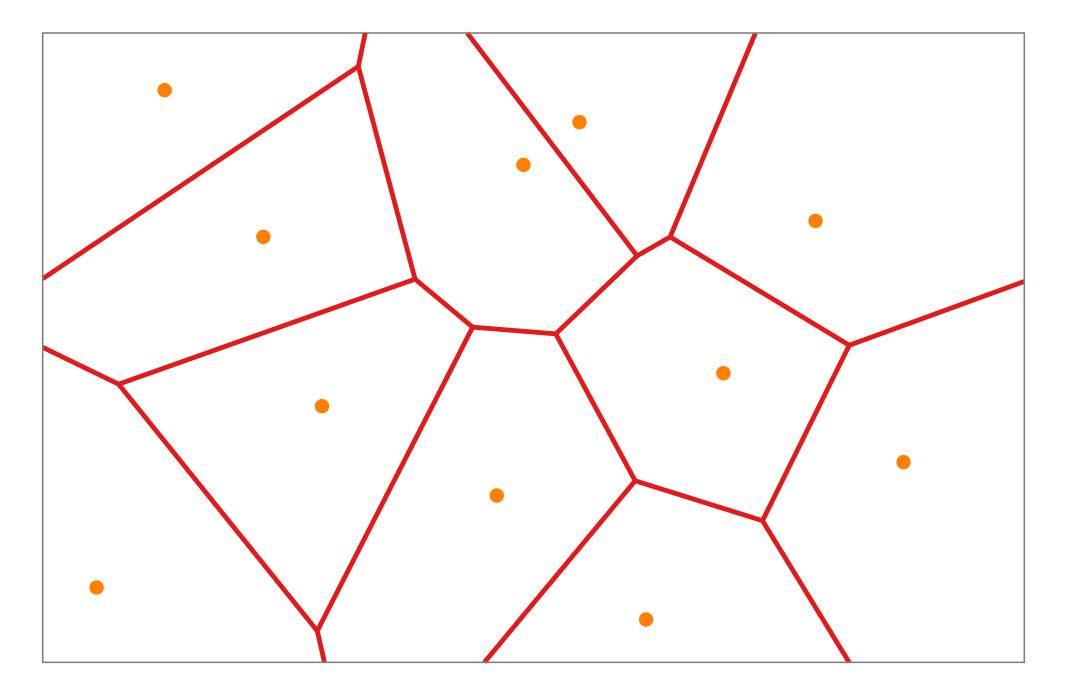


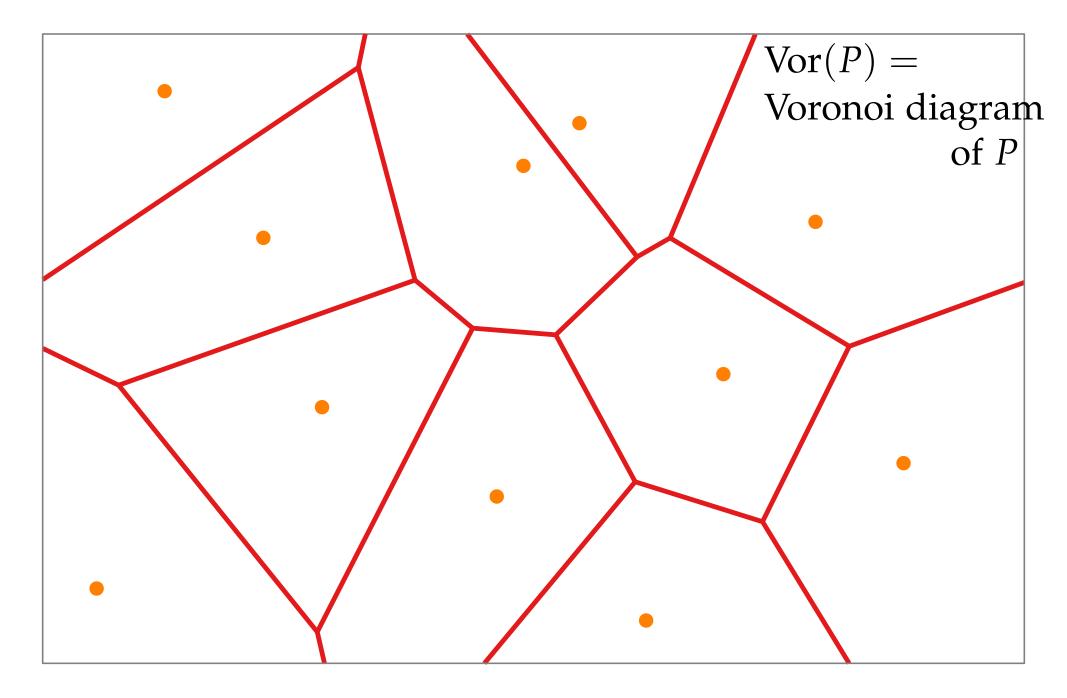


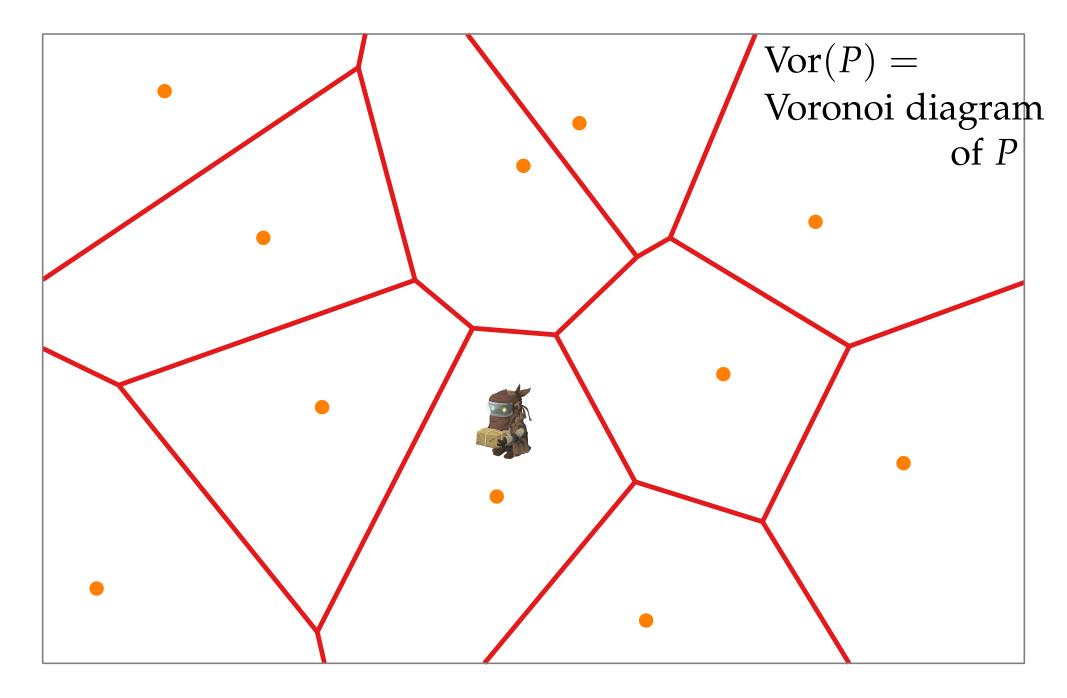


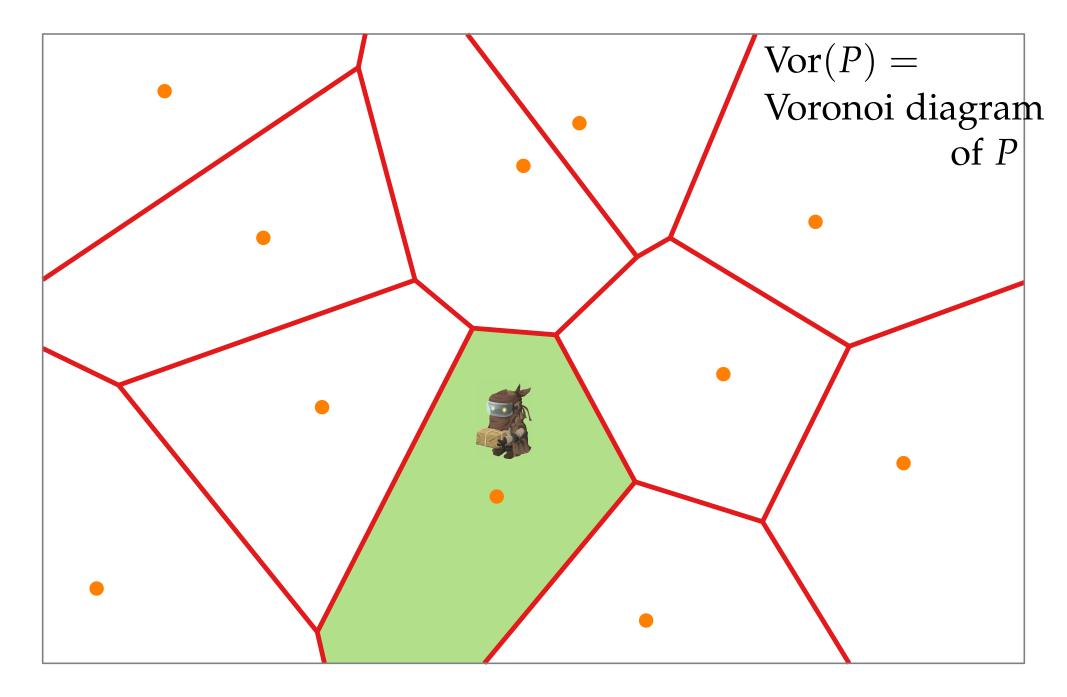


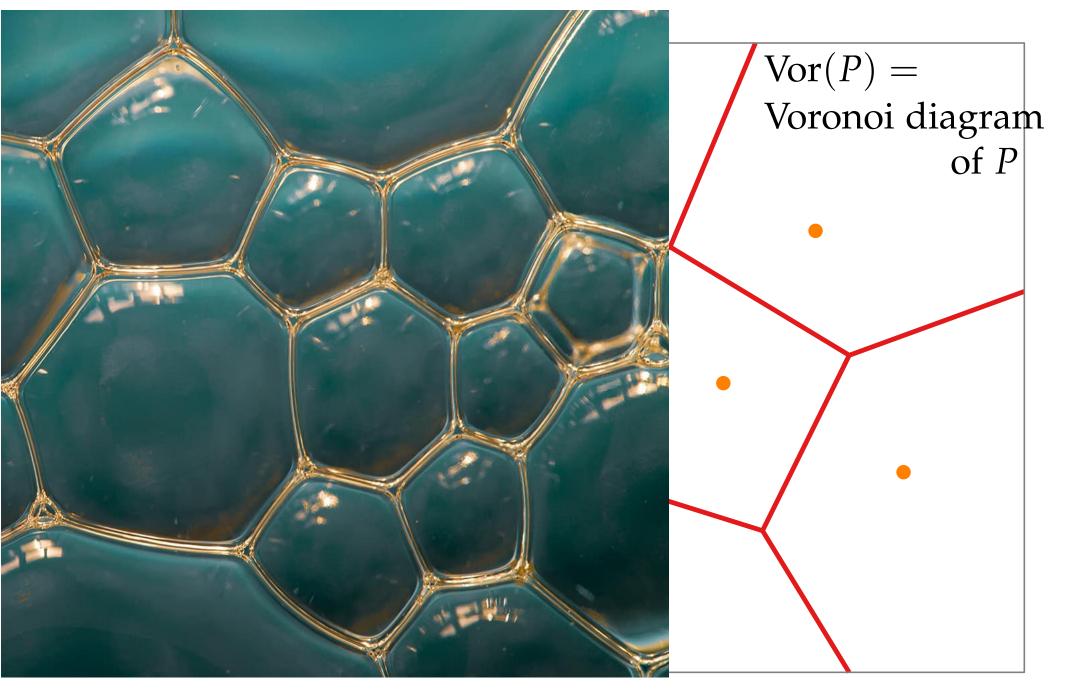










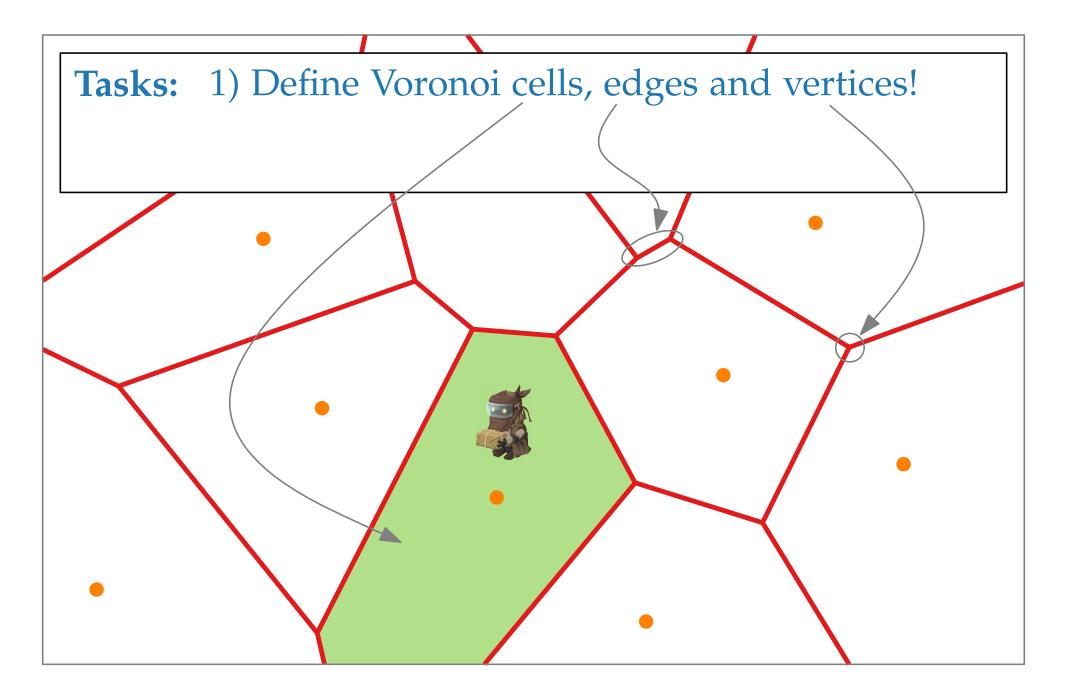


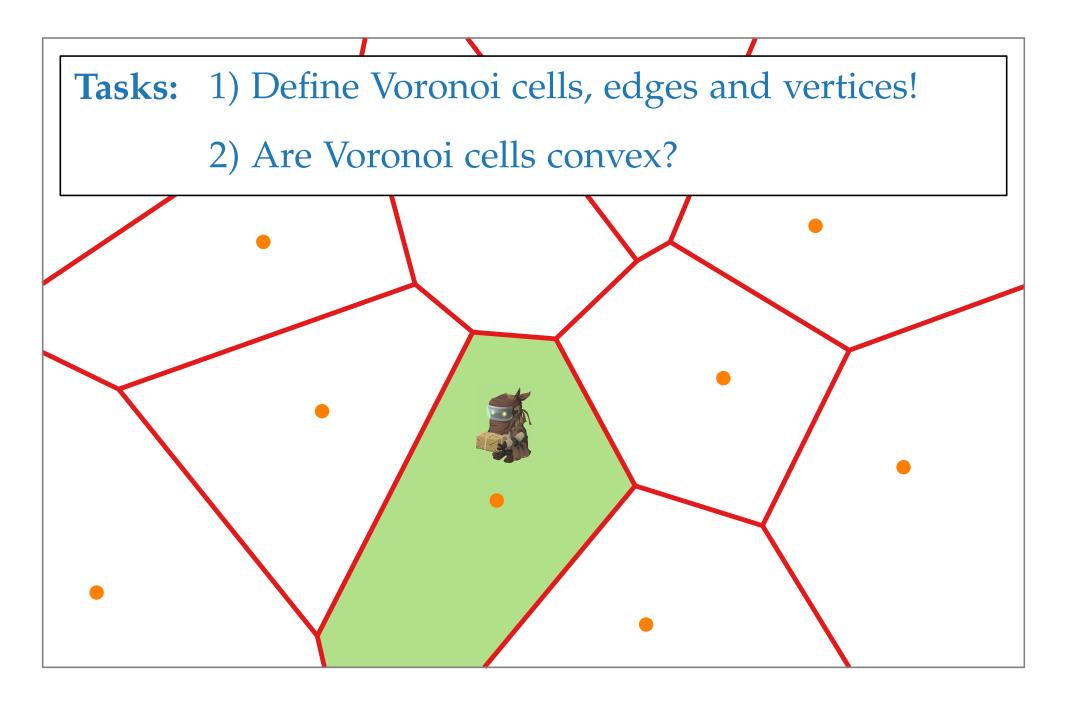
@kakteen007 on picuki.com



@kakteen007 on picuki.com

H. Zell / CC BY-SA, via Wikimedia Commons





# **Computational Geometry**

Lecture 7: Voronoi Diagrams or The Post-Office Problem

#### Part II: The Voronoi Diagram

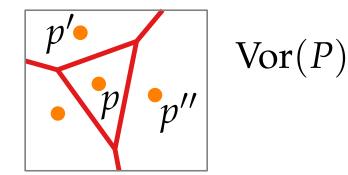
Philipp Kindermann

Winter Semester 2020

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

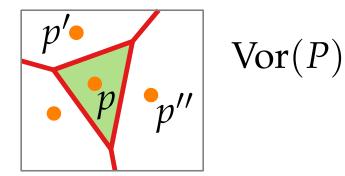
Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

[Voronoi diagram]



Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

[Voronoi diagram]



Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

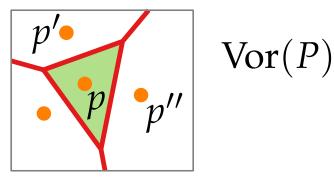
[Voronoi diagram]



 $\begin{bmatrix} Voronoi \ cell \end{bmatrix} \\ \mathcal{V}(\{p\}) =$ 

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

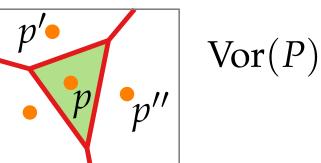
[Voronoi diagram]



[Voronoi cell]  $\mathcal{V}(\{p\}) = \mathcal{V}(p) =$ 

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

[Voronoi diagram]

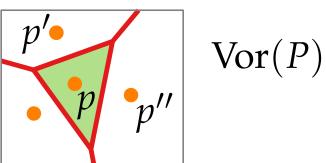


[Voronoi cell] [Voronoi cell]

 $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ 

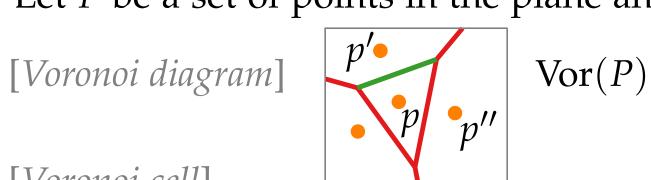
Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

[Voronoi diagram]



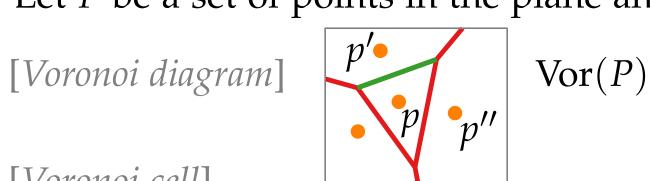
[Voronoi cell]  $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$  $= \bigcap_{q \neq p} h(p,q)$ 

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .



[Voronoi cell]  $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$  $= \bigcap_{q \neq p} h(p,q)$ 

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .



