PROBLEM D

Toving Liles

Julius Schmück, Richard Bondarev

The computer science Professor Toving Liles loves the floor tiles in his office so much that he wants to protect them from damage by careless students. Therefore, he would like to buy cheap small rectangular carpets from the supermarket and cover the floor such that:

The entire floor is covered
The carpets do not overlap
The carpets are rotated arbitrarily
No carpet is cut into pieces

But when checking the supermarket's stock, he begins to wonder whether he can accomplish his plan at all. Can you help him?

Input

Sample Input

Output

print "yes" if it is
yes possible to cover the room, otherwise "no"

Sample Output

Solution Idea

Solution Idea

Solution Idea

Solution Idea

- Solution Idea

- Solution Idea

Solution Idea

```
boolean findSolution(Level, Room):
    repeat as long as there are still new partial solution steps:
        choose a new partial solution step;
            if choice is valid:
                add choice to Room;
                if room is full: return true; // solution found!
                otherwise:
                        if (FindSolution(Level + 1, Room)): return true;
                    otherwise undo choice;
    since there is no new partial solution step: return false // no solution!
// solution!
// dead end (backtracking)!
```


- Correctness

correct solution

correct partial solution with still available carpets

- Runtime

- Runtime

Input:
The second line contains an integer c, denoting the number of different carpet colors the supermarket has in stock ($1 \leq c \leq 7$).

Runtime

$$
N_{\text {max, Level } l}=2^{l} \frac{c!}{(c-l)!} \quad c \geq l
$$

1st. Level: $\quad 2^{1} \frac{7!}{(7-1)!}=14$
2nd. Level: $2^{2} \frac{7!}{(7-2)!}=168$
3rd. Level: $\quad 2^{3} \frac{7!}{(7-3)!}=1680$
4th. Level: $\quad 2^{4} \frac{7!}{(7-4)!}=13440$

5th. Level: $\quad 2^{5} \frac{7!}{(7-5)!}=80640$
6th. Level: $\quad 2^{6} \frac{7!}{(7-6)!}=322560$
7th. Level: $\quad 2^{7} \frac{7!}{(7-7)!}=645120$

Runtime

$$
N_{\max }=\sum_{l=1}^{7} 2^{l} \frac{7!}{(7-l)!}=1063622
$$

- Runtime

GOOD LUCK

When your code compiles after 253 failed attempts

