
1

Algorithmen und Datenstrukturen

Wintersemester 2020/21

11. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Elementare Datenstrukturen:
Stapel + Schlange + Liste

2

Zur Erinnerung

Datenstruktur:

Konzept, mit dem man Daten speichert und anordnet,
so dass man sie schnell finden und ändern kann.

2

Zur Erinnerung

Datenstruktur:

Abstrakter Datentyp

Implementierung

Konzept, mit dem man Daten speichert und anordnet,
so dass man sie schnell finden und ändern kann.

2

Zur Erinnerung

Datenstruktur:

Abstrakter Datentyp

beschreibt die
”
Schnittstelle“ einer Datenstruktur –

welche Operationen werden unterstützt?

Implementierung

Konzept, mit dem man Daten speichert und anordnet,
so dass man sie schnell finden und ändern kann.

2

Zur Erinnerung

Datenstruktur:

Abstrakter Datentyp

beschreibt die
”
Schnittstelle“ einer Datenstruktur –

welche Operationen werden unterstützt?

Implementierung

wie wird die gewünschte Funktionalität realisiert:
– wie sind die Daten gespeichert (Feld, Liste, . . .)?
– welche Algorithmen implementieren die Operationen?

Konzept, mit dem man Daten speichert und anordnet,
so dass man sie schnell finden und ändern kann.

3

Beispiel

Prioritätsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

3

Beispiel

Prioritätsschlange:

Abstrakter Datentyp

Implementierung 1

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

3

Beispiel

Prioritätsschlange:

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 1

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

3

Beispiel

Prioritätsschlange:

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 1

– Daten werden in einem Feld (oder Liste) gespeichert
– neue Elemente werden hinten angehängt (unsortiert)
– Maximum wird immer aufrechterhalten

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

3

Beispiel

Prioritätsschlange:

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 1

– Daten werden in einem Feld (oder Liste) gespeichert
– neue Elemente werden hinten angehängt (unsortiert)
– Maximum wird immer aufrechterhalten

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

3

Beispiel

Prioritätsschlange:

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 1

– Daten werden in einem Feld (oder Liste) gespeichert
– neue Elemente werden hinten angehängt (unsortiert)
– Maximum wird immer aufrechterhalten

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

3

Beispiel

Prioritätsschlange:

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 1

– Daten werden in einem Feld (oder Liste) gespeichert
– neue Elemente werden hinten angehängt (unsortiert)
– Maximum wird immer aufrechterhalten

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

O(1)

3

Beispiel

Prioritätsschlange:

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 1

– Daten werden in einem Feld (oder Liste) gespeichert
– neue Elemente werden hinten angehängt (unsortiert)
– Maximum wird immer aufrechterhalten

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

O(1)

3

Beispiel

Prioritätsschlange:

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 1

– Daten werden in einem Feld (oder Liste) gespeichert
– neue Elemente werden hinten angehängt (unsortiert)
– Maximum wird immer aufrechterhalten

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

O(1) O(n)

3

Beispiel

Prioritätsschlange:

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

Implementierung 2

Abstrakter Datentyp

3

Beispiel

Prioritätsschlange:

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

Implementierung 2

Abstrakter Datentyp

– Daten werden in einem Heap gespeichert
– neue Elemente werden angehängt und raufgereicht
– Maximum steht immer in der Wurzel des Heaps

3

Beispiel

Prioritätsschlange:

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

Implementierung 2

Abstrakter Datentyp

– Daten werden in einem Heap gespeichert
– neue Elemente werden angehängt und raufgereicht
– Maximum steht immer in der Wurzel des Heaps

3

Beispiel

Prioritätsschlange:

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

Implementierung 2

Abstrakter Datentyp

– Daten werden in einem Heap gespeichert
– neue Elemente werden angehängt und raufgereicht
– Maximum steht immer in der Wurzel des Heaps

3

Beispiel

Prioritätsschlange:

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

Implementierung 2

Abstrakter Datentyp

– Daten werden in einem Heap gespeichert
– neue Elemente werden angehängt und raufgereicht
– Maximum steht immer in der Wurzel des Heaps

O(1)

3

Beispiel

Prioritätsschlange:

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

Implementierung 2

Abstrakter Datentyp

– Daten werden in einem Heap gespeichert
– neue Elemente werden angehängt und raufgereicht
– Maximum steht immer in der Wurzel des Heaps

O(1)

3

Beispiel

Prioritätsschlange:

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

Implementierung 2

Abstrakter Datentyp

– Daten werden in einem Heap gespeichert
– neue Elemente werden angehängt und raufgereicht
– Maximum steht immer in der Wurzel des Heaps

O(1)

O(log n)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum()

ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum() key1

info1

key2

info2

keyn

infon
. . .