[Voronoi cell]  $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$  $= \bigcap_{q \neq p} h(p,q)$ 

[Voronoi edge]  $\mathcal{V}(\{p,p'\})$ 

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \hline \end{array} \quad Vor(P)$$

[*Voronoi edge*]  $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p, p'\}$ 

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \hline \end{array} \quad Vor(P)$$

 $\begin{bmatrix} Voronoi \ cell \end{bmatrix}$  $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\} \right\}$  $= \bigcap_{q \neq p} h(p,q)$ 

[Voronoi edge]  $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$  $= \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')$ 

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \hline \end{array} \quad Vor(P)$$

[Voronoi edge]  $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$  $= \text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$ 

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \hline \end{array} \quad Vor(P)$$

 $\begin{bmatrix} Voronoi \ cell \end{bmatrix}$   $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\} \right\}$  $= \bigcap_{q \neq p} h(p,q)$ 

[*Voronoi edge*]  $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$  $= \text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')) \text{ (w/o the endpts)}$ 

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

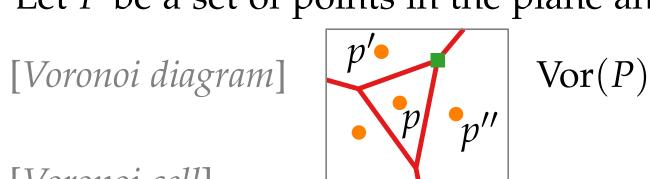
[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \hline \end{array} \quad Vor(P)$$

 $\begin{bmatrix} Voronoi \ cell \end{bmatrix}$   $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\} \right\}$  $= \bigcap_{q \neq p} h(p,q)$ 

[*Voronoi edge*]  $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$  $= \text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')) \text{ (w/o the endpts)}$ 

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .



