Julius-Maximilians-
UNIVERSITAT Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen & Komplexitat Institut fiir Informatik

Algorithmen und Datenstrukturen

Wintersemester 2020/21
11. Vorlesung

Elementare Datenstrukturen:
Stapel + Schlange + Liste

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

Zur Erinnerung

Datenstruktur:

Konzept, mit dem man Daten speichert und anordnet,
so dass man sie schnell finden und andern kann.

Zur Erinnerung

Datenstruktur:

Konzept, mit dem man Daten speichert und anordnet,
so dass man sie schnell finden und andern kann.

Abstrakter Datentyp

Implementierung

Zur Erinnerung

Datenstruktur:

Konzept, mit dem man Daten speichert und anordnet,
so dass man sie schnell finden und andern kann.

Abstrakter Datentyp

beschreibt die ,, Schnittstelle” einer Datenstruktur —
welche Operationen werden unterstiitzt?

Implementierung

Zur Erinnerung

Datenstruktur:

Konzept, mit dem man Daten speichert und anordnet,
so dass man sie schnell finden und andern kann.

Abstrakter Datentyp

beschreibt die ,, Schnittstelle” einer Datenstruktur —
welche Operationen werden unterstiitzt?

Implementierung

wie wird die gewiinschte Funktionalitat realisiert:
— wie sind die Daten gespeichert (Feld, Liste, ...)?
— welche Algorithmen implementieren die Operationen?

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

Implementierung 1

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 1

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 1

— Daten werden in einem Feld (oder Liste) gespeichert
— neue Elemente werden hinten angehdngt (unsortiert)
— Maximum wird immer aufrechterhalten

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 1

— Daten werden in einem Feld (oder Liste) gespeichert
— neue Elemente werden hinten angehdngt (unsortiert)
— Maximum wird immer aufrechterhalten

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

stellt folgende Operationen bereit:
nsert, FindMax) ExtractMax, IncreaseKey

Implementierung 1

— Daten werden in einem Feld (oder Liste) gespeichert
— neue Elemente werden hinten angehdngt (unsortiert)
— Maximum wird immer aufrechterhalten

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

o(1 stellt folgende Operationen bereit:
ExtractMax, IncreaseKey

Implementierung 1

— Daten werden in einem Feld (oder Liste) gespeichert
— neue Elemente werden hinten angehdngt (unsortiert)
— Maximum wird immer aufrechterhalten

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

o(1 stellt folgende Operationen bereit:
xtractMax, IncreaseKe

Implementierung 1

— Daten werden in einem Feld (oder Liste) gespeichert
— neue Elemente werden hinten angehdngt (unsortiert)
— Maximum wird immer aufrechterhalten

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

o(1 stellt folgende Operationen bereit: O(n)
xtractMax, IncreaseKe

Implementierung 1

— Daten werden in einem Feld (oder Liste) gespeichert
— neue Elemente werden hinten angehdngt (unsortiert)
— Maximum wird immer aufrechterhalten

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 2

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 2

— Daten werden in einem Heap gespeichert
— neue Elemente werden angehangt und raufgereicht
— Maximum steht immer in der Wurzel des Heaps

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

Implementierung 2

— Daten werden in einem Heap gespeichert
— neue Elemente werden angehangt und raufgereicht
— Maximum steht immer in der Wurzel des Heaps

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

stellt folgende Operationen bereit:

Insert, EindMax) ExtractMax, IncreaseKey

Implementierung 2

— Daten werden in einem Heap gespeichert
— neue Elemente werden angehangt und raufgereicht
— Maximum steht immer in der Wurzel des Heaps

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

stellt folgende Operationen bereit:

Insert, EindMax) ExtractMax, IncreaseKey
C

Implementierung 2

— Daten werden in einem Heap gespeichert
— neue Elemente werden angehangt und raufgereicht
— Maximum steht immer in der Wurzel des Heaps

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

stellt folgende Operationen bereit:

tractl\/lax, IncreaseKey,

Implementierung 2

— Daten werden in einem Heap gespeichert
— neue Elemente werden angehangt und raufgereicht
— Maximum steht immer in der Wurzel des Heaps

Beispiel

Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

stellt folgende Operationen bereit:

O(logn
Insert ExtractMax, Incr@(&)

Implementierung 2

— Daten werden in einem Heap gespeichert
— neue Elemente werden angehangt und raufgereicht
— Maximum steht immer in der Wurzel des Heaps

