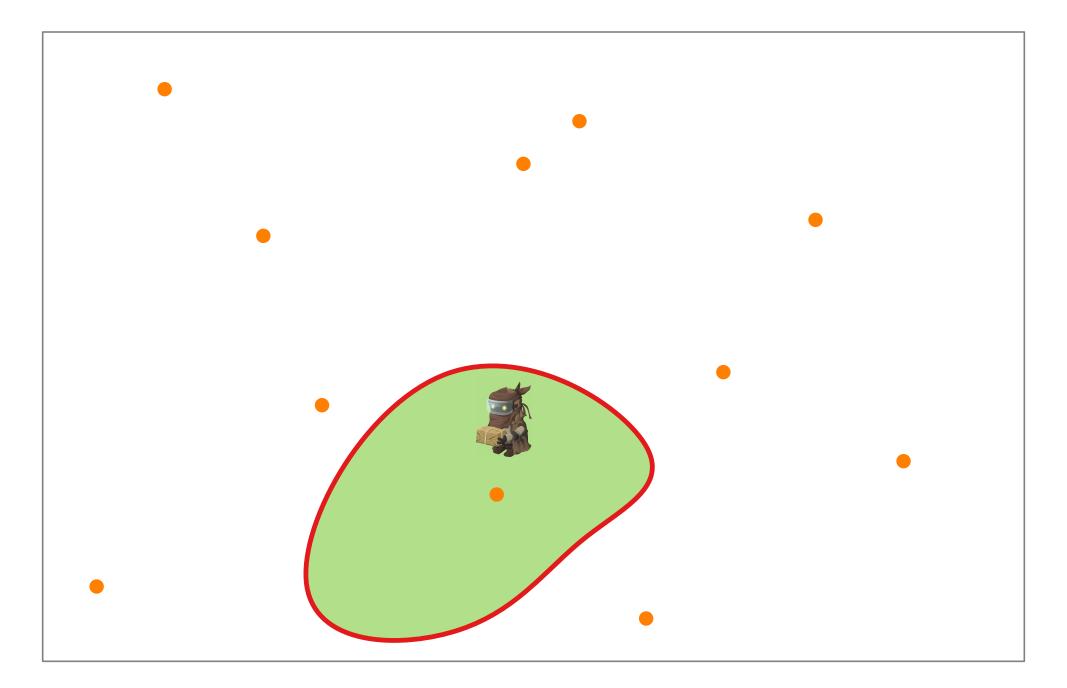
Lecture 7: Voronoi Diagrams or The Post-Office Problem