[Voronoi cell]  $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$  $= \bigcap_{q \neq p} h(p,q)$ 

[Voronoi edge]  $= \{x: |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p, p'\}$  $\mathcal{V}(\{p,p'\})$ = rel-int $(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$  (w/o the endpts)

[Voronoi vertex]  $\mathcal{V}(\{p,p',p''\})$ 

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

[Voronoi diagram]

$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \hline \end{array} \quad Vor(P)$$

[Voronoi cell]  $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$  $= \bigcap_{q \neq p} h(p,q)$ 

[*Voronoi edge*]  $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$  $= \text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')) \text{ (w/o the endpts)}$ 

[Voronoi vertex]  $\mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'')$ 

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

[Voronoi diagram]

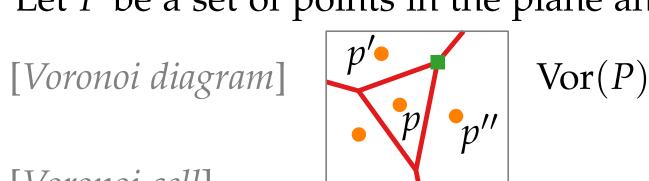
$$\begin{array}{c|c} p' & & \\ & p & p'' \\ \hline \end{array} \quad Vor(P)$$

[Voronoi cell]  $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$  $= \bigcap_{q \neq p} h(p,q)$ 

[*Voronoi edge*]  $\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$  $= \text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')) \text{ (w/o the endpts)}$ 

 $\begin{bmatrix} Voronoi \ vertex \end{bmatrix} \\ \mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'') \\ = \{x \colon |xp| = |xp'| = |xp''| \text{ and } |xp| \le |xq| \ \forall q \} \end{bmatrix}$ 

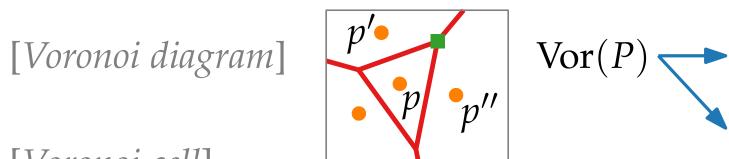
Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .



[Voronoi cell]  $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$  $= \bigcap_{q \neq p} h(p,q)$ 

[Voronoi edge]  $= \{x: |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$  $\mathcal{V}(\{p,p'\})$ = rel-int $(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$  (w/o the endpts)

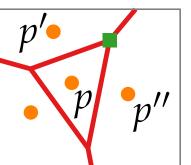
Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .



[Voronoi cell]  $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$  $= \bigcap_{q \neq p} h(p,q)$ 

[Voronoi edge]  $= \{x: |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$  $\mathcal{V}(\{p,p'\})$ = rel-int( $\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')$ ) (w/o the endpts)

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .

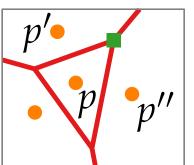


[*Voronoi diagram*]  $p''_{p''}$  Vor(P) subdivision of  $\mathbb{R}^2$ 

[Voronoi cell]  $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$  $= \bigcap_{q \neq p} h(p,q)$ 

[Voronoi edge]  $= \{x: |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$  $\mathcal{V}(\{p,p'\})$ = rel-int( $\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')$ ) (w/o the endpts)

Let *P* be a set of points in the plane and let  $p, p', p'' \in P$ .



[*Voronoi diagram*] | p - p'' - p'' |  $| Vor(P) - subdivision of <math>\mathbb{R}^2$ geometric graph

[Voronoi cell]  $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$  $= \bigcap_{q \neq p} h(p,q)$ 

[Voronoi edge]  $= \{x: |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$  $\mathcal{V}(\{p,p'\})$ = rel-int $(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$  (w/o the endpts)

## **Computational Geometry**

Lecture 7: Voronoi Diagrams or The Post-Office Problem

> Part III: Shape and Complexity

Philipp Kindermann

Winter Semester 2020

**Theorem.** Let  $P \subset \mathbb{R}^2$  be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

**Theorem.** Let  $P \subset \mathbb{R}^2$  be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

**Proof.** 

| Theorem. | Let $P \subset \mathbb{R}^2$ be a set of <i>n</i> pts (called <i>sites</i> ).<br>If all sites are collinear, $Vor(P)$ consists of $n - 1$ parallel lines. Otherwise, $Vor(P)$ is connected and its edges are line segments or half-lines. |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proof.   |                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                           |

**Theorem.** Let  $P \subset \mathbb{R}^2$  be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

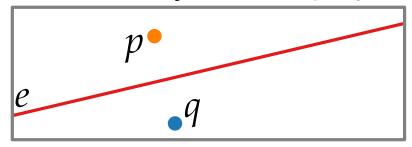
**Proof.** Assume that *P* is not collinear.

**Theorem.** Let  $P \subset \mathbb{R}^2$  be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

Proof.

Assume that *P* is not collinear.

- Assume that Vor(P) contains an edge *e* that is a full line, say, e = b(p,q).

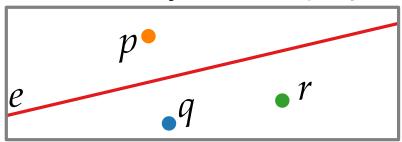


**Theorem.** Let  $P \subset \mathbb{R}^2$  be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

**Proof.** 

Assume that *P* is not collinear.

- Assume that Vor(P) contains an edge *e* that is a full line, say, e = b(p, q).



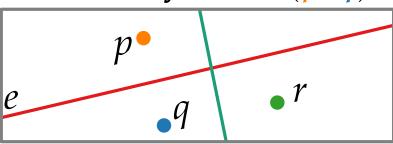
Let  $r \in P$  be not collinear with p and q.

**Theorem.** Let  $P \subset \mathbb{R}^2$  be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

Proof.

Assume that *P* is not collinear.

- Assume that Vor(P) contains an edge *e* that is a full line, say, e = b(p,q).



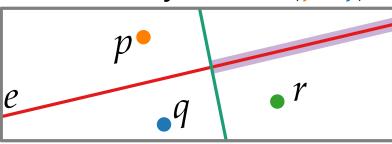
Let  $r \in P$  be not collinear with p and q. Then e' = b(q, r) is not parallel to e.

**Theorem.** Let  $P \subset \mathbb{R}^2$  be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

**Proof.** 

Assume that *P* is not collinear.

- Assume that Vor(P) contains an edge *e* that is a full line, say, e = b(p, q).



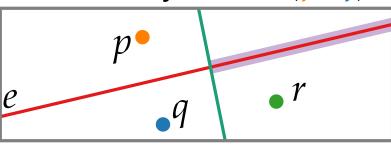
Let  $r \in P$  be not collinear with p and q. Then e' = b(q, r) is not parallel to e.  $\Rightarrow e \cap h(r, q)$  is closer to r than to p and q.

**Theorem.** Let  $P \subset \mathbb{R}^2$  be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

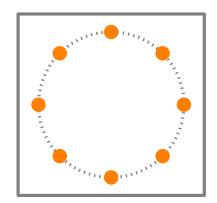
**Proof.** 

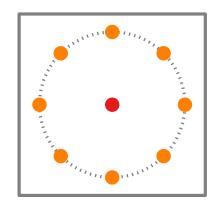
Assume that *P* is not collinear.

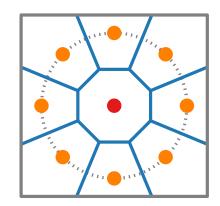
- Assume that Vor(P) contains an edge *e* that is a full line, say, e = b(p, q).



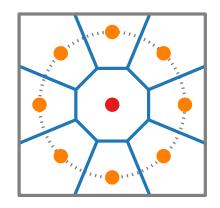
Let  $r \in P$  be not collinear with p and q. Then e' = b(q, r) is not parallel to e.  $\Rightarrow e \cap h(r, q)$  is closer to r than to p and q.  $\Rightarrow e$  is bounded on at least one side.





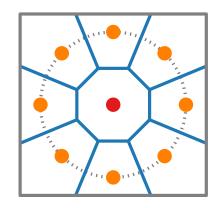


Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!



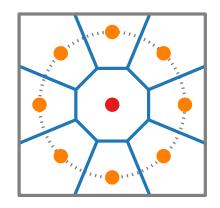
**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most vertices and edges.

Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!



**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

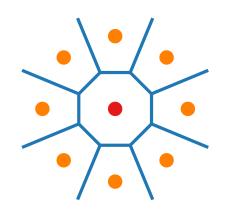
Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!



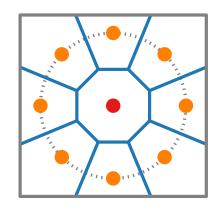
**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

**Proof.** 

Euler

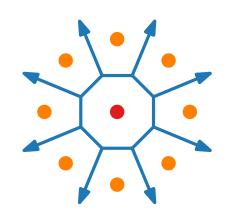


Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!

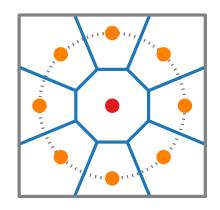


**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

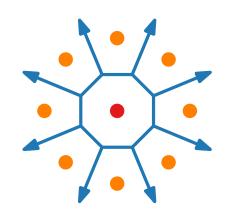
**Proof.** *Problem:* unbounded edges! Euler



Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!

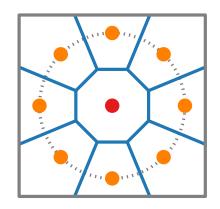


**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

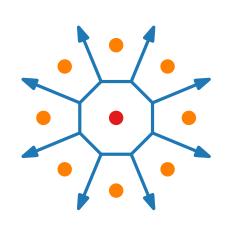


Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!

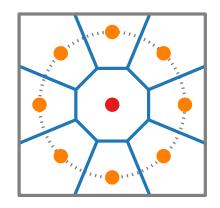
0



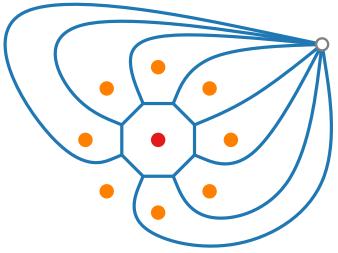
**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.



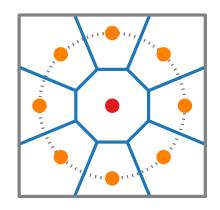
Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!



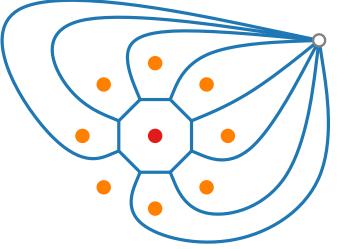
**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.



Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!

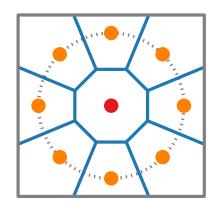


**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

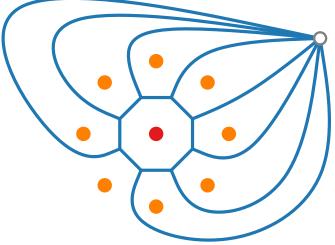


$$|F| = n$$

Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!