Teil 11l [CLRS]

Dynamische Menge: PAl w

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp

Teil 11l [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp
Insert(k,)
Delete(ptr x)
Search(key k)
Minimum()

Maximum()

Predecessor(ptr x)

Successor(ptr x)

Teil 11l [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp
Insert(k,)
Delete(ptr x)
Search(key k)
Minimum()

Maximum()

Predecessor(ptr x)

Successor(ptr x)

Teil 11l [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp
Insert(k,)
Delete(ptr x)

Search(k) Zeiger (pointer, iterator) p

Minimum() e M

key, | - [key,

Maximum()

Predecessor(ptr x)

infoo

Successor(ptr x)

Teil 11l [CLRS]

Dynamische Menge:

Abstrakter Datentyp

Insert(k,)
Delete(ptr x)

Search(key k)

Minimum()

Maximum()

Predecessor(ptr x)

Successor(ptr x)

Teil 11l [CLRS]

Dynamische Menge:

Abstrakter Datentyp

Insert(k,)
Delete(ptr x)

Search(key k)

Minimum()

Maximum()

Predecessor(ptr x)

Successor(ptr x)

Teil 11l [CLRS]

Dynamische Menge:

Abstrakter Datentyp
Insert(key k, i)| Gib alle Elemente sortiert aus!
Delete(ptr x) S P M)
Search(key k) ' while p # nil do

Minimum() L

Maximum()

Predecessor(ptr x)

Successor(ptr x)

Teil 11l [CLRS)]

Dynamische Menge: , w

verwaltet Elemente einer sich indernden Menge M

Abstrakter Datentyp
Insert(key k, i)| Gib alle Elemente sortiert aus!
Delete(ptr) S M M)
Search(key k) while p # nil do
Minimum() L gib p.key aus
Maximum() . | p = M.Successor(p)

Predecessor(ptr x)

Successor(ptr x)

Teil 11l [CLRS]

Dynamische Menge: SN w

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp
Insert(k,)

Teil 11l [CLRS]

Dynamische Menge: PAl w

verwaltet Elemente einer sich andernden Menge M

Abstrakter Datentyp Funktionalitat
Insert(key k,)

Teil 11l [CLRS]

Dynamische Menge:

e

verwaltet Elemente einer sich indernden Menge M

Abstrakter Datentyp

Funktionalitat

Insert(k,)

e lege neuen Datensatz (k, i) an
o M=MU{(k, i)}
e gib Zeiger auf (k, i) zuriick

M

key,

infoo

key .

Teil 11l [CLRS]

Dynamische Menge: PAl w

verwaltet Elemente einer sich andernden Menge M

Abstrakter Datentyp Funktionalitat
Insert(key k,)
Delete(ptr x)

Teil 11l [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp Funktionalitat
Insert(key k,)
Delete(ptr x) o M = M\ {(x.key, x.info)}

M

key .

Teil 11l [CLRS]

Dynamische Menge: PAl w

verwaltet Elemente einer sich andernden Menge M

Abstrakter Datentyp Funktionalitat
Insert(key k,)
Delete(ptr x)
Search(key k)

Teil 11l [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp Funktionalitat
Insert(key k,)
Delete(ptr x)
Search(key k) e falls vorhanden, gib Zeiger p

mit p.key = k zurlick
e sonst gib Zeiger nil zuriick

Teil 11l [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp Funktionalitat
Insert(key k,)
Delete(ptr x)
Search(key k)
Minimum()

Maximum()

Predecessor(ptr x)

Successor(ptr x)

Teil 11l [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp Funktionalitat
Insert(key k,)
Delete(ptr x)
Search(key k)
Minimum()

Maximum()

Predecessor(ptr x)

Successor(ptr x)

Teil 11l [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp Funktionalitat
Insert(key k,)
Delete(ptr x)
Search(key k)

Minimum() o sei M'={(k,i) e M| k<x.key}
Maximum() e falls M’ = (), gib nil zuriick,

Predecessor(ptr x) e sonst gib Zeiger auf (k*, i*)
Successor(X) ZUFUCk, WObei k*: max(k',-)gM/ k

Teil 11l [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp Funktionalitat
Insert(key k,)
Delete(ptr x)
Search(key k)

Minimum() o sei M'={(k,i) e M| k<x.key}
Maximum() e falls M’ = (), gib nil zuriick,