. . .

M

ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum() key1

info1

key2

info2

keyn

infon
. . .

. . .

Zeiger (pointer, iterator) p

M

ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum() key1

info1

key2

info2

keyn

infon
. . .

. . .

M

ptr Search(key k)
ptr p = M.Minimum()
while p 6= nil do

gib p.key aus
p = M.Successor(p)

Beispiel für die Anwendung:
Gib alle Elemente sortiert aus!

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum() key1

info1

key2

info2

keyn

infon
. . .

. . .

M

ptr Search(key k)
ptr p = M.Minimum()
while p 6= nil do

gib p.key aus
p = M.Successor(p)

Beispiel für die Anwendung:
Gib alle Elemente sortiert aus!

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum() key1

info1

key2

info2

keyn

infon
. . .

. . .

M

ptr Search(key k)
ptr p = M.Minimum()
while p 6= nil do

gib p.key aus
p = M.Successor(p)

Beispiel für die Anwendung:
Gib alle Elemente sortiert aus!

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum() key1

info1

key2

info2

keyn

infon
. . .

. . .

M

ptr Search(key k)
ptr p = M.Minimum()
while p 6= nil do

gib p.key aus
p = M.Successor(p)

Beispiel für die Anwendung:
Gib alle Elemente sortiert aus!

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

key1

info1

key2

info2

keyn

infon
. . .

. . .

M

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

key1

info1

key2

info2

keyn

infon
. . .

. . .

M

Funktionalität

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

key1

info1

key2

info2

keyn

infon
. . .

. . .

M

• lege neuen Datensatz (k, i) an

• M = M ∪ {(k, i)}
• gib Zeiger auf (k, i) zurück

Funktionalität

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

key1

info1

key2

info2

keyn

infon
. . .

. . .

M

Funktionalität

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

key1

info1

key2

info2

keyn

infon
. . .

. . .

M

• M = M \ {(x .key , x .info)}

Funktionalität

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

key1

info1

key2

info2

keyn

infon
. . .

. . .

M

Funktionalität

ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

• falls vorhanden, gib Zeiger p
mit p.key = k zurück
• sonst gib Zeiger nil zurück

Funktionalität

ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum()

Funktionalität

ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum()

Funktionalität

ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum()

• sonst gib Zeiger auf (k?, i?)
zurück, wobei k?=max(k,i)∈M′ k

• falls M ′ = ∅, gib nil zurück,

• sei M ′ ={(k, i) ∈ M | k <x .key}

Funktionalität

ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum()

• sonst gib Zeiger auf (k?, i?)
zurück, wobei k?=max(k,i)∈M′ k

• falls M ′ = ∅, gib nil zurück,

• sei M ′ ={(k, i) ∈ M | k <x .key}

Funktionalität

ptr Search(key k)

<

max

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum()

Funktionalität

ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum()

Funktionalität

ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum()

Funktionalität


Anfragen

}
Änderungen

ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum()

Funktionalität


Anfragen

}
Änderungen

Wörterbuch
ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

Implementierung: je nachdem...

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum()

Funktionalität


Anfragen

}
Änderungen

Wörterbuch
ptr Search(key k)

4

Teil III [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich ändernden Menge M

Abstrakter Datentyp

Implementierung: je nachdem...

ptr Insert(key k, info i)

Delete(ptr x)

ptr Successor(ptr x)

ptr Predecessor(ptr x)

ptr Minimum()

ptr Maximum()

Funktionalität


Anfragen

}
Änderungen

Wörterbuch
ptr Search(key k)

Drei Beispiele!