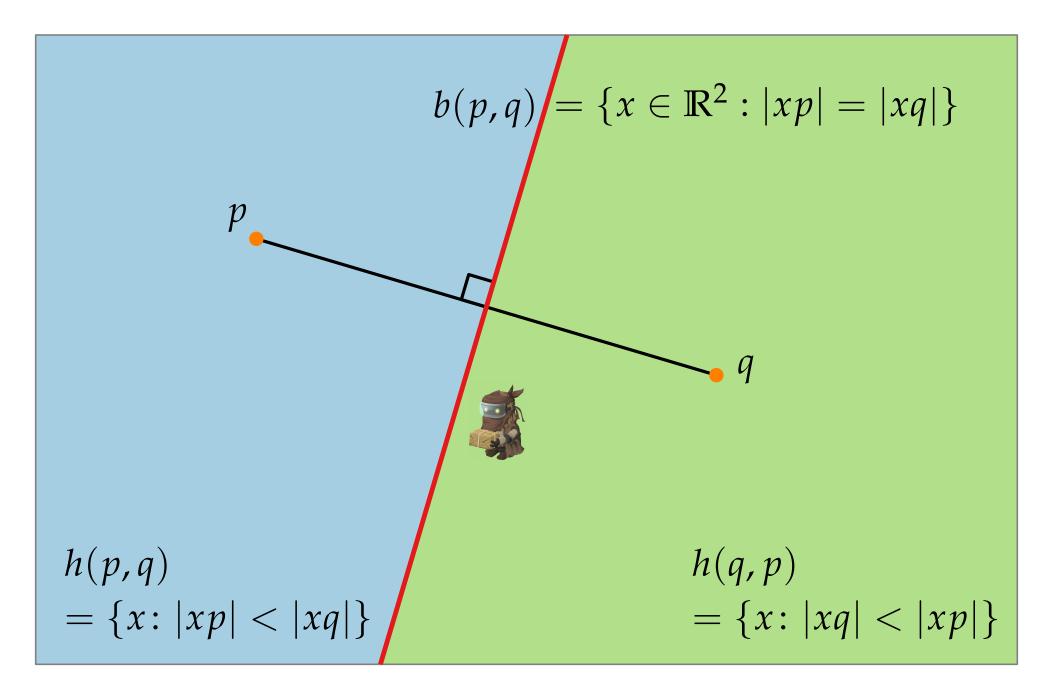
Part I: The Post-Office Problem

Philipp Kindermann

The Post-Office Problem



The Post-Office Problem



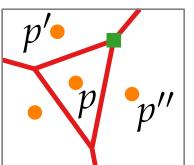
Lecture 7: Voronoi Diagrams or The Post-Office Problem

Part II: The Voronoi Diagram

Philipp Kindermann

The Voronoi Diagram

Let *P* be a set of points in the plane and let $p, p', p'' \in P$.



[*Voronoi diagram*] | p - p'' - p'' | $| Vor(P) - subdivision of <math>\mathbb{R}^2$ geometric graph

[Voronoi cell] $\mathcal{V}(\{p\}) = \mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ $= \bigcap_{q \neq p} h(p,q)$

[Voronoi edge] $= \{x: |xp| = |xp'| \text{ and } |xp| < |xq| \quad \forall q \neq p, p'\}$ $\mathcal{V}(\{p,p'\})$ = rel-int $(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$ (w/o the endpts)

[Voronoi vertex] $\mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'')$ $= \{x: |xp| = |xp'| = |xp''| \text{ and } |xp| \leq |xq| \quad \forall q\}$

Lecture 7: Voronoi Diagrams or The Post-Office Problem

> Part III: Shape and Complexity

Philipp Kindermann

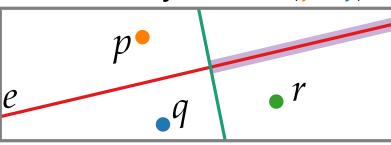
Overall Shape of Vor(P)

Theorem. Let $P \subset \mathbb{R}^2$ be a set of *n* pts (called *sites*). If all sites are collinear, Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected and its edges are line segments or half-lines.

Proof.

Assume that *P* is not collinear.

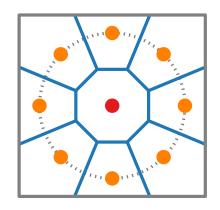
- Assume that Vor(P) contains an edge *e* that is a full line, say, e = b(p, q).



Let $r \in P$ be not collinear with p and q. Then e' = b(q, r) is not parallel to e. $\Rightarrow e \cap h(r, q)$ is closer to r than to p and q. $\Rightarrow e$ is bounded on at least one side.

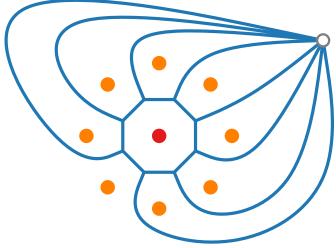
Complexity

Task:Construct a set P of sitessuch that Vor(P) has a cell oflinear complexity!



Theorem. Given a set $P \subset \mathbb{R}^2$ of *n* sites, Vor(P) consists of at most 2n - 5 vertices and 3n - 6 edges.

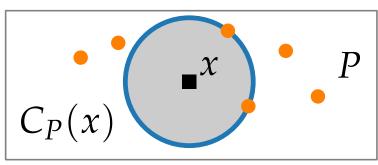
Proof.*Problem:* unbounded edges! \Rightarrow can't apply Euler directly, but...