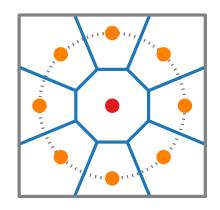


- **Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n 5 vertices and 3n 6 edges.
- **Proof.***Problem:* unbounded edges! $\Rightarrow$  can't apply Euler directly, but...



$$|F| = n \Rightarrow (|V| + 1) - |E| + n = 2$$

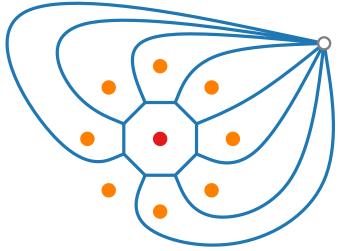
Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!



**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

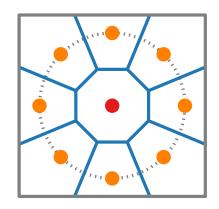
**Proof.** Prob

*Problem:* unbounded edges!  $\Rightarrow$  can't apply Euler directly, but...



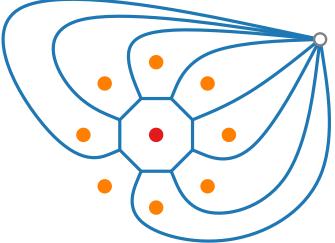
 $|F| = n \Rightarrow (|V| + 1) - |E| + n = 2$ min. degree 3

Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!



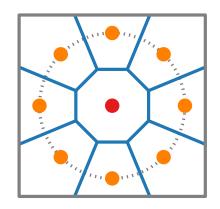
**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

**Proof.***Problem:* unbounded edges! $\Rightarrow$  can't apply Euler directly, but...



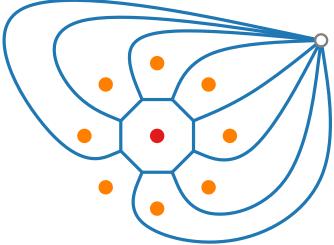
$$|F| = n \Rightarrow (|V|+1) - |E| + n = 2$$
  
min. degree 3  $\Rightarrow 2|E| \ge 3(|V|+1)$ 

Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!



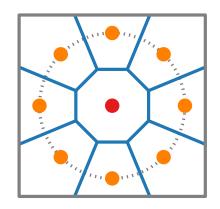
**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

**Proof.***Problem:* unbounded edges! $\Rightarrow$  can't apply Euler directly, but...



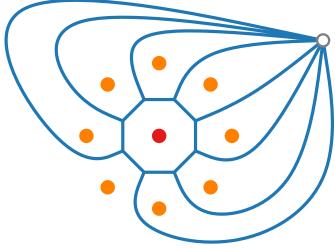
 $|F| = n \Rightarrow (|V| + 1) - |E| + n = 2$ min. degree  $3 \Rightarrow 2|E| \ge 3(|V| + 1)$  $\Rightarrow (|V| + 1) - \frac{3}{2}(|V| + 1) + n \le 2$ 

Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!



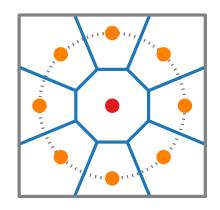
**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

**Proof.***Problem:* unbounded edges! $\Rightarrow$  can't apply Euler directly, but...



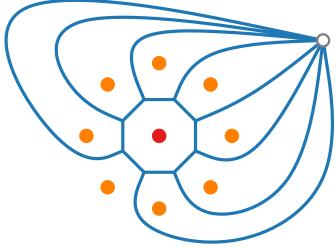
 $|F| = n \Rightarrow (|V| + 1) - |E| + n = 2$ min. degree  $3 \Rightarrow 2|E| \ge 3(|V| + 1)$  $\Rightarrow (|V| + 1) - \frac{3}{2}(|V| + 1) + n \le 2$  $\Rightarrow \frac{1}{2}(|V| + 1) \le n - 2$ 

Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!



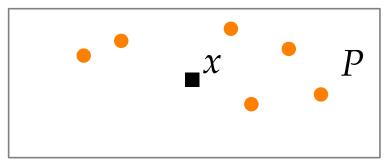
**Theorem.** Given a set  $P \subset \mathbb{R}^2$  of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

**Proof.***Problem:* unbounded edges! $\Rightarrow$  can't apply Euler directly, but...

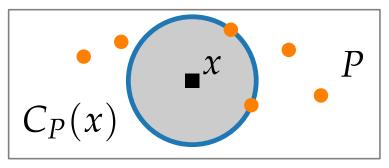


 $|F| = n \Rightarrow (|V| + 1) - |E| + n = 2$ min. degree  $3 \Rightarrow 2|E| \ge 3(|V| + 1)$  $\Rightarrow (|V| + 1) - \frac{3}{2}(|V| + 1) + n \le 2$  $\Rightarrow \frac{1}{2}(|V| + 1) \le n - 2$ 

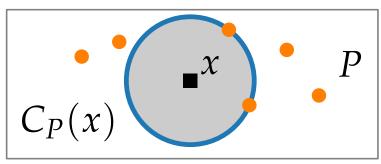
 $C_P(x) :=$  largest circle centered at x w/o sites in its interior



 $C_P(x) :=$  largest circle centered at x w/o sites in its interior

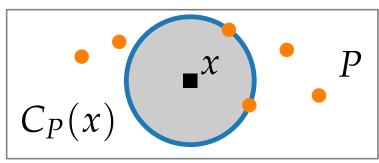


 $C_P(x) :=$  largest circle centered at x w/o sites in its interior



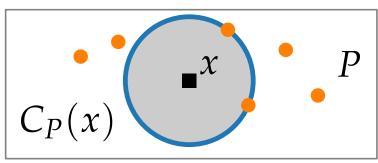
**Theorem:** (i) *x* Voronoi vtx  $\Leftrightarrow$ 

 $C_P(x) :=$  largest circle centered at x w/o sites in its interior



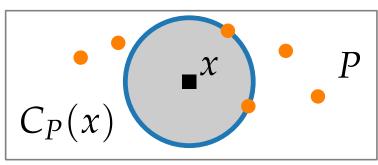
**Theorem:** (i) *x* Voronoi vtx  $\Leftrightarrow |C_P(x) \cap P| \ge 3$ 

 $C_P(x) :=$  largest circle centered at x w/o sites in its interior



**Theorem:** (i) *x* Voronoi vtx  $\Leftrightarrow |C_P(x) \cap P| \ge 3$ (ii) b(p, p') contains a Voronoi edge  $\Leftrightarrow$ 

 $C_P(x) :=$  largest circle centered at x w/o sites in its interior



**Theorem:** (i) *x* Voronoi vtx  $\Leftrightarrow |C_P(x) \cap P| \ge 3$ (ii) b(p, p') contains a Voronoi edge  $\Leftrightarrow \exists x \in b(p, p') : C_P(x) \cap P = \{p, p'\}$ 

# **Computational Geometry**

Lecture 7: Voronoi Diagrams or The Post-Office Problem

> Part IV: The Beachline

Philipp Kindermann

Winter Semester 2020

**Brute force:** 

**Brute force:** For each  $p \in P$ , compute  $\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p')$ .

#### **Brute force:** For each $p \in P$ , compute $\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p')$ .

[Lect. 2, map-overlay / line-segment alg]

# **Brute force:** For each $p \in P$ , compute $\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p')$ . [Lect. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time

**Brute force:** For each  $p \in P$ , compute  $\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p')$ .

[Lect. 2, map-overlay / line-segment alg]  $O(n \log^2 n)$  time [Lect. 4, half-plane intersection]

**Brute force:** For each  $p \in P$ , compute  $\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p')$ .

[Lect. 2, map-overlay / line-segment alg]  $O(n \log^2 n)$  time [Lect. 4, half-plane intersection]  $O(n \log n)$  time

**Brute force:** For each  $p \in P$ , compute  $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p,p')}$ .

[Lect. 2, map-overlay / line-segment alg]  $O(n \log^2 n)$  time [Lect. 4, half-plane intersection]  $O(n \log n)$  time

**Brute force:** For each  $p \in P$ , compute  $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$ .

[Lect. 2, map-overlay / line-segment alg]  $O(n \log^2 n)$  time [Lect. 4, half-plane intersection]  $O(n \log n)$  time

in total:  $O(n^2 \log n)$  time

**Brute force:** For each  $p \in P$ , compute  $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$ .

[Lect. 2, map-overlay / line-segment alg]  $O(n \log^2 n)$  time [Lect. 4, half-plane intersection]  $O(n \log n)$  time

**Brute force:** For each  $p \in P$ , compute  $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$ .

[Lect. 2, map-overlay / line-segment alg]  $O(n \log^2 n)$  time [Lect. 4, half-plane intersection]  $O(n \log n)$  time

in total:  $O(n^2 \log n)$  time – but the complexity of Vor(P) is *linear!* 

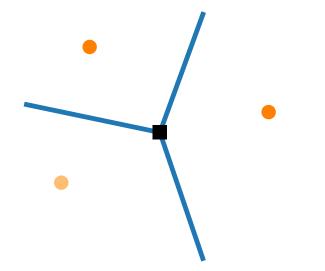
Sweep?

**Brute force:** For each  $p \in P$ , compute  $\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p')$ .

[Lect. 2, map-overlay / line-segment alg]  $O(n \log^2 n)$  time [Lect. 4, half-plane intersection]  $O(n \log n)$  time

in total:  $O(n^2 \log n)$  time – but the complexity of Vor(P) is *linear!* 

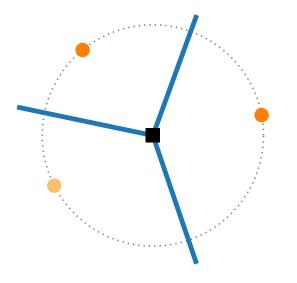
Sweep?



**Brute force:** For each  $p \in P$ , compute  $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$ .

[Lect. 2, map-overlay / line-segment alg]  $O(n \log^2 n)$  time [Lect. 4, half-plane intersection]  $O(n \log n)$  time

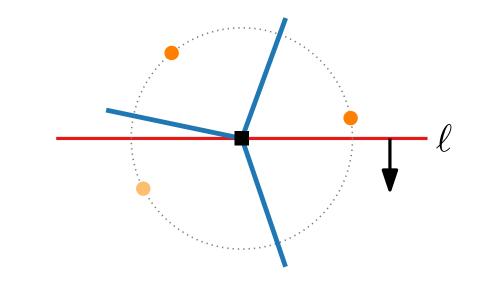




Sweep?