5

I. Stapel

Abstr. Datentyp Implementierung

verwaltet sich ändernde Menge nach LIFO-Prinzip

5

I. Stapel

Abstr. Datentyp Implementierung

verwaltet sich ändernde Menge nach LIFO-Prinzip
”
last-in first-out“

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

verwaltet sich ändernde Menge nach LIFO-Prinzip

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top1 2 . . .

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top1 2 . . .

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false
top = top + 1

A[top] = k

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top1 2 . . .

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false
top = top + 1

A[top] = k

Aufgabe:
Schreiben Sie Pseudocode, der das
oberste Element vom Stapel nimmt
und zurückgibt!

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top1 2 . . .

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false
top = top + 1

A[top] = k

if Empty() then error
”
underflow“

else
top = top − 1
return A[top + 1]

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top1 2 . . .

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false
top = top + 1

A[top] = k

if Empty() then error
”
underflow“

else
top = top − 1
return A[top + 1]

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top1 2 . . .

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false
top = top + 1

A[top] = k

if Empty() then ... else return A[top]

if Empty() then error
”
underflow“

else
top = top − 1
return A[top + 1]

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top1 2 . . .

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false
top = top + 1

A[top] = k

if Empty() then ... else return A[top]

if Empty() then error
”
underflow“

else
top = top − 1
return A[top + 1]

Größe?

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top1 2 . . .

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false
top = top + 1

A[top] = k

if Empty() then ... else return A[top]

if Empty() then error
”
underflow“

else
top = top − 1
return A[top + 1]

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false
top = top + 1

A[top] = k

if Empty() then ... else return A[top]

if Empty() then error
”
underflow“

else
top = top − 1
return A[top + 1]

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false
top = top + 1

A[top] = k

if Empty() then ... else return A[top]

if Empty() then error
”
underflow“

else
top = top − 1
return A[top + 1]

Stack(int n) A = new key[1..n]
top = 0

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false
top = top + 1

A[top] = k

if Empty() then ... else return A[top]

if Empty() then error
”
underflow“

else
top = top − 1
return A[top + 1]

Stack(int n) A = new key[1..n]
top = 0

verwaltet sich ändernde Menge nach LIFO-Prinzip

{

key[] A
int top

if top > A.length then
error

”
overflow“

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false
top = top + 1

A[top] = k

if Empty() then ... else return A[top]

if Empty() then error
”
underflow“

else
top = top − 1
return A[top + 1]

Stack(int n) A = new key[1..n]
top = 0

verwaltet sich ändernde Menge nach LIFO-Prinzip

{

Laufzeiten?

key[] A
int top

if top > A.length then
error

”
overflow“

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

if top == 0 then return true
else return false
top = top + 1

A[top] = k

if Empty() then ... else return A[top]

if Empty() then error
”
underflow“

else
top = top − 1
return A[top + 1]

Stack(int n) A = new key[1..n]
top = 0

verwaltet sich ändernde Menge nach LIFO-Prinzip

{

Laufzeiten?
Alle? O(1),
d.h. konstant.

key[] A
int top

if top > A.length then
error

”
overflow“

?

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top

}


Methoden

Konstruktor

{
Attribute

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top

}


Methoden

Konstruktor

{
Attribute

Fertigen Sie ein
UML-Diagramm für
die Klasse Stack an!

Aufgabe:

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top

}


Methoden

Konstruktor

{
Attribute

Stack

Fertigen Sie ein
UML-Diagramm für
die Klasse Stack an!

Aufgabe:

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top

}


Methoden

Konstruktor

{
Attribute

Stack{
Attribute {

Methoden

Fertigen Sie ein
UML-Diagramm für
die Klasse Stack an!

Aufgabe:

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top

}


Methoden

Konstruktor

{
Attribute

Stack
– top: int

{
Attribute {

Methoden

Fertigen Sie ein
UML-Diagramm für
die Klasse Stack an!

Aufgabe:

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top

}


Methoden

Konstruktor

{
Attribute

Stack
– top: int
– A: key[]

{
Attribute {

Methoden

Fertigen Sie ein
UML-Diagramm für
die Klasse Stack an!

Aufgabe:

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top

}


Methoden

Konstruktor

{
Attribute

Stack
– top: int
– A: key[]

+Empty(): boolean

{
Attribute {

Methoden

Fertigen Sie ein
UML-Diagramm für
die Klasse Stack an!