Predecessor(ptr x) e sonst gib Zeiger auf (k*, i*)
Successor(X) ZUFUCk, WObei k*: max(k',-)gM/ k

Teil 11l [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp Funktionalitat
Insert(key k,)
Delete(ptr x)
Search(key k)
Minimum()

Maximum()

Predecessor(ptr x)

Successor(ptr x)

Teil 11l [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp Funktionalitat
Insert(key k,)
Delete(ptr x)
Search(key k)
Minimum()

Maximum()

Predecessor(ptr x)

Successor(ptr x)

Teil 11l [CLRS]

Dynamische Menge: , w

verwaltet Elemente einer sich indernden Menge M

Abstrakter Datentyp Funktionalitat

Insert(key k, Nl .
%) > Anderungen

Delete(
Search(key k)
Minimum()
Maximum() » Anfragen
Predecessor(ptr x)

Successor(ptr x)

Teil 11l [CLRS]

Dynamische Menge:

Abstrakter Datentyp

Funktionalitat

Insert(k,)
Delete('+ x)
Search(k)

N

> And
NASHENEEH 1 \Warterbuch

Minimum()
Maximum()
Predecessor(ptr x)

Successor(ptr x)

» Anfragen

Teil 11l [CLRS]

Dynamische Menge:

Abstrakter Datentyp Funktionalitat
Insert(kK, Nl -)

Delete() » Anderungen
Search(k)
Minimum()
Maximum() » Anfragen
Predecessor(ptr x)

> Worterbuch

Successor(ptr x)

Implementierung: je nachdem...

Teil 11l [CLRS]

Dynamische Menge:

Abstrakter Datentyp Funktionalitat
Insert(kK, Nl -)

Delete() » Anderungen
Search(k)
Minimum()
Maximum() » Anfragen
Predecessor(ptr x)

> Worterbuch

Successor(

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp|| Implementierung

|. Stapel '

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp|| Implementierung

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp|| Implementierung

Empty()

Push(key k)

Pop()

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp|| Implementierung

Empty()

Push(key k)

Pop()

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp|| Implementierung

h_

Empty() || if top == 0 then return true
else return false

Push(key k)

Pop()

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp| | Implementierung v

A
top

h_

Empty() || if top == 0 then return true
else return false

Push(key k) top = top + 1

Altop] = k

Pop()

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp|| Implementierung

=
=

top

h_

if top == 0 then return true
else return false

top = top + 1
Altop] = k

Aufgabe:

Empty()

Push(key k)

Pop()

Schreiben Sie Pseudocode, der das
oberste Element vom Stapel nimmt
und zuruckgibt!

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp| | Implementierung v

A
top

h_

Empty() || if top == 0 then return true
else return false

Push(key k) top = top + 1

Altop] = k

Pop()

top = top — 1
return Altop + 1]

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp| | Implementierung w

A
top

h_

Empty() || if top == 0 then return true
else return false
Push(key k) top = top + 1
Altop] = k

Pop() if Empty() then error , underflow*
else

top = top — 1
return Altop + 1]

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp| | Implementierung w

A
top

h_

Empty() || if top == 0 then return true
else return false
Push(key k) top = top + 1
Altop] = k

Pop() if Empty() then error , underflow*
else

top = top — 1
return Altop + 1]

if Empty() then ... else return A[top]

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp| | Implementierung GFC'D'BGE w
A
top

h_

Empty() || if top == 0 then return true
else return false
Push(key k) top = top + 1
Altop] = k

Pop() if Empty() then error , underflow*
else

top = top — 1
return Altop + 1]

if Empty() then ... else return A[top]

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp| | Implementierung @
A

Empty() || if top == 0 then return true
else return false
Push(key k) top = top + 1
Altop] = k

Pop() if Empty() then error , underflow*
else

top = top — 1
return Altop + 1]

if Empty() then ... else return A[top]

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp|| Implementierung
Stack(int n)

Empty() || if top == 0 then return true
else return false
Push(key k) top = top + 1
Altop] = k

Pop() if Empty() then error , underflow*
else

top = top — 1
return Altop + 1]

if Empty() then ... else return A[top]

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp

Implementierung

Stack(int n)