 $|F| = n \Rightarrow (|V| + 1) - |E| + n = 2$ min. degree $3 \Rightarrow 2|E| \ge 3(|V| + 1)$ $\Rightarrow (|V| + 1) - \frac{3}{2}(|V| + 1) + n \le 2$ $\Rightarrow \frac{1}{2}(|V| + 1) \le n - 2$

Characterization of Voronoi vtc and edges

 $C_P(x) :=$ largest circle centered at x w/o sites in its interior



Theorem: (i) *x* Voronoi vtx $\Leftrightarrow |C_P(x) \cap P| \ge 3$ (ii) b(p, p') contains a Voronoi edge $\Leftrightarrow \exists x \in b(p, p') : C_P(x) \cap P = \{p, p'\}$

Lecture 7: Voronoi Diagrams or The Post-Office Problem

> Part IV: The Beachline

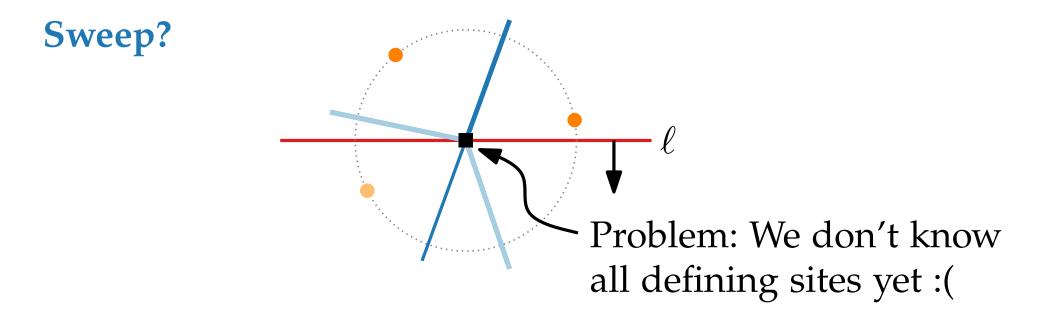
Philipp Kindermann

Computation

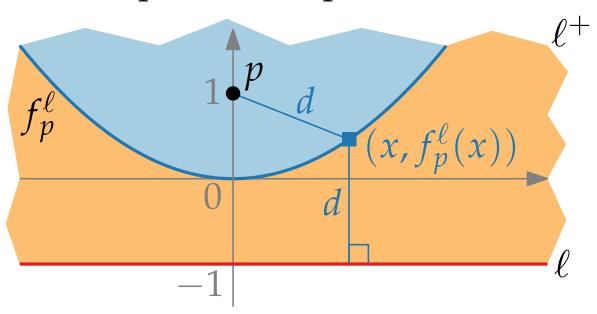
Brute force: For each $p \in P$, compute $\mathcal{V}(p) = \bigcap_{p' \neq p} \underline{h(p, p')}$.

[Lect. 2, map-overlay / line-segment alg] $O(n \log^2 n)$ time [Lect. 4, half-plane intersection] $O(n \log n)$ time

in total: $O(n^2 \log n)$ time – but the complexity of Vor(P) is *linear!*



Which part of the plane above ℓ is fixed by what we've seen?



Solution:

 f_p^{ℓ} is the parabola with focus *p* and directrix ℓ .

Task: Compute f_p^{ℓ} for p = (0, 1) and $\ell : y = -1!$

Definition. *beachline* $\beta \equiv$ lower envelope of $(f_p^{\ell})_{p \in P \cap \ell^+}$ **Observation.** β is *x*-monotone.

The Beachline β

Question: What does β have to do with Vor(*P*)?

Answer: "Breakpoints" of β trace out the Voronoi edges!

Lemma. New arcs on β only appear through *site events,* that is, whenever ℓ hits a new site.

Corollary. β consists of at most 2n - 1 arcs.