Aufgabe:

5

I. Stapel

Abstr. Datentyp

boolean Empty()

Push(key k)

key Pop()

Implementierung

key Top()

Stack(int n)

verwaltet sich ändernde Menge nach LIFO-Prinzip

key[] A
int top

}


Methoden

Konstruktor

{
Attribute

Stack
– top: int
– A: key[]

+Empty(): boolean
+Push(key)
. . .

{
Attribute {

Methoden

Fertigen Sie ein
UML-Diagramm für
die Klasse Stack an!

Aufgabe:

6

II. Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

6

II. Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

6

II. Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

6

II. Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

6

II. Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

6

II. Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

6

II. Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

6

II. Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

A
tail head

6

II. Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n)

A
tail head

6

II. Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

A
tail head

6

II. Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty()

A
tail head

6

II. Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

A
tail head

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

A
tail head

Enqueue(key k)

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

A[tail] = k
if tail == A.length then tail = 1
else tail = tail + 1

A
tail head

Enqueue(key k)

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

entnimm Element am
Kopf der Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

key Dequeue()

A[tail] = k
if tail == A.length then tail = 1
else tail = tail + 1

A
tail head

Enqueue(key k)

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

entnimm Element am
Kopf der Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

key Dequeue()

A[tail] = k
if tail == A.length then tail = 1
else tail = tail + 1

k = A[head]
if head == A.length then head = 1
else head = head + 1
return k

A
tail head

Enqueue(key k)

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

entnimm Element am
Kopf der Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

key Dequeue()

A[tail] = k
if tail == A.length then tail = 1
else tail = tail + 1

k = A[head]
if head == A.length then head = 1
else head = head + 1
return k

A
tail head

Enqueue(key k)

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

entnimm Element am
Kopf der Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

key Dequeue()

A[tail] = k
if tail == A.length then tail = 1
else tail = tail + 1

k = A[head]
if head == A.length then head = 1
else head = head + 1
return k

A
tail head

Enqueue(key k)

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

entnimm Element am
Kopf der Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

key Dequeue()

A[tail] = k
if tail == A.length then tail = 1
else tail = tail + 1

k = A[head]
if head == A.length then head = 1
else head = head + 1
return k

A
tail head

Enqueue(key k)

Aufgabe:

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

entnimm Element am
Kopf der Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

key Dequeue()

A[tail] = k
if tail == A.length then tail = 1
else tail = tail + 1

k = A[head]
if head == A.length then head = 1
else head = head + 1
return k

A
tail head

Enqueue(key k)

Aufgabe: Fangen Sie underflow & overflow ab!

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

entnimm Element am
Kopf der Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

key Dequeue()

A[tail] = k
if tail == A.length then tail = 1
else tail = tail + 1

k = A[head]
if head == A.length then head = 1
else head = head + 1
return k

A
tail head

Enqueue(key k)

Aufgabe: Fangen Sie underflow & overflow ab!

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

entnimm Element am
Kopf der Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

key Dequeue()

A[tail] = k
if tail == A.length then tail = 1
else tail = tail + 1

k = A[head]
if head == A.length then head = 1
else head = head + 1
return k

A
tail head

Enqueue(key k)

Aufgabe: Fangen Sie underflow & overflow ab!

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

entnimm Element am
Kopf der Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

key Dequeue()

A[tail] = k
if tail == A.length then tail = 1
else tail = tail + 1

k = A[head]
if head == A.length then head = 1
else head = head + 1
return k

A
tail head

Enqueue(key k)

Aufgabe: Fangen Sie underflow & overflow ab!

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

entnimm Element am
Kopf der Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

key Dequeue()

A[tail] = k
if tail == A.length then tail = 1
else tail = tail + 1

k = A[head]
if head == A.length then head = 1
else head = head + 1
return k

A
tail head

Laufzeiten?

Enqueue(key k)

Aufgabe: Fangen Sie underflow & overflow ab!