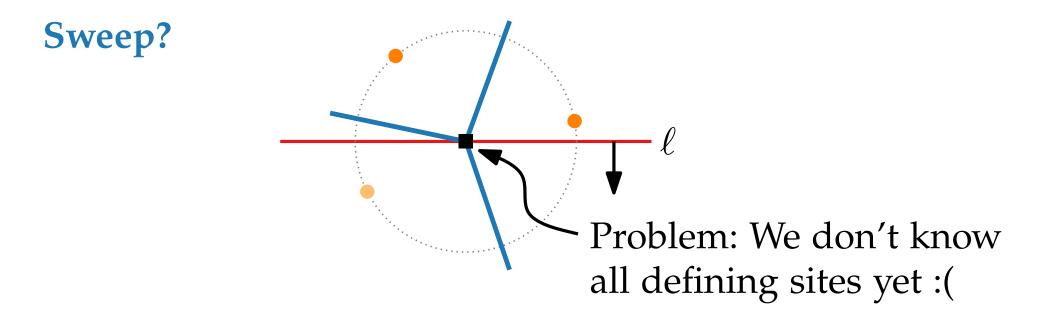
**Brute force:** For each  $p \in P$ , compute  $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$ .

[Lect. 2, map-overlay / line-segment alg]  $O(n \log^2 n)$  time [Lect. 4, half-plane intersection]  $O(n \log n)$  time



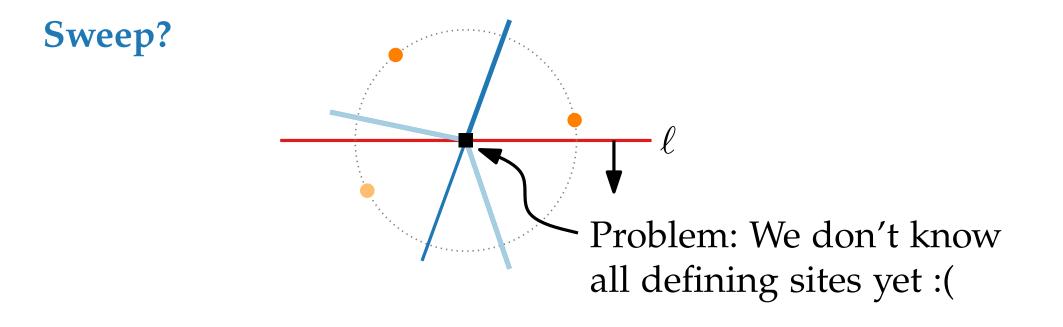
**Brute force:** For each  $p \in P$ , compute  $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$ .

[Lect. 2, map-overlay / line-segment alg]  $O(n \log^2 n)$  time [Lect. 4, half-plane intersection]  $O(n \log n)$  time



**Brute force:** For each  $p \in P$ , compute  $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$ .

[Lect. 2, map-overlay / line-segment alg]  $O(n \log^2 n)$  time [Lect. 4, half-plane intersection]  $O(n \log n)$  time





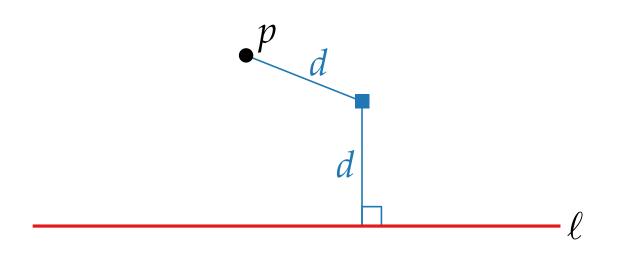


**p** 

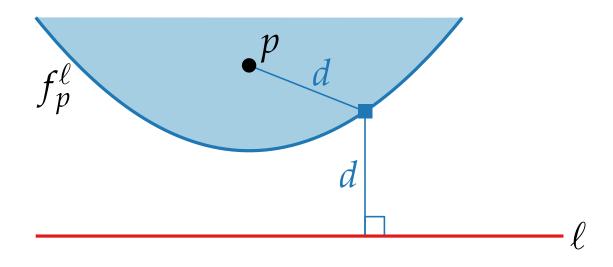
Which part of the plane above  $\ell$  is fixed by what we've seen?

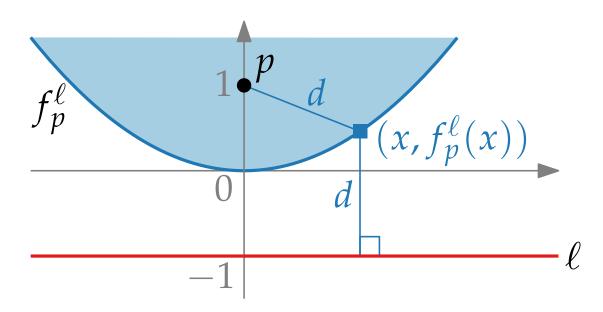
l



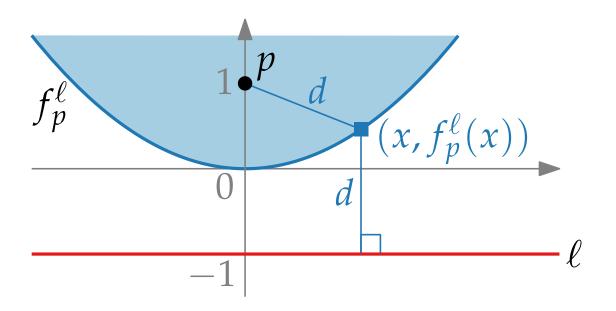






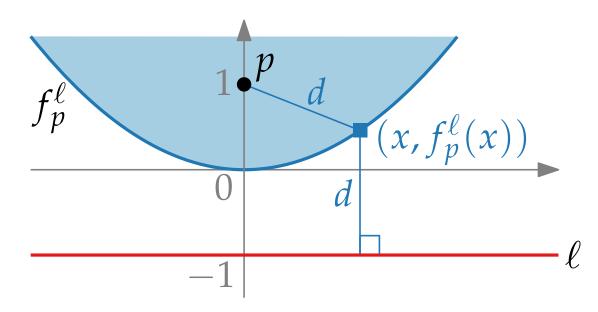


Which part of the plane above  $\ell$  is fixed by what we've seen?



**Task:** Compute  $f_p^{\ell}$  for p = (0, 1) and  $\ell : y = -1!$ 

Which part of the plane above  $\ell$  is fixed by what we've seen?

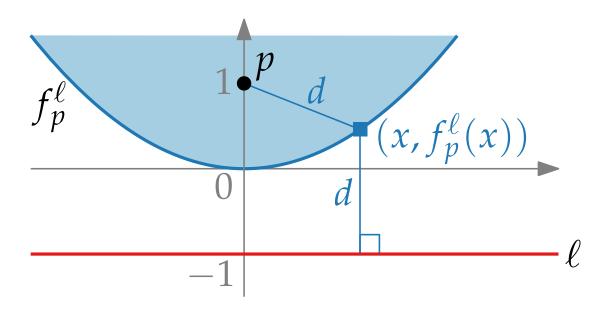


#### **Solution:**

 $f_p^{\ell}$  is the parabola with focus *p* and directrix  $\ell$ .

**Task:** Compute  $f_p^{\ell}$  for p = (0, 1) and  $\ell : y = -1!$ 

Which part of the plane above  $\ell$  is fixed by what we've seen?



#### **Solution:**

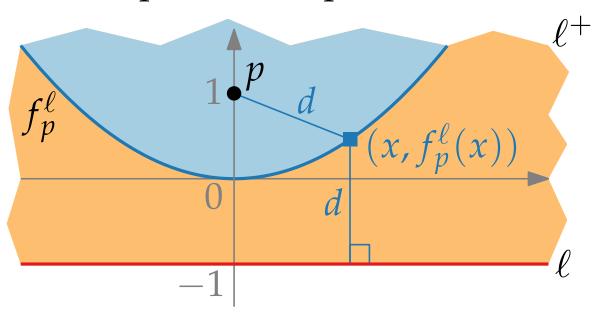
 $f_p^{\ell}$  is the parabola with focus *p* and directrix  $\ell$ .

**Task:** Compute  $f_p^{\ell}$  for p = (0, 1) and  $\ell : y = -1!$ 

**Definition.** *beachline*  $\beta \equiv$  lower envelope of  $(f_p^{\ell})_{p \in P \cap \ell^+}$ 



Which part of the plane above  $\ell$  is fixed by what we've seen?



#### **Solution:**

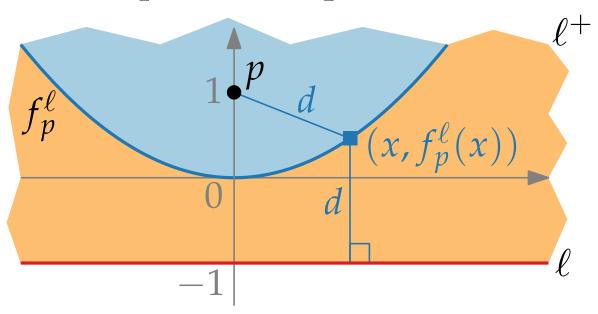
 $f_p^{\ell}$  is the parabola with focus *p* and directrix  $\ell$ .

**Task:** Compute  $f_p^{\ell}$  for p = (0, 1) and  $\ell : y = -1!$ 

**Definition.** *beachline*  $\beta \equiv$  lower envelope of  $(f_p^{\ell})_{p \in P \cap \ell^+}$ 



Which part of the plane above  $\ell$  is fixed by what we've seen?



#### **Solution:**

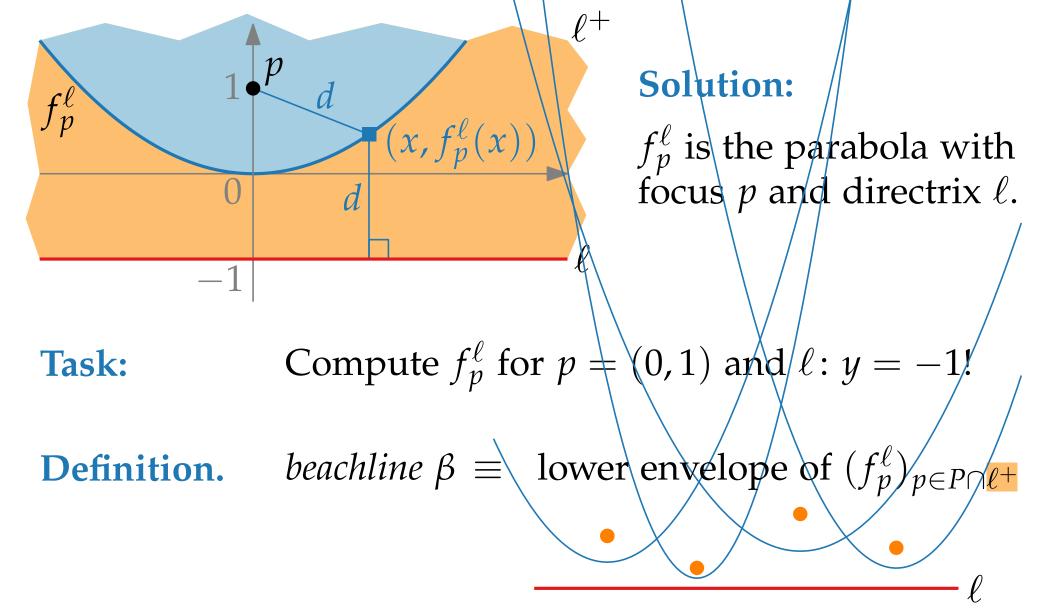
 $f_p^{\ell}$  is the parabola with focus *p* and directrix  $\ell$ .

