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The Post-Office Problem



The Post-Office Problem

p

q

b(p, q)

h(p, q) h(q, p)

= {x ∈ R2 : |xp| = |xq|}

= {x : |xp| < |xq|} = {x : |xq| < |xp|}
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The Voronoi Diagram

V({p}) =
=
⋂

q 6=p h(p, q)

Let P be a set of points in the plane and let p, p′, p′′ ∈ P.

Vor(P)

V({p, p′})
∂V(p) ∩ ∂V(p′)= rel-int
( )

{
x ∈ R2 : |xp| < |xq| for all q ∈ P \ {p}

}

{x : |xp| = |xp′| and |xp| < |xq| ∀q 6= p, p′}

[Voronoi vertex]
= ∂V(p) ∩ ∂V(p′) ∩ ∂V(p′′)V({p, p′, p′′})

[Voronoi edge]

[Voronoi diagram]

[Voronoi cell]

p

p′

p′′

=

=

subdivision of R2

geometric graph

(w/o the endpts)

V(p)

{x : |xp|=|xp′|=|xp′′| and |xp| ≤ |xq| ∀q}=
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Overall Shape of Vor(P)

Proof. Assume that P is not collinear.
– Assume that Vor(P) contains an edge e

that is a full line, say, e = b(p, q).

Let r ∈ P be not collinear with p and q.

p

q re

Then e′ = b(q, r) is not parallel to e.
⇒ e ∩ h(r, q) is closer to r than to p and q.
⇒ e is bounded on at least one side. �

Theorem. Let P ⊂ R2 be a set of n pts (called sites).
If all sites are collinear, Vor(P) consists of n− 1
parallel lines. Otherwise, Vor(P) is connected
and its edges are line segments or half-lines.



Complexity

Theorem. Given a set P ⊂ R2 of n sites, Vor(P) consists of
at most 2n− 5 vertices and 3n− 6 edges.

Task: Construct a set P of sites
such that Vor(P) has a cell of
linear complexity!

Problem: unbounded edges!
⇒ can’t apply

Proof.
Euler directly, but. . .

|F| = n ⇒ (|V|+ 1)− |E|+ n = 2
⇒ 2|E| ≥ 3(|V|+ 1)min. degree 3

⇒ (|V|+ 1)− 3
2 (|V|+ 1) + n ≤ 2

⇒ 1
2 (|V|+ 1) ≤ n− 2



Characterization of Voronoi vtc and edges

CP(x) := largest circle centered at x w/o sites in its interior

x P
CP(x)

Theorem: (i) x Voronoi vtx ⇔

∃x ∈ b(p, p′) : CP(x) ∩ P = {p, p′}
(ii)

|CP(x) ∩ P| ≥ 3

b(p, p′) contains a Voronoi edge⇔
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Computation
Brute force: For each p ∈ P, compute V(p) =

⋂
p′ 6=p h(p, p′).

O(n log n) time 

in total: O(n2 log n) time
– but the complexity of Vor(P) is linear!

Sweep?

`

[Lect. 4, half-plane intersection]

Problem: We don’t know
all defining sites yet :(

O(n log2 n) time[Lect. 2, map-overlay / line-segment alg]



Sweep?
Which part of the plane above ` is fixed by what we’ve seen?

`−1

0

1 d

d

f `p

Task: Compute f `p for p = (0, 1) and ` : y = −1!

Definition.

p

Observation.

beachline β ≡

(x, f `p(x))
Solution:

f `p is the parabola with
focus p and directrix `.

`+

`

β

β is x-monotone.

lower envelope of ( f `p)p∈P∩`+



The Beachline β

Question: What does β have to do with Vor(P)?

Answer: “Breakpoints” of β trace out the Voronoi edges!

,

Definition. Circle event: ` reaches lowest pt of a circle
through three sites above ` whose arcs are
consecutive on β.

Lemma. Arcs disappear from β only at circle events.

Lemma. The Voronoi vtc correspond 1:1 to circle events.

Lemma. New arcs on β only appear through site events
that is, whenever ` hits a new site.

Corollary. β consists of at most 2n− 1 arcs.
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Fortune’s Sweep

VoronoiDiagram(P ⊂ R2)
Q ← new PriorityQueue(P) // site events sorted by y-coord.
T ← new BalancedBinarySearchTree() // sweep status (β)
D ← new DCEL() // to-be Vor(P)
while not Q.empty() do

p← Q.ExtractMax()
if p site event then

HandleSiteEvent(p)
else

α← arc on β that will disappear
HandleCircleEvent(α)

treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))
return D



Handling Events
HandleSiteEvent(point p)

HandleCircleEvent(arc α)

� Search in T for the arc α vertically above p.
If α has pointer to circle event in Q, delete this event.

� Split α into α0 and α2.
Let α1 be the new arc of p.

q 〈q, p〉

〈p, q〉
α

� Add Vor-edges 〈q, p〉 and 〈p, q〉 to DCEL.

� Check 〈·, α0, α1〉 and 〈α1, α2, ·〉 for circle events.

� T .delete(α); update breakpts

break-
points

� Delete all circle events involving α from Q.

� Add Vor-vtx αleft ∩ αright and Vor-edge 〈αleft, αright〉 to DCEL.

� Check 〈·, αleft, αright〉 and 〈αleft, αright, ·〉 for circle events.

α
αleft

αright

p

α
q

α0 α1

α0

α2α1

In T :

2

Running time? O(log n) per event. . .

q

p q



Running Time?

VoronoiDiagram(P ⊂ R2)
Q ← new PriorityQueue(P) // site events sorted by y-coord.
T ← new BalancedBinarySearchTree() // sweep status (β)
D ← new DCEL() // to-be Vor(P)
while not Q.empty() do

p← Q.ExtractMax()
if p site event then

HandleSiteEvent(p)
else

α← arc on β that will disappear
HandleCircleEvent(α)

treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))
return D

exactly n such events

at most 2n− 5 such events



Summary

Steven Fortune
Bell Labs

Steven Fortune. A sweepline algorithm for Voronoi diagrams.
Proc. 2nd Annual ACM Symposium on Computational Geometry.
Yorktown Heights, NY, pp. 313–322. 1986.

Theorem. Given a set P of n pts in the plane, Fortune’s
sweep computes Vor(P) in O(n log n) time and
O(n) space.
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