A = new key|[l..n]
top =0

Empty()

if top == 0 then return true
else return false

Push(key k)

top = top + 1
Altop] = k

Pop()

if Empty() then error ,,underflow"
else

top = top — 1
return Altop + 1]

if Empty() then ... else return A[top]

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp

Implementierung

Stack(int n)

A = new key|[l..n]
top =0

Empty()

if top == 0 then return true
else return false

Push(key k)

top = top + 1 [if top > A.length then
Altop] = k error ,,overflow"

Pop()

if Empty() then error ,,underflow"
else

top = top — 1
return Altop + 1]

if Empty() then ... else return A[top]

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp
Stack(int n)

Implementierung

A = new key|[l..n] A

top =0 top

if top == 0 then return true
else return false

top = top + 1 [if top > A.length then
Altop] = k error ,,overflow"

if Empty() then error ,,underflow"

Empty()

Push(key k)

Pop()
else Laufzeiten?
top = top — 1
return Altop + 1]

if Empty() then ... else return A[top]

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp
Stack(int n)

Implementierung

A = new" key|[1..n] A

top =0 top

if top == 0 then return true
else return false

top = top + 1 [if top > A.length then
Altop] = k error ,,overflow"

if Empty() then error ,,underflow"

Empty()

Push(key k)

Pop()

else Laufzeiten?
top = top — 1 Alle* O(1),
return Altop + 1] d.h. konstant.

if Empty() then ... else return A[top]

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp|| Implementierung
Stack(int n)

Empty()

Push(key k)

Pop()

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp|| Implementierung
Stack(int n)

> Konstruktor Attribute {

Empty()

Push(key k)

Pop() > Methoden

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp|| Implementierung
Stack(int n) \

> Konstruktor Attribute {

Empty() Aufgabe:

Fertigen Sie ein
Push(k) UML-Diagramm fiir
die Klasse Stack an!

Pop() > Methoden

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp| | Implementierung v
Stack(int n) \

> Konstruktor Attribute { A
top

Empty() Aufgabe:

Fertigen Sie ein
Push(k) UML-Diagramm fiir
die Klasse Stack an!

Stack

Pop() > Methoden

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp| | Implementierung v
Stack(int n) \

> Konstruktor Attribute { A
top

Empty() Aufgabe:

Fertigen Sie ein
Push(k) UML-Diagramm fiir
die Klasse Stack an!

Stack

Pop() > Methoden

Attribute {

Methoden {

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp| | Implementierung v
Stack(int n) \

> Konstruktor Attribute { A
top

Empty() Aufgabe:

Fertigen Sie ein
Push(k) UML-Diagramm fiir
die Klasse Stack an!

Stack
—top: Int

Pop() > Methoden

Attribute {

Methoden {

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp| | Implementierung v
Stack(int n) \

> Konstruktor Attribute { A
top

Empty() Aufgabe:

Fertigen Sie ein
Push(k) UML-Diagramm fiir
die Klasse Stack an!

Stack

_ —top: int
Attribute { —A- key[]

Pop() > Methoden

Methoden {

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp| | Implementierung v
Stack(int n) \

> Konstruktor Attribute { A
top

Empty() Aufgabe:

Fertigen Sie ein
UML-Diagramm fiir
die Klasse Stack an!

Stack

_ —top: int
Attribute { —A- key[]

+Empty(): boolean

Push(key k)

Pop() > Methoden

Methoden {

|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp| | Implementierung v
Stack(int n) \ A
top

> Konstruktor Attribute {

Empty() Aufgabe:

Fertigen Sie ein
Push(k) UML-Diagramm fiir
die Klasse Stack an!

Stack
_ —top: Int
Attribute { —A- key[]

+Empty(): boolean
Methoden +Push(key)

Pop() > Methoden

LF =
. | \

Il. Schlange

verwaltet sich andernde Menge nach FIFO-Prlk |

Abs. Datentyp Implementierung

b || SR
: | X

Il. Schlange

verwaltet sich andernde Menge nach FIFO-Prlk |

Abs. Datentyp Implementierung

b || SR
: | X

Il. Schlange

verwaltet sich andernde Menge nach FIFO-Prlk |

Abs. Datentyp Implementierung

b || SR
: | X

Il. Schlange

verwaltet sich andernde Menge nach FIFO-Prlk |

Abs. Datentyp Implementierung

b || SR
: | X

Il. Schlange

verwaltet sich andernde Menge nach FIFO-Prlk |

Abs. Datentyp Implementierung

b || SR
: | X

Il. Schlange

verwaltet sich andernde Menge nach FIFO-Prlk |

Abs. Datentyp Implementierung

b || SR
: | X

Il. Schlange

verwaltet sich andernde Menge nach FIFO-Prlk |

Abs. Datentyp Implementierung

tail head L N
¥ ¥ ' !