**Task:** Compute  $f_p^{\ell}$  for p = (0, 1) and  $\ell : y = -1!$ 

**Definition.** beachline  $\beta \equiv$  lower envelope of  $(f_p^{\ell})_{p \in P \cap \ell^+}$ 

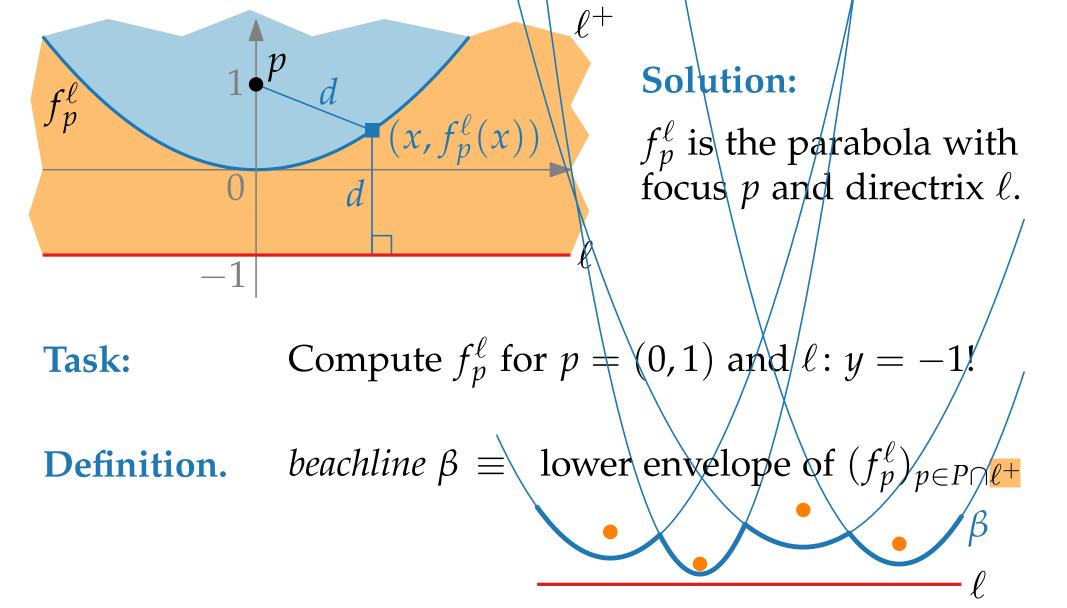
# Sweep?

Which part of the plane above  $\ell$  is fixed by what we've seen?



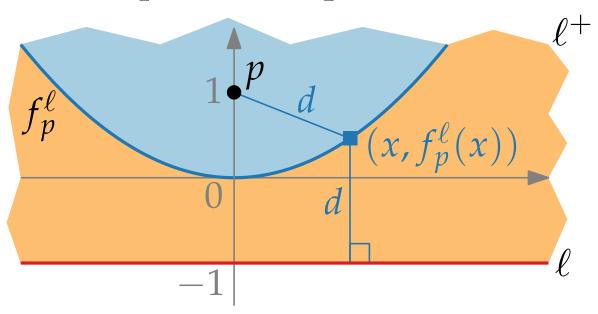
# Sweep?

Which part of the plane above  $\ell$  is fixed by what we've seen?





Which part of the plane above  $\ell$  is fixed by what we've seen?



#### **Solution:**

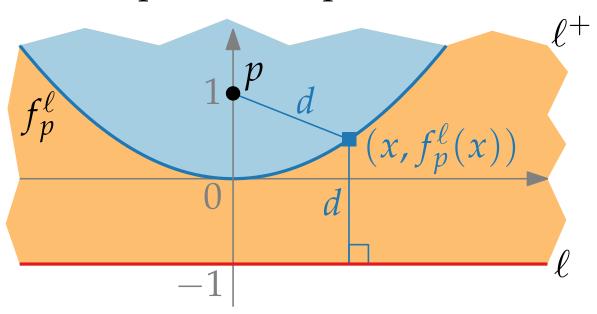
 $f_p^{\ell}$  is the parabola with focus *p* and directrix  $\ell$ .

**Task:** Compute  $f_p^{\ell}$  for p = (0, 1) and  $\ell : y = -1!$ 

**Definition.** *beachline*  $\beta \equiv$  lower envelope of  $(f_p^{\ell})_{p \in P \cap \ell^+}$ 



Which part of the plane above  $\ell$  is fixed by what we've seen?



#### **Solution:**

 $f_p^{\ell}$  is the parabola with focus *p* and directrix  $\ell$ .

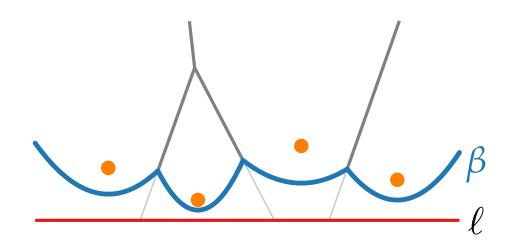
**Task:** Compute  $f_p^{\ell}$  for p = (0, 1) and  $\ell : y = -1!$ 

**Definition.** *beachline*  $\beta \equiv$  lower envelope of  $(f_p^{\ell})_{p \in P \cap \ell^+}$ **Observation.**  $\beta$  is *x*-monotone.

**Question:** What does  $\beta$  have to do with Vor(*P*)?

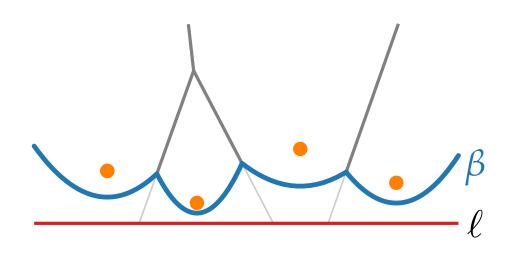


#### **Question:** What does $\beta$ have to do with Vor(*P*)?



**Question:** What does  $\beta$  have to do with Vor(*P*)?

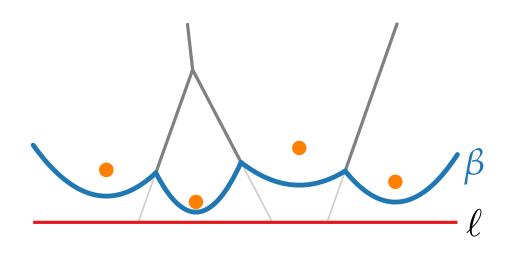
**Answer:** "Breakpoints" of  $\beta$  trace out the Voronoi edges!



**Question:** What does  $\beta$  have to do with Vor(*P*)?

**Answer:** "Breakpoints" of  $\beta$  trace out the Voronoi edges!

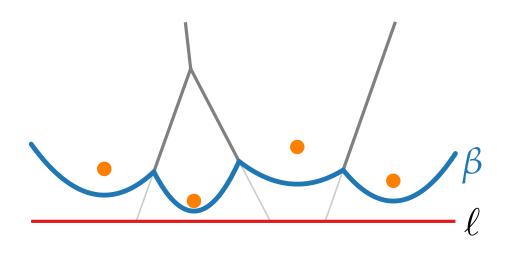
**Lemma.** New arcs on  $\beta$  only appear through *site events* 



**Question:** What does  $\beta$  have to do with Vor(*P*)?

**Answer:** "Breakpoints" of  $\beta$  trace out the Voronoi edges!

**Lemma.** New arcs on  $\beta$  only appear through *site events,* that is, whenever  $\ell$  hits a new site.

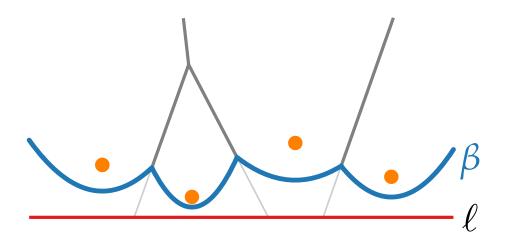


**Question:** What does  $\beta$  have to do with Vor(*P*)?

**Answer:** "Breakpoints" of  $\beta$  trace out the Voronoi edges!

**Lemma.** New arcs on  $\beta$  only appear through *site events,* that is, whenever  $\ell$  hits a new site.

**Corollary.**  $\beta$  consists of at most 2n - 1 arcs.



**Question:** What does  $\beta$  have to do with Vor(*P*)?

**Answer:** "Breakpoints" of  $\beta$  trace out the Voronoi edges!

**Lemma.** New arcs on  $\beta$  only appear through *site events,* that is, whenever  $\ell$  hits a new site.

**Corollary.**  $\beta$  consists of at most 2n - 1 arcs.

**Definition.** *Circle event:*  $\ell$  reaches lowest pt of a circle through three sites above  $\ell$  whose arcs are consecutive on  $\beta$ .

**Question:** What does  $\beta$  have to do with Vor(*P*)?

**Answer:** "Breakpoints" of  $\beta$  trace out the Voronoi edges!

**Lemma.** New arcs on  $\beta$  only appear through *site events,* that is, whenever  $\ell$  hits a new site.

**Corollary.**  $\beta$  consists of at most 2n - 1 arcs.

**Definition.** *Circle event:*  $\ell$  reaches lowest pt of a circle through three sites above  $\ell$  whose arcs are consecutive on  $\beta$ .

**Lemma.** Arcs disappear from  $\beta$  only at circle events.

**Question:** What does  $\beta$  have to do with Vor(*P*)?

**Answer:** "Breakpoints" of  $\beta$  trace out the Voronoi edges!

**Lemma.** New arcs on  $\beta$  only appear through *site events,* that is, whenever  $\ell$  hits a new site.

**Corollary.**  $\beta$  consists of at most 2n - 1 arcs.

**Definition.** *Circle event:*  $\ell$  reaches lowest pt of a circle through three sites above  $\ell$  whose arcs are consecutive on  $\beta$ .

**Lemma.** Arcs disappear from  $\beta$  only at circle events.

Lemma. The Voronoi vtc correspond 1:1 to circle events.

# **Computational Geometry**

Lecture 7: Voronoi Diagrams or The Post-Office Problem

#### Part V: Fortune's Sweep

Philipp Kindermann

Winter Semester 2020

#### VoronoiDiagram( $P \subset \mathbb{R}^2$ ) $\mathcal{Q} \leftarrow$ new PriorityQueue(*P*) // site events sorted by *y*-coord.

