
Philipp Kindermann Winter Semester 2020

Lecture 7:
Voronoi Diagrams

or
The Post-Office Problem

Part I:
The Post-Office Problem

Computational Geometry

The Post-Office Problem

The Post-Office Problem

p

q

b(p, q)

h(p, q) h(q, p)

= {x ∈ R2 : |xp| = |xq|}

= {x : |xp| < |xq|} = {x : |xq| < |xp|}

Philipp Kindermann Winter Semester 2020

Lecture 7:
Voronoi Diagrams

or
The Post-Office Problem

Part II:
The Voronoi Diagram

Computational Geometry

The Voronoi Diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)= rel-int
()

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}

[Voronoi vertex]
= ∂V(p) ∩ ∂V(p′) ∩ ∂V(p′′)V({p, p′, p′′})

[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=

subdivision of R2

geometric graph

(w/o the endpts)

V(p)

{x : |xp|=|xp′|=|xp′′| and |xp| ≤ |xq| ∀q}=

Philipp Kindermann Winter Semester 2020

Lecture 7:
Voronoi Diagrams

or
The Post-Office Problem

Part III:
Shape and Complexity

Computational Geometry

Overall Shape of Vor(P)

Proof. Assume that P is not collinear.
– Assume that Vor(P) contains an edge e

that is a full line, say, e = b(p, q).

Let r ∈ P be not collinear with p and q.

p

q re

Then e′ = b(q, r) is not parallel to e.
⇒ e ∩ h(r, q) is closer to r than to p and q.
⇒ e is bounded on at least one side. �

Theorem. Let P ⊂ R2 be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n− 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.

Complexity

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Task: Construct a set P of sites
such that Vor(P) has a cell of
linear complexity!

Problem: unbounded edges!
⇒ can’t apply

Proof.
Euler directly, but. . .

|F| = n ⇒ (|V|+ 1)− |E|+ n = 2
⇒ 2|E| ≥ 3(|V|+ 1)min. degree 3

⇒ (|V|+ 1)− 3
2 (|V|+ 1) + n ≤ 2

⇒ 1
2 (|V|+ 1) ≤ n− 2

Characterization of Voronoi vtc and edges

CP(x) := largest circle centered at x w/o sites in its interior

x P
CP(x)

Theorem: (i) x Voronoi vtx ⇔

∃x ∈ b(p, p′) : CP(x) ∩ P = {p, p′}
(ii)

|CP(x) ∩ P| ≥ 3

b(p, p′) contains a Voronoi edge⇔

Philipp Kindermann Winter Semester 2020

Lecture 7:
Voronoi Diagrams

or
The Post-Office Problem

Part IV:
The Beachline

Computational Geometry

Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log n) time

in total: O(n2 log n) time
– but the complexity of Vor(P) is linear!

Sweep?

`

[Lect. 4, half-plane intersection]

Problem: We don’t know
all defining sites yet :(

O(n log2 n) time[Lect. 2, map-overlay / line-segment alg]

Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`−1

0

1 d

d

f `p

Task: Compute f `p for p = (0, 1) and ` : y = −1!

Definition.

p

Observation.

beachline β ≡

(x, f `p(x))
Solution:

f `p is the parabola with
focus p and directrix `.

`+

`

β

β is x-monotone.

lower envelope of (f `p)p∈P∩`+

The Beachline β

Question: What does β have to do with Vor(P)?

Answer: “Breakpoints” of β trace out the Voronoi edges!

,

Definition. Circle event: ` reaches lowest pt of a circle
through three sites above ` whose arcs are
consecutive on β.

Lemma. Arcs disappear from β only at circle events.

Lemma. The Voronoi vtc correspond 1:1 to circle events.

Lemma. New arcs on β only appear through site events
that is, whenever ` hits a new site.

Corollary. β consists of at most 2n− 1 arcs.

Philipp Kindermann Winter Semester 2020

Lecture 7:
Voronoi Diagrams

or
The Post-Office Problem

Part V:
Fortune’s Sweep

Computational Geometry

Fortune’s Sweep

VoronoiDiagram(P ⊂ R2)
Q ← new PriorityQueue(P) // site events sorted by y-coord.
T ← new BalancedBinarySearchTree() // sweep status (β)
D ← new DCEL() // to-be Vor(P)
while not Q.empty() do

p← Q.ExtractMax()
if p site event then

HandleSiteEvent(p)
else

α← arc on β that will disappear
HandleCircleEvent(α)

treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))
return D

Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

� Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

� Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

� Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

� Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

� T .delete(α); update breakpts

break-
points

� Delete all circle events involving α from Q.

� Add Vor-vtx αleft ∩ αright and Vor-edge 〈αleft, αright〉 to DCEL.

� Check 〈·, αleft, αright〉 and 〈αleft, αright, ·〉 for circle events.

α
αleft

αright

p

α
q

α0 α1

α0

α2α1

In T :

2

Running time? O(log n) per event. . .

q

p q

Running Time?

VoronoiDiagram(P ⊂ R2)
Q ← new PriorityQueue(P) // site events sorted by y-coord.
T ← new BalancedBinarySearchTree() // sweep status (β)
D ← new DCEL() // to-be Vor(P)
while not Q.empty() do

p← Q.ExtractMax()
if p site event then

HandleSiteEvent(p)
else

α← arc on β that will disappear
HandleCircleEvent(α)

treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))
return D

exactly n such events

at most 2n− 5 such events

Summary

Steven Fortune
Bell Labs

Steven Fortune. A sweepline algorithm for Voronoi diagrams.
Proc. 2nd Annual ACM Symposium on Computational Geometry.
Yorktown Heights, NY, pp. 313–322. 1986.

Theorem. Given a set P of n pts in the plane, Fortune’s
sweep computes Vor(P) in O(n log n) time and
O(n) space.

	The Post-Office Problem
	The Voronoi Diagram
	Shape and Complexity
	Overall Shape of Vor(P)
	Complexity
	Characterization of Voronoi vtc and edges

	The Beachline
	Computation
	Sweep?
	The Beachline

	Fortune's Sweep
	Handling Events
	Running Time?

	Summary