Il. Schlange A

" anm ﬁ "
verwaltet sich andernde Menge nach FIFO-PrIgF

Abs. Datentyp Implementierung

key[] A
Int tail
Int head

tail head L N
¥ ¥ ' !

Il. Schlange A

" anm ﬁ "
verwaltet sich andernde Menge nach FIFO-PrIgF

Abs. Datentyp
Queue(int n)

Implementierung

key[] A
Int tail
Int head

tail head hha) a1
Y Y ' !

Il. Schlange A

" anm ﬁ "
verwaltet sich andernde Menge nach FIFO-PrIgF

Abs. Datentyp
Queue(int n)

Implementierung

A = new key[l..n] key[] A
tail = head =1 int tail
Int head

tail head hha) a1
Y Y ' !

Il. Schlange A

" anm ﬁ "
verwaltet sich andernde Menge nach FIFO-PrIgF

Abs. Datentyp
Queue(int n)

Implementierung

A = new key[l..n] key[] A
tail = head =1 int tail
Int head

Empty()

tatl head 1S
! ! |

Il. Schlange A

—

verwaltet sich and

Abs. Datentyp
Queue(int n)

Implementierung

A = new key[l..n] key[] A

tail = head = 1 int tail

Int head
if head == tail then return true

else return false

Empty()

tail—head Bt 11| S
i i |

{11
Il. Schlange A
verwaltet sich andernde Menge nach FIFO-Prlk |

Abs. Datentyp

Implementierung

Queue(int n) A = new key[l..n] key[] A
tail = head =1 int tail
int head
Empty() || if head == tail then return true

else return false

Enqueue(key k)

stell neues Element
an den Schwanz der
Schlange an

tail—head Bt 11| S
i i |

Il. Schlange A

—

verwaltet sich and

Abs. Datentyp
Queue(int n)

Implementierung

A = new key[l..n] key[] A
tail = head =1 int tail
Int head

Empty() || if head == tail then return true
else return false
Enqueue(key k) || Altail] = k

stell neues Element
an den Schwanz der
Schlange an

if tail == A.length then tail =1
else tail = tail + 1

tail—head Bt 11| S
i i |

Il. Schlange A

" anm ﬁ "
verwaltet sich andernde Menge nach FIFO-PrIgF

Abs. Datentyp
Queue(int n)

Implementierung

A = new key|[l..n] key[] A
tail = head =1 int tail
int head
if head == tail then return true
else return false

Altail] = k

if tail == A.length then tail =1
else tail = tail + 1

Empty()

Enqueue(key k)

stell neues Element
an den Schwanz der
Schlange an

Dequeue()

entnimm Element am
Kopf der Schlange

tail head LA

Il. Schlange A

—

verwaltet sich and

Abs. Datentyp
Queue(int n)

Implementierung

A = new key[l..n] key[] A
tail = head =1 int tail
Int head

Empty() || if head == tail then return true
else return false
Enqueue(key k) || Altail] = k

stell neues Element
an den Schwanz der
Schlange an

if tail == A.length then tail =1
else tail = tail + 1

k = Alhead]

if head == A.length then head =1

else head = head + 1
return k

Dequeue()

entnimm Element am
Kopf der Schlange

tail head AR

Il. Schlange A

—

verwaltet sich and

Abs. Datentyp
Queue(int n)

Implementierung

A = new key[l..n] key[] A
tail = head =1 int tail
Int head

Empty() || if head == tail then return true
else return false
Enqueue(key k) || Alt@il] = k

stell neues Element
an den Schwanz der
Schlange an

if tail == A.length then tail = 1
else tail = tail + 1

k = Alhead)]

if head == A.length then head = 1

else head = head + 1
return k

Dequeue()

entnimm Element am
Kopf der Schlange

tail head AR

Il. Schlange A

—

verwaltet sich and

Abs. Datentyp
Queue(int n)