#### VoronoiDiagram( $P \subset \mathbb{R}^2$ )

 $\mathcal{Q} \leftarrow$  new PriorityQueue(*P*) // site events sorted by *y*-coord.  $\mathcal{T} \leftarrow$  new BalancedBinarySearchTree() // sweep status ( $\beta$ )

#### VoronoiDiagram( $P \subset \mathbb{R}^2$ )

 $\mathcal{Q} \leftarrow$  new PriorityQueue(*P*) // site events sorted by *y*-coord.  $\mathcal{T} \leftarrow$  new BalancedBinarySearchTree() // sweep status ( $\beta$ )  $\mathcal{D} \leftarrow$  new DCEL() // to-be Vor(*P*)

### VoronoiDiagram( $P \subset \mathbb{R}^2$ )

 $Q \leftarrow$  new PriorityQueue(P) // site events sorted by *y*-coord.  $\mathcal{T} \leftarrow$  new BalancedBinarySearchTree() // sweep status ( $\beta$ )  $\mathcal{D} \leftarrow$  new DCEL() // to-be Vor(P) while not Q.empty() do

VoronoiDiagram( $P \subset \mathbb{R}^2$ )  $\mathcal{Q} \leftarrow$  new PriorityQueue(P) // site events sorted by *y*-coord.  $\mathcal{T} \leftarrow$  new BalancedBinarySearchTree() // sweep status ( $\beta$ )  $\mathcal{D} \leftarrow$  new DCEL() // to-be Vor(P) while not  $\mathcal{Q}$ .empty() do  $p \leftarrow \mathcal{Q}$ .ExtractMax()

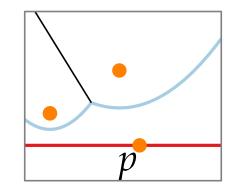
VoronoiDiagram( $P \subset \mathbb{R}^2$ )  $\mathcal{Q} \leftarrow$  new PriorityQueue(P) // site events sorted by *y*-coord.  $\mathcal{T} \leftarrow$  new BalancedBinarySearchTree() // sweep status ( $\beta$ )  $\mathcal{D} \leftarrow$  new DCEL() // to-be Vor(P) while not  $\mathcal{Q}$ .empty() do  $p \leftarrow \mathcal{Q}$ .ExtractMax() if *p* site event then | HandleSiteEvent(*p*)

VoronoiDiagram( $P \subset \mathbb{R}^2$ )  $\mathcal{Q} \leftarrow$  new PriorityQueue(P) // site events sorted by y-coord.  $\mathcal{T} \leftarrow$  new BalancedBinarySearchTree() // sweep status ( $\beta$ )  $\mathcal{D} \leftarrow \text{new DCEL}()$  // to-be Vor(P) while not Q.empty() do  $p \leftarrow Q$ .ExtractMax() if *p* site event then HandleSiteEvent(p) else  $\alpha \leftarrow \operatorname{arc} \operatorname{on} \beta$  that will disappear HandleCircleEvent( $\alpha$ )

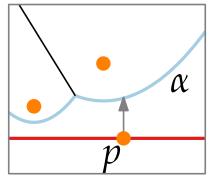
```
VoronoiDiagram(P \subset \mathbb{R}^2)
 \mathcal{Q} \leftarrow new PriorityQueue(P) // site events sorted by y-coord.
 \mathcal{T} \leftarrow new BalancedBinarySearchTree() // sweep status (\beta)
 \mathcal{D} \leftarrow \text{new DCEL}() // to-be Vor(P)
 while not Q.empty() do
      p \leftarrow Q.ExtractMax()
     if p site event then
         HandleSiteEvent(p)
      else
          \alpha \leftarrow \operatorname{arc} \operatorname{on} \beta that will disappear
          HandleCircleEvent(\alpha)
 treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of Vor(P))
 return \mathcal{D}
```

```
VoronoiDiagram(P \subset \mathbb{R}^2)
 \mathcal{Q} \leftarrow new PriorityQueue(P) // site events sorted by y-coord.
 \mathcal{T} \leftarrow new BalancedBinarySearchTree() // sweep status (\beta)
 \mathcal{D} \leftarrow \text{new DCEL}() // to-be Vor(P)
 while not Q.empty() do
     p \leftarrow Q.ExtractMax()
     if p site event then
         HandleSiteEvent(p)
     else
          \alpha \leftarrow \text{arc on } \beta that will disappear
          HandleCircleEvent(\alpha)
 treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of Vor(P))
 return \mathcal{D}
```

HandleSiteEvent(point *p*)



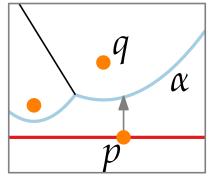
HandleSiteEvent(point p)



Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event.

#### HandleCircleEvent(arc *α*)

HandleSiteEvent(point p)



Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event.

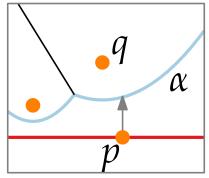
Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . Let  $\alpha_1$  be the new arc of p.

HandleSiteEvent(point p)

Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event.

Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . Let  $\alpha_1$  be the new arc of p.

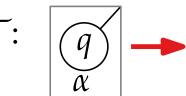
In 
$$\mathcal{T}$$
:  $\overbrace{\alpha}^{q}$ 

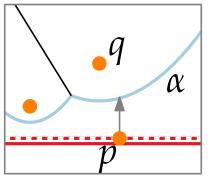


HandleSiteEvent(point p)

Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event.

Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . In  $\mathcal{T}$ : Let  $\alpha_1$  be the new arc of p.



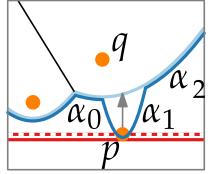


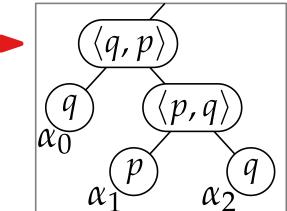
HandleSiteEvent(point p)

Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event.

In  $\mathcal{T}$ :

Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . Let  $\alpha_1$  be the new arc of p.





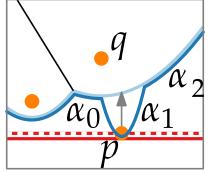
HandleCircleEvent(arc *α*)

HandleSiteEvent(point p)

Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event. break-

In  $\mathcal{T}$ :

Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . Let  $\alpha_1$  be the new arc of p.



(q, p

points

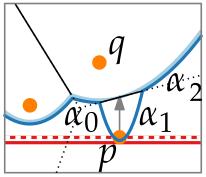
(p,q)

HandleSiteEvent(point p)

Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event. **break**-

- Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . In  $\mathcal{T}$ : Let  $\alpha_1$  be the new arc of p.
- Add Vor-edges  $\langle q, p \rangle$  and  $\langle p, q \rangle$  to DCEL.

HandleCircleEvent(arc  $\alpha$ )



(q, p

points

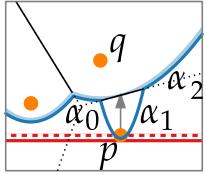
(p,q)

HandleSiteEvent(point p)

Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event. break-

- Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . In  $\mathcal{T}$ : Let  $\alpha_1$  be the new arc of p.
- Add Vor-edges  $\langle q, p \rangle$  and  $\langle p, q \rangle$  to DCEL.
- Check  $\langle \cdot, \alpha_0, \alpha_1 \rangle$  and  $\langle \alpha_1, \alpha_2, \cdot \rangle$  for circle events.

HandleCircleEvent(arc  $\alpha$ )



(q, p

points

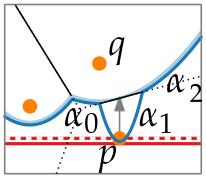
(p,q)

HandleSiteEvent(point p)

Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event. **break**-

- Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . In  $\mathcal{T}$ : Let  $\alpha_1$  be the new arc of p.
- $q \rightarrow \alpha$
- Add Vor-edges  $\langle q, p \rangle$  and  $\langle p, q \rangle$  to DCEL.
- Check  $\langle \cdot, \alpha_0, \alpha_1 \rangle$  and  $\langle \alpha_1, \alpha_2, \cdot \rangle$  for circle events.

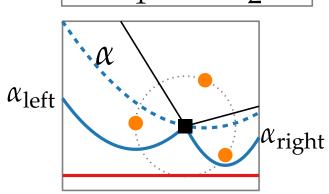
HandleCircleEvent(arc  $\alpha$ )



(q, p

points

p,q



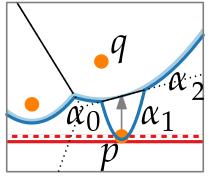
HandleSiteEvent(point p)

Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event. **break**-

- Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . In  $\mathcal{T}$ : Let  $\alpha_1$  be the new arc of p.
- Add Vor-edges  $\langle q, p \rangle$  and  $\langle p, q \rangle$  to DCEL.
- Check  $\langle \cdot, \alpha_0, \alpha_1 \rangle$  and  $\langle \alpha_1, \alpha_2, \cdot \rangle$  for circle events.

HandleCircleEvent(arc  $\alpha$ )

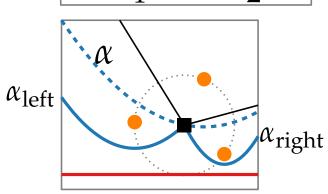
**\mathcal{T}**.delete( $\alpha$ ); update breakpts



(q, p

points

p,q



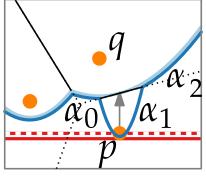
HandleSiteEvent(point p)

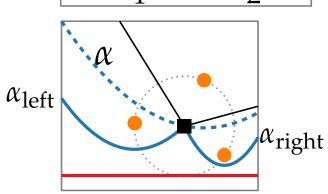
Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event.

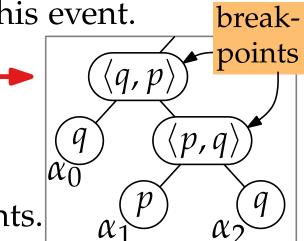
- Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . In  $\mathcal{T}$ : Let  $\alpha_1$  be the new arc of p.
- Add Vor-edges  $\langle q, p \rangle$  and  $\langle p, q \rangle$  to DCEL.
- Check  $\langle \cdot, \alpha_0, \alpha_1 \rangle$  and  $\langle \alpha_1, \alpha_2, \cdot \rangle$  for circle events.

HandleCircleEvent(arc  $\alpha$ )

- $\mathcal{T}$ .delete( $\alpha$ ); update breakpts
- Delete all circle events involving  $\alpha$  from Q.







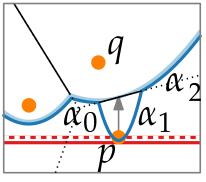
HandleSiteEvent(point p)

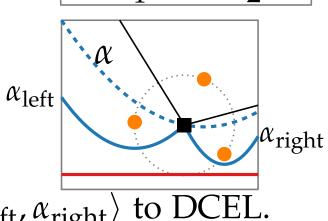
Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event.