6

II. Schlange

stell neues Element
an den Schwanz der
Schlange an

entnimm Element am
Kopf der Schlange

Abs. Datentyp Implementierung

verwaltet sich ändernde Menge nach FIFO-Prinzip

key[] A

int tail
int head

Queue(int n) A = new key[1..n]
tail = head = 1

boolean Empty() if head == tail then return true
else return false

key Dequeue()

A[tail] = k
if tail == A.length then tail = 1
else tail = tail + 1

k = A[head]
if head == A.length then head = 1
else head = head + 1
return k

A
tail head

Laufzeiten?
Alle? O(1).

Enqueue(key k)

Aufgabe: Fangen Sie underflow & overflow ab!

?

7

III. Liste

Abs. Datentyp Implementierung

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next nil

key′

7

III. Liste

Abs. Datentyp Implementierung

prev

key

nextnil nil

key′key′′

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

key′key′′

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

key′key′′

(doppelt verkettet)

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

ptr head

key′key′′

(doppelt verkettet)

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

ptr prev
key key

ptr next

ptr head

key′key′′

(doppelt verkettet)

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

key′key′′

(doppelt verkettet)

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List()

key′key′′

(doppelt verkettet)

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

key′key′′

(doppelt verkettet)

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

key′key′′

(doppelt verkettet)

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

key′key′′

(doppelt verkettet)

x = head

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

key′key′′

(doppelt verkettet)

x = head

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

key′key′′

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k)

key′key′′

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

key′key′′

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

key′key′′

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)

key′key′′

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

key′key′′

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

key′key′′

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

key′key′′

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

key′key′′

Aufgabe:
Implementieren Sie
Delete(ptr x)

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

x

key′key′′

Aufgabe:
Implementieren Sie
Delete(ptr x)

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

x

key′key′′

Aufgabe:
Implementieren Sie
Delete(ptr x)

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

x

key′key′′

Aufgabe:
Implementieren Sie
Delete(ptr x)

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

x

Hausaufgabe:
Benutzen Sie
Stopper!

key′key′′

Aufgabe:
Implementieren Sie
Delete(ptr x)

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

x

key′key′′

Laufzeiten?

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

x

Delete(ptr x)

key′key′′

Laufzeiten?

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

x

O(1)

Delete(ptr x)

key′key′′

Laufzeiten?

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

x

O(1)

Delete(ptr x)

O(n)

key′key′′

Laufzeiten?

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

x

O(1)

O(1)

Delete(ptr x)

O(n)

key′key′′

Laufzeiten?

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

x

O(1)

O(1)

Delete(ptr x)

O(1)

O(n)

key′key′′

Laufzeiten?

(doppelt verkettet)

x = head

return x

7

III. Liste

Abs. Datentyp Implementierung

prev

key

next

head

nil nil

Item

ptr prev
key key

ptr next

ptr head

List() head = nil

ptr Search(key k)

while x 6= nil and x .key 6= k do
x = x .next

ptr Insert(key k) x =new Item()
x .key =k; x .prev = nil ; x .next =head
if head 6= nil then head .prev = x
head = x ; return x

Item(key k, ptr p)
key = k

prev = nil
next = p

k, head)

x

O(1)

O(1)

Delete(ptr x)

O(1)

O(n)

key′key′′

Laufzeiten?

(doppelt verkettet)

x = head

return x

8

Von Pseudocode zu Javacode: (1) Item

Item

ptr prev
key key

ptr next

Item(key k, ptr p)
key = k

prev = nil
next = p

8

Von Pseudocode zu Javacode: (1) Item

Item

ptr prev
key key

ptr next

Item(key k, ptr p)
key = k

prev = nil
next = p

8

Von Pseudocode zu Javacode: (1) Item

Item

ptr prev
key key

ptr next

Item(key k, ptr p)
key = k

prev = nil
next = p

public class Item {

private Object key;

private Item prev;

private Item next;

}

8

Von Pseudocode zu Javacode: (1) Item

Item

ptr prev
key key

ptr next

Item(key k, ptr p)
key = k

prev = nil
next = p

public class Item {

private Object key;

private Item prev;

private Item next;

public Item(Object k, Item p) {

key = k;

next = p;

prev = null;

}

}

8

Von Pseudocode zu Javacode: (1) Item

Item

ptr prev
key key

ptr next

Item(key k, ptr p)
key = k

prev = nil
next = p

public class Item {

private Object key;

private Item prev;

private Item next;

public Item(Object k, Item p) {

key = k;

next = p;

prev = null;