Implementierung

A = new key[l..n] key[] A
tail = head =1 int tail
Int head

Empty() || if head == tail then return true
else return false
Enqueue(key k) || Altail] = k

stell neues Element
an den Schwanz der
Schlange an

if tail == A.length then tail = 1
else tail = tail + 1

k = Alhead]

if head == A.length then head = 1

else head = head + 1
return k

Dequeue()

entnimm Element am
Kopf der Schlange

tail head LA

Il. Schlange A

] am ﬁ L] .
verwaltet sich andernde Menge nach FIFO-Pri ife,
, ,_

Abs. Datentyp
Queue(int n)

Aufgabe:

Implementierung

A = new key[l..n] key[] A
tail = head =1 int tail
Int head

Empty() || if head == tail then return true
else return false
Enqueue(key k) || Altail] = k

stell neues Element
an den Schwanz der
Schlange an

if tail == A.length then tail =1
else tail = tail + 1

k = Alhead]

if head == A.length then head =1

else head = head + 1
return k

Dequeue()

entnimm Element am
Kopf der Schlange

tail head AR

Il. Schlange A

] am ﬁ L] .
verwaltet sich andernde Menge nach FIFO-Pri ife,
, ,_

Implementierung

Abs. Datentyp

Queue(int n) A = new key[l..n] key[] A
tail = head =1 int tail

Aufgabe: Fangen Sie underflow & overflow ab! [int head

Empty() || if head == tail then return true
else return false
Enqueue(key k) || Altail] = k

stell neues Element
an den Schwanz der
Schlange an

if tail == A.length then tail =1
else tail = tail + 1

k = Alhead]

if head == A.length then head =1

else head = head + 1
return k

Dequeue()

entnimm Element am
Kopf der Schlange

tail head L R
¥ y :

fIIl
Il. Schlange A

Die sinnliche Spur der Erinnerung

Wer lernen will, muss vor allem reden und be-greifen

Der Mensch behdlt von dem ...

... was er liest % L 10 Prozent . ’

=
ﬁ ... was er hort E
I: ... was er sieht @

... was er sieht und hort m @

.. woriiber wir selbst sprechen +€&=>-

... was er selbst ausfiihrt @

HANDLUNGSORIENTIERTES LERNEN ist am effektivsten. Diese Einsicht ist seit fast

20 Jahren bekannt. Damals erschien diese Studie der American Audiovisual Society.
Ergebnis: Von dem, was wir mit eigenen Hiinden tun, behalten wir 90 Prozent im
Gedichtnis, von dem, woriiber wir selbst sprechen, immerhin noch 70 Prozent.
Von der reinen Lektiire eines Buches erinnern wir spiter nur noch 10 Prozent

tail head L R
¥ ¥ : =

fIIl
Il. Schlange A

Die sinnliche Spur der Erinnerung

Wer lernen will, muss vor allem reden und be-greifen

Der Mensch behdlt von dem ...

... was er liest i@%

=
ﬁ ... was er hort @
I: ... was er sieht @

... was er sieht und hort m @

.. woriiber wir selbst sprechen +€&=>-

... was er selbst ausfiihrt ﬁ

HANDLUNGSORIENTIERTES LERNEN ist am effektivsten. Diese Einsicht ist seit fast

20 Jahren bekannt. Damals erschien diese Studie der American Audiovisual Society.
Ergebnis: Von dem, was wir mit eigenen Hiinden tun, behalten wir 90 Prozent im
Gedichtnis, von dem, woriiber wir selbst sprechen, immerhin noch 70 Prozent.
Von der reinen Lektiire eines Buches erinnern wir spiter nur noch 10 Prozent

' 10 Prozent

= 50

tail head AR

Il. Schlange A

] am ﬁ L] .
verwaltet sich andernde Menge nach FIFO-Pri ife,
, ,_

Implementierung

Abs. Datentyp

Queue(int n) A = new key[l..n] key[] A
tail = head =1 int tail

Aufgabe: Fangen Sie underflow & overflow ab! [int head

Empty() || if head == tail then return true
else return false
Enqueue(key k) || Altail] = k

stell neues Element
an den Schwanz der
Schlange an

if tail == A.length then tail =1
else tail = tail + 1

k = Alhead]

if head == A.length then head =1

else head = head + 1
return k

Dequeue()