Definition. *Circle event:* ℓ reaches lowest pt of a circle through three sites above ℓ whose arcs are consecutive on β .

Lemma. Arcs disappear from β only at circle events.

Lemma. The Voronoi vtc correspond 1:1 to circle events.

Lecture 7: Voronoi Diagrams or The Post-Office Problem

Part V: Fortune's Sweep

Philipp Kindermann

Fortune's Sweep

```
VoronoiDiagram(P \subset \mathbb{R}^2)
\mathcal{Q} \leftarrow new PriorityQueue(P) // site events sorted by y-coord.
\mathcal{T} \leftarrow new BalancedBinarySearchTree() // sweep status (\beta)
\mathcal{D} \leftarrow \text{new DCEL}() // to-be Vor(P)
while not Q.empty() do
    p \leftarrow Q.ExtractMax()
    if p site event then
        HandleSiteEvent(p)
    else
         \alpha \leftarrow \text{arc on } \beta that will disappear
         HandleCircleEvent(\alpha)
treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of Vor(P))
return \mathcal{D}
```

Handling Events

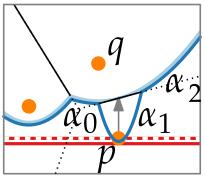
HandleSiteEvent(point p)

Search in \mathcal{T} for the arc α vertically above p. If α has pointer to circle event in \mathcal{Q} , delete this event. **break**-

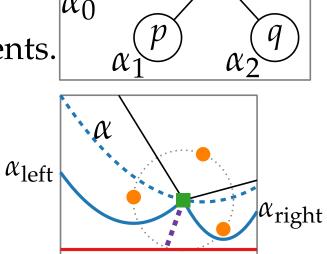
- Split α into α_0 and α_2 . In \mathcal{T} : Let α_1 be the new arc of p.
 - Add Vor-edges $\langle q, p \rangle$ and $\langle p, q \rangle$ to DCEL.
- Check $\langle \cdot, \alpha_0, \alpha_1 \rangle$ and $\langle \alpha_1, \alpha_2, \cdot \rangle$ for circle events.

HandleCircleEvent(arc α)

- **\mathcal{T}**.delete(α); update breakpts
- Delete all circle events involving α from Q.
- Add Vor-vtx $\alpha_{\text{left}} \cap \alpha_{\text{right}}$ and Vor-edge $\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$ to DCEL. Check $\langle \cdot, \alpha_{\text{left}}, \alpha_{\text{right}} \rangle$ and $\langle \alpha_{\text{left}}, \alpha_{\text{right}}, \cdot \rangle$ for circle events. **Running time?** $O(\log n)$ per event...

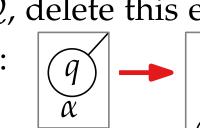


(q, p



points

p,q



Running Time?

VoronoiDiagram($P \subset \mathbb{R}^2$) $\mathcal{Q} \leftarrow$ new PriorityQueue(P) // site events sorted by y-coord. $\mathcal{T} \leftarrow$ new BalancedBinarySearchTree() // sweep status (β) $\mathcal{D} \leftarrow \text{new DCEL}()$ // to-be Vor(P) while not Q.empty() do $p \leftarrow Q$.ExtractMax() if *p* site event then HandleSiteEvent(*p*) exactly *n* such events else $\alpha \leftarrow \text{arc on } \beta$ that will disappear HandleCircleEvent(α) at most 2n - 5 such events treat remaining int. nodes of \mathcal{T} (\equiv unbnd. edges of Vor(P)) return \mathcal{D}

Summary

Theorem. Given a set *P* of *n* pts in the plane, Fortune's sweep computes Vor(P) in $O(n \log n)$ time and O(n) space.

Steven Fortune Bell Labs

Steven Fortune. A sweepline algorithm for Voronoi diagrams. *Proc.* 2nd Annual ACM Symposium on Computational Geometry. Yorktown Heights, NY, pp. 313–322. 1986.