}

}

public void setPrev(Item p) { prev = p; }

public void setNext(Item p) { next = p; }

public Object getKey() { return key; }

public Item getPrev() { return prev; }

public Item getNext() { return next; }

8

Von Pseudocode zu Javacode: (1) Item

Item

ptr prev
key key

ptr next

Item(key k, ptr p)
key = k

prev = nil
next = p

public class Item {

private Object key;

private Item prev;

private Item next;

public Item(Object k, Item p) {

key = k;

next = p;

prev = null;

}

}

public void setPrev(Item p) { prev = p; }

public void setNext(Item p) { next = p; }

public Object getKey() { return key; }

public Item getPrev() { return prev; }

public Item getNext() { return next; }

setter-
und
getter-
Methoden



9

Von Pseudocode zu Javacode: (2) List

List()

head = nil

ptr Insert(key k)

x =new Item(k, head)
if head 6= nil then

head .prev = x

head = x
return x

ptr head

9

Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;

List()

head = nil

ptr Insert(key k)

x =new Item(k, head)
if head 6= nil then

head .prev = x

head = x
return x

ptr head

9

Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;

public List() {

head = null;

}

List()

head = nil

ptr Insert(key k)

x =new Item(k, head)
if head 6= nil then

head .prev = x

head = x
return x

ptr head

9

Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;

public List() {

head = null;

}

public Item insert(Object k) {

Item x = new Item(k, head);

if (head != null) {

head.setPrev(x);

}

head = x;

return x;

}

List()

head = nil

ptr Insert(key k)

x =new Item(k, head)
if head 6= nil then

head .prev = x

head = x
return x

ptr head

9

Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;

public List() {

head = null;

}

public Item insert(Object k) {

Item x = new Item(k, head);

if (head != null) {

head.setPrev(x);

}

head = x;

return x;

}

public Item getHead() { return head; }

List()

head = nil

ptr Insert(key k)

x =new Item(k, head)
if head 6= nil then

head .prev = x

head = x
return x

ptr head

10

Von Pseudocode zu Javacode: (2) List

ptr Search(key k)

x = head
while x 6= nil and x .key 6= k do

x = x .next
return x

10

Von Pseudocode zu Javacode: (2) List

ptr Search(key k)

x = head
while x 6= nil and x .key 6= k do

x = x .next
return x

10

Von Pseudocode zu Javacode: (2) List

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

ptr Search(key k)

x = head
while x 6= nil and x .key 6= k do

x = x .next
return x

11

Von Pseudocode zu Javacode: (2) List

Delete(ptr x)

if x .prev 6= nil then x .prev .next = x .next
else head = x .next
if x .next 6= nil then x .next .prev = x .prev

11

Von Pseudocode zu Javacode: (2) List

Delete(ptr x)

if x .prev 6= nil then x .prev .next = x .next
else head = x .next
if x .next 6= nil then x .next .prev = x .prev

11

Von Pseudocode zu Javacode: (2) List

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

}

Delete(ptr x)

if x .prev 6= nil then x .prev .next = x .next
else head = x .next
if x .next 6= nil then x .next .prev = x .prev

12

Javacode: (3) Main

public class Listentest {

public static void main(String[] args) {

List myList = new List();

myList.insert(new Integer(10));

myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");

for (Item it = myList.getHead(); it != null;

it = it.getNext()) {

System.out.println((Integer) it.getKey());

}

Item it = myList.search(new Integer(16));

myList.delete(it);

}

}

12

Javacode: (3) Main

public class Listentest {

public static void main(String[] args) {

List myList = new List();

myList.insert(new Integer(10));

myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");

for (Item it = myList.getHead(); it != null;

it = it.getNext()) {

System.out.println((Integer) it.getKey());

}

Item it = myList.search(new Integer(16));

myList.delete(it);

}

}

12

Javacode: (3) Main

public class Listentest {

public static void main(String[] args) {

List myList = new List();

myList.insert(new Integer(10));

myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");

for (Item it = myList.getHead(); it != null;

it = it.getNext()) {

System.out.println((Integer) it.getKey());

}

Item it = myList.search(new Integer(16));

myList.delete(it);