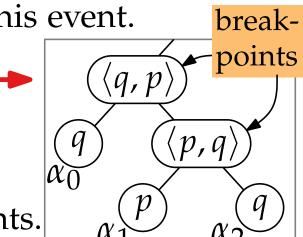
- Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . In  $\mathcal{T}$ : Let  $\alpha_1$  be the new arc of p.
- Add Vor-edges  $\langle q, p \rangle$  and  $\langle p, q \rangle$  to DCEL.
- Check  $\langle \cdot, \alpha_0, \alpha_1 \rangle$  and  $\langle \alpha_1, \alpha_2, \cdot \rangle$  for circle events.

HandleCircleEvent(arc  $\alpha$ )

- $\mathcal{T}$ .delete( $\alpha$ ); update breakpts
- Delete all circle events involving  $\alpha$  from Q.
- Add Vor-vtx  $\alpha_{\text{left}} \cap \alpha_{\text{right}}$  and Vor-edge  $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$  to DCEL.







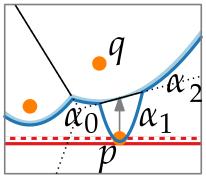
HandleSiteEvent(point p)

Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event. **break**-

- Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . In  $\mathcal{T}$ : Let  $\alpha_1$  be the new arc of p.
- Add Vor-edges  $\langle q, p \rangle$  and  $\langle p, q \rangle$  to DCEL.
- Check  $\langle \cdot, \alpha_0, \alpha_1 \rangle$  and  $\langle \alpha_1, \alpha_2, \cdot \rangle$  for circle events.

HandleCircleEvent(arc  $\alpha$ )

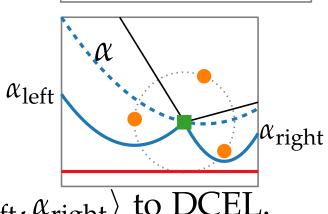
- $\mathcal{T}$ .delete( $\alpha$ ); update breakpts
- Delete all circle events involving  $\alpha$  from Q.
- Add Vor-vtx  $\alpha_{\text{left}} \cap \alpha_{\text{right}}$  and Vor-edge  $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$  to DCEL.

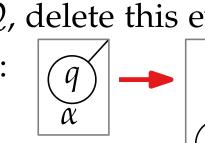


(q, p

points

*p*, *q* 





HandleSiteEvent(point p)

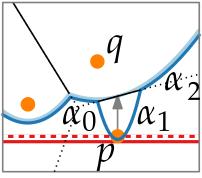
Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event. **break**-

- Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . In  $\mathcal{T}$ : Let  $\alpha_1$  be the new arc of p.
- Add Vor-edges  $\langle q, p \rangle$  and  $\langle p, q \rangle$  to DCEL.
- Check  $\langle \cdot, \alpha_0, \alpha_1 \rangle$  and  $\langle \alpha_1, \alpha_2, \cdot \rangle$  for circle events.

HandleCircleEvent(arc  $\alpha$ )

- $\mathcal{T}$ .delete( $\alpha$ ); update breakpts
- Delete all circle events involving  $\alpha$  from Q.

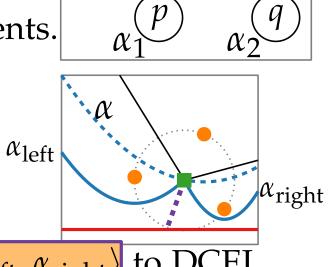
Add Vor-vtx  $\alpha_{\text{left}} \cap \alpha_{\text{right}}$  and Vor-edge  $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$  to DCEL.



(q, p

points

p,q



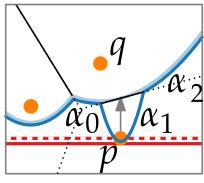
HandleSiteEvent(point p)

Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event. **break**-

- Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . In  $\mathcal{T}$ : Let  $\alpha_1$  be the new arc of p.
- Add Vor-edges  $\langle q, p \rangle$  and  $\langle p, q \rangle$  to DCEL.
- Check  $\langle \cdot, \alpha_0, \alpha_1 \rangle$  and  $\langle \alpha_1, \alpha_2, \cdot \rangle$  for circle events.

#### HandleCircleEvent(arc $\alpha$ )

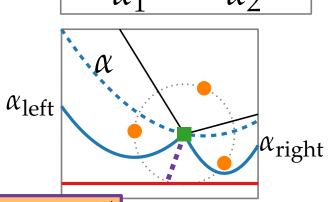
- **\mathcal{T}**.delete( $\alpha$ ); update breakpts
- Delete all circle events involving  $\alpha$  from Q.
- Add Vor-vtx  $\alpha_{\text{left}} \cap \alpha_{\text{right}}$  and Vor-edge  $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$  to DCEL. Check  $\langle \cdot, \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$  and  $\langle \alpha_{\text{left}}, \alpha_{\text{right}}, \cdot \rangle$  for circle events.



(q, p

points

[p,q]



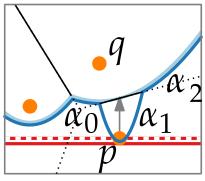
HandleSiteEvent(point p)

Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event. **break**-

- Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . In  $\mathcal{T}$ : Let  $\alpha_1$  be the new arc of p.
- Add Vor-edges  $\langle q, p \rangle$  and  $\langle p, q \rangle$  to DCEL.
- Check  $\langle \cdot, \alpha_0, \alpha_1 \rangle$  and  $\langle \alpha_1, \alpha_2, \cdot \rangle$  for circle events.

#### HandleCircleEvent(arc $\alpha$ )

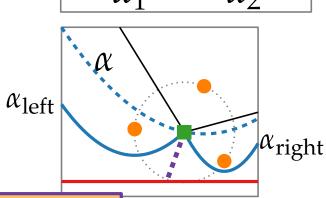
- $\mathcal{T}$ .delete( $\alpha$ ); update breakpts
- Delete all circle events involving  $\alpha$  from Q.
- Add Vor-vtx  $\alpha_{\text{left}} \cap \alpha_{\text{right}}$  and Vor-edge  $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$  to DCEL.
  Check  $\langle \cdot, \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$  and  $\langle \alpha_{\text{left}}, \alpha_{\text{right}}, \cdot \rangle$  for circle events. **Running time?**

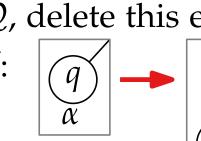


(q, p

points

[p,q]





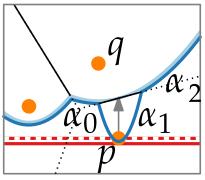
HandleSiteEvent(point p)

Search in  $\mathcal{T}$  for the arc  $\alpha$  vertically above p. If  $\alpha$  has pointer to circle event in  $\mathcal{Q}$ , delete this event. **break**-

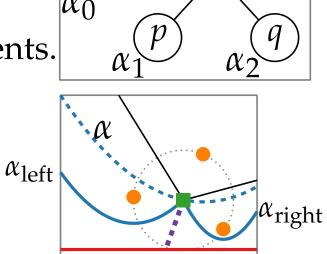
- Split  $\alpha$  into  $\alpha_0$  and  $\alpha_2$ . In  $\mathcal{T}$ : Let  $\alpha_1$  be the new arc of p.
  - Add Vor-edges  $\langle q, p \rangle$  and  $\langle p, q \rangle$  to DCEL.
- Check  $\langle \cdot, \alpha_0, \alpha_1 \rangle$  and  $\langle \alpha_1, \alpha_2, \cdot \rangle$  for circle events.

#### HandleCircleEvent(arc $\alpha$ )

- **\mathcal{T}**.delete( $\alpha$ ); update breakpts
- Delete all circle events involving  $\alpha$  from Q.
- Add Vor-vtx  $\alpha_{\text{left}} \cap \alpha_{\text{right}}$  and Vor-edge  $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$  to DCEL. Check  $\langle \cdot, \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$  and  $\langle \alpha_{\text{left}}, \alpha_{\text{right}}, \cdot \rangle$  for circle events. **Running time?**  $O(\log n)$  per event...

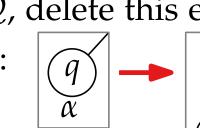


(q, p



points

p,q



## Running Time?

```
VoronoiDiagram(P \subset \mathbb{R}^2)
 \mathcal{Q} \leftarrow new PriorityQueue(P) // site events sorted by y-coord.
 \mathcal{T} \leftarrow new BalancedBinarySearchTree() // sweep status (\beta)
 \mathcal{D} \leftarrow \text{new DCEL}() // to-be Vor(P)
 while not Q.empty() do
      p \leftarrow Q.ExtractMax()
     if p site event then
         HandleSiteEvent(p)
      else
          \alpha \leftarrow \operatorname{arc} \operatorname{on} \beta that will disappear
          HandleCircleEvent(\alpha)
 treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of Vor(P))
 return \mathcal{D}
```

## Running Time?

VoronoiDiagram( $P \subset \mathbb{R}^2$ )  $\mathcal{Q} \leftarrow$  new PriorityQueue(P) // site events sorted by y-coord.  $\mathcal{T} \leftarrow$  new BalancedBinarySearchTree() // sweep status ( $\beta$ )  $\mathcal{D} \leftarrow \text{new DCEL}()$  // to-be Vor(P) while not Q.empty() do  $p \leftarrow Q$ .ExtractMax() if *p* site event then HandleSiteEvent(*p*) exactly *n* such events else  $\alpha \leftarrow \operatorname{arc} \operatorname{on} \beta$  that will disappear HandleCircleEvent( $\alpha$ ) treat remaining int. nodes of  $\mathcal{T}$  ( $\equiv$  unbnd. edges of Vor(P)) return  $\mathcal{D}$ 

## Running Time?

VoronoiDiagram( $P \subset \mathbb{R}^2$ )  $\mathcal{Q} \leftarrow$  new PriorityQueue(P) // site events sorted by y-coord.  $\mathcal{T} \leftarrow$  new BalancedBinarySearchTree() // sweep status ( $\beta$ )  $\mathcal{D} \leftarrow \text{new DCEL}()$  // to-be Vor(P) while not Q.empty() do  $p \leftarrow Q$ .ExtractMax() if *p* site event then HandleSiteEvent(*p*) exactly *n* such events else  $\alpha \leftarrow \text{arc on } \beta$  that will disappear HandleCircleEvent( $\alpha$ ) at most 2n - 5 such events treat remaining int. nodes of  $\mathcal{T}$  ( $\equiv$  unbnd. edges of Vor(P)) return  $\mathcal{D}$ 

### Summary

# **Theorem.** Given a set *P* of *n* pts in the plane, Fortune's sweep computes Vor(P) in $O(n \log n)$ time and O(n) space.

### Summary

# **Theorem.** Given a set *P* of *n* pts in the plane, Fortune's sweep computes Vor(P) in $O(n \log n)$ time and O(n) space.



Steven Fortune Bell Labs

Steven Fortune. A sweepline algorithm for Voronoi diagrams. *Proc.* 2nd Annual ACM Symposium on Computational Geometry. Yorktown Heights, NY, pp. 313–322. 1986.