}

}

12

Javacode: (3) Main

public class Listentest {

public static void main(String[] args) {

List myList = new List();

myList.insert(new Integer(10));

myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");

for (Item it = myList.getHead(); it != null;

it = it.getNext()) {

System.out.println((Integer) it.getKey());

}

Item it = myList.search(new Integer(16));

myList.delete(it);

}

}

12

Javacode: (3) Main

public class Listentest {

public static void main(String[] args) {

List myList = new List();

myList.insert(new Integer(10));

myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");

for (Item it = myList.getHead(); it != null;

it = it.getNext()) {

System.out.println((Integer) it.getKey());

}

Item it = myList.search(new Integer(16));

myList.delete(it);

}

}

Was wird hier ausgegeben?

12

Javacode: (3) Main

public class Listentest {

public static void main(String[] args) {

List myList = new List();

myList.insert(new Integer(10));

myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");

for (Item it = myList.getHead(); it != null;

it = it.getNext()) {

System.out.println((Integer) it.getKey());

}

Item it = myList.search(new Integer(16));

myList.delete(it);

}

}

12

Javacode: (3) Main

public class Listentest {

public static void main(String[] args) {

List myList = new List();

myList.insert(new Integer(10));

myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");

for (Item it = myList.getHead(); it != null;

it = it.getNext()) {

System.out.println((Integer) it.getKey());

}

Item it = myList.search(new Integer(16));

myList.delete(it);

}

}

12

Javacode: (3) Main

public class Listentest {

public static void main(String[] args) {

List myList = new List();

myList.insert(new Integer(10));

myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");

for (Item it = myList.getHead(); it != null;

it = it.getNext()) {

System.out.println((Integer) it.getKey());

}

Item it = myList.search(new Integer(16));

myList.delete(it);

}

}

Die Liste enthaelt:
16
10
Fehler!

13

Warum “Fehler!”?
Item.java

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

List.java

13

Warum “Fehler!”?
Item.java

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

List.java

13

Warum “Fehler!”?
Item.java

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

Listentest.java

List.java

myList.insert(new Integer(16));

...

Item it = myList.search(new Integer(16));

myList.delete(it);

13

Warum “Fehler!”?
Item.java

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

Listentest.java

List.java

myList.insert(new Integer(16));

...

Item it = myList.search(new Integer(16));

myList.delete(it);

13

Warum “Fehler!”?
Item.java

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

Listentest.java

List.java

myList.insert(new Integer(16));

...

Item it = myList.search(new Integer(16));

myList.delete(it);

13

Warum “Fehler!”?
Item.java

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

Listentest.java

List.java

myList.insert(new Integer(16));

...

Item it = myList.search(new Integer(16));

myList.delete(it);

13

Warum “Fehler!”?
Item.java

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

Listentest.java

List.java

myList.insert(new Integer(16));

...

Item it = myList.search(new Integer(16));

myList.delete(it);

gleiche Zahlen, aber verschiedene Objekte!

13

Warum “Fehler!”?
Item.java

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

Listentest.java

!k.equals(x.getKey())

List.java

myList.insert(new Integer(16));

...

Item it = myList.search(new Integer(16));

myList.delete(it);

gleiche Zahlen, aber verschiedene Objekte!

13

Warum “Fehler!”?
Item.java

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

Listentest.java

!k.equals(x.getKey())

List.java

myList.insert(new Integer(16));

...

Item it = myList.search(new Integer(16));

myList.delete(it);

gleiche Zahlen, aber verschiedene Objekte!

X

13

Warum “Fehler!”?
Item.java

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

Listentest.java

!k.equals(x.getKey())

List.java

myList.insert(new Integer(16));

...

Item it = myList.search(new Integer(16));

myList.delete(it);

gleiche Zahlen, aber verschiedene Objekte!

[Unschön: Klasse Item muss public sein, so dass Anwender
und Bibliotheksklasse List darüber kommunizieren können.]X

14

Übersicht Elementare Datenstrukturen

Stapel Schlange Liste

Einfügen

Entfernen

weitere Oper.
(außer Konstruktor
und Empty())

Operationen

14

Übersicht Elementare Datenstrukturen

Stapel Schlange Liste

Einfügen Push()

Entfernen Pop()

weitere Oper. Top()
(außer Konstruktor
und Empty())

Operationen

14

Übersicht Elementare Datenstrukturen

Stapel Schlange Liste

Einfügen Push() Enqueue()

Entfernen Pop() Dequeue()

weitere Oper. Top()
(außer Konstruktor
und Empty())

Operationen

14

Übersicht Elementare Datenstrukturen

Stapel Schlange Liste

Einfügen Push() Enqueue()

Entfernen Pop() Dequeue()

weitere Oper. Top()
(außer Konstruktor
und Empty())

Operationen

Tail()
Head()

14

Übersicht Elementare Datenstrukturen

Stapel Schlange Liste

Einfügen Push() Enqueue() Insert()

Entfernen Pop() Dequeue() Delete()

weitere Oper. Top() Search()
(außer Konstruktor
und Empty())

Operationen

Tail()
Head()

14

Übersicht Elementare Datenstrukturen

Stapel Schlange Liste

Einfügen Push() Enqueue() Insert()

Entfernen Pop() Dequeue() Delete()

weitere Oper. Top() Search()
(außer Konstruktor
und Empty())

Operationen

– Einschränkung

– Einschränkung

Tail()
Head()

14

Übersicht Elementare Datenstrukturen

Stapel Schlange Liste

Einfügen Push() Enqueue() Insert()

Entfernen Pop() Dequeue() Delete()

weitere Oper. Top() Search()
(außer Konstruktor
und Empty())

Operationen

– Einschränkung

– Einschränkung

nur oben

nur oben

Tail()
Head()

14

Übersicht Elementare Datenstrukturen

nur hinten

Stapel Schlange Liste

Einfügen Push() Enqueue() Insert()

Entfernen Pop() Dequeue() Delete()

weitere Oper. Top() Search()
(außer Konstruktor
und Empty())

Operationen

– Einschränkung

– Einschränkung

nur oben

nur oben nur vorne

Tail()
Head()

14

Übersicht Elementare Datenstrukturen

nur hinten nur vorne

Stapel Schlange Liste

Einfügen Push() Enqueue() Insert()

Entfernen Pop() Dequeue() Delete()

weitere Oper. Top() Search()
(außer Konstruktor
und Empty())

Operationen

– Einschränkung

– Einschränkung

nur oben

nur oben nur vorne beliebig

Tail()
Head()

14

Übersicht Elementare Datenstrukturen

nur hinten nur vorne

Stapel Schlange Liste

Einfügen Push() Enqueue() Insert()

Entfernen Pop() Dequeue() Delete()

weitere Oper. Top() Search()
(außer Konstruktor
und Empty())

Operationen

– Einschränkung

– Einschränkung

nur oben

nur oben nur vorne beliebig

beliebig
()

Tail()
Head()

14

Übersicht Elementare Datenstrukturen

nur hinten nur vorne

Stapel Schlange Liste

Einfügen Push() Enqueue() Insert()

Entfernen Pop() Dequeue() Delete()

weitere Oper. Top() Search()
(außer Konstruktor
und Empty())

Operationen

– Einschränkung

– Einschränkung

nur oben

nur oben nur vorne beliebig

beliebig
()

Tail()

Alle hier aufgelisteten Operationen außer Search() laufen in O(1) Zeit!

Head()

14

Übersicht Elementare Datenstrukturen

nur hinten nur vorne

Stapel Schlange Liste

Einfügen Push() Enqueue() Insert()

Entfernen Pop() Dequeue() Delete()

weitere Oper. Top() Search()
(außer Konstruktor
und Empty())

Operationen

– Einschränkung

– Einschränkung

nur oben

nur oben nur vorne beliebig

beliebig
()

Tail()

Alle hier aufgelisteten Operationen außer Search() laufen in O(1) Zeit!

Listen sind mächtiger als Stapel/Schlangen. Wozu also Stapel/Schlangen?

Head()

	Titel
	Zur Erinnerung
	Beispiel
	Teil III [CLRS]
	I. Stapel
	II. Schlange
	III. Liste
	Java: Item
	Java: Liste
	Java: Main
	Warum Fehler?
	Übersicht Elementare Datenstrukturen