entnimm Element am
Kopf der Schlange

t%il he?d Al AT N

Il. Schlange A

] am ﬁ L] .
verwaltet sich andernde Menge nach FIFO-Pri ife,
, ,_

Implementierung

Abs. Datentyp

Queue(int n) A = new key[l..n] key[] A
tail = head =1 int tail

Aufgabe: Fangen Sie underflow & overflow ab! [int head

Empty() || if head == tail then return true
else return false
Enqueue(key k) || Altail] = k

stell neues Element
an den Schwanz der
Schlange an

if tail == A.length then tail =1
else tail = tail + 1

k = Alhead]

if head == A.length then head =1

else head = head + 1 Laufzeiten?
return k

Dequeue()

entnimm Element am
Kopf der Schlange

t%il he?d Al AT N

Il. Schlange A

] am ﬁ L] .
verwaltet sich andernde Menge nach FIFO-Pri ife,
, ,_

Implementierung

Abs. Datentyp

Queue(int n) A = new* key[1..n] key[] A
tail = head =1 int tail

Aufgabe: Fangen Sie underflow & overflow ab! [int head

Empty() || if head == tail then return true
else return false
Enqueue(key k) || Altail] = k

stell neues Element
an den Schwanz der
Schlange an

if tail == A.length then tail =1
else tail = tail + 1

k = Alhead]

Dequeue()

entnimm Element am| | if heqd == A.length then head = 1
Kopf der Schlange .
g ° else head = head + 1 Laufzeiten?
return k Alle® O(1).

[l. Liste

Abs. Datentyp Implementierung

[l. Liste

Abs. Datentyp

-

key

'

prev

Implementierung

next

[l. Liste

Abs. Datentyp

-

key

'

prev

Implementierung

next

key’

[l. Liste

Abs. Datentyp

® |key” C/—*/O

-

key

'

nil prev

Implementierung

next

key’

Ill. Liste heade—s

Abs. Datentyp

® |key” C/—*/O key

-

'

nil prev

Implementierung

next

key’

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

® |key” C/—*/O key

-

'

nil prev

Implementierung

next

key’

III LlSte headg o[o key” C/—*/O key O/—*/Q key'| @

-
(doppelt verkettet) nal prev mnext nal

Abs. Datentyp Implementierung

ptr head

III I_iSte heade o[key” 0/—*/0

-

key

'

o key'| @

(doppelt verkettet) nal prev

Abs. Datentyp Implementierung

next

nal

key key
ptr prev
ptr next

ptr head

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

® |key” C/—*/O

-

key

'

P key'| ®

nil prev

Implementierung

next

nal

ltem

key key
ptr prev
ptr next

ptr head

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

® |key” C/—*/O key

-

'

P key'| ®

nil prev

Implementierung

next

nal

List()

ltem

key key
ptr prev
ptr next

ptr head

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

—

-

nal

key

'

prev

Implementierung

next

nal

List()

head = nail

ltem

key key
ptr prev
ptr next

ptr head

III LlSte headg o[o key” C/—*/O key O/—*/Q key'| @

-
(doppelt verkettet) nal prev mnext nal

Abs. Datentyp Implementierung

List() head = nil ltem
key key
ptr prev
ptr next

ptr head

Search(key k)

III LlSte headg o[o key” C/—*/O key O/‘_/Q key'| @

-—
next nil

(doppelt verkettet) nal prev

Implementierung
head = nal ltem

Abs. Datentyp
List()

key key
ptr prev
ptr next

ptr head

Search(k) x = head

III LlSte headg o[o key” C/—*/O key 0/—*/0 key'| @

-
(doppelt verkettet) nal prev mnext nal

Abs. Datentyp Implementierung

List() head = nil ltem

key key
ptr prev
ptr next

ptr head

Search(key k)| | x = head

while x # nil and x.key # k do

L X = x.next

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

nal

® |key” C/—:_/O

key

prev

Implementierung

next

‘/—-L

P key'| ®

nal

List()

head = nail

ltem

key key
ptr prev
ptr next

ptr head

Search(key k)

x = head

while x # nil and x.key # k do
| X = x.next

return x

III LlSte headg o[o key” C/—*/O key 0/—*/0 key'| @

-
(doppelt verkettet) nal prev mnext nal

Abs. Datentyp Implementierung

List() head = nil ltem

key key
ptr prev
ptr next

ptr head

Search(key k)| | x = head

while x # nil and x.key # k do
| X = x.next

return x

Insert(key k)

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

Okey”C/—*/O key (—*/Okeylt

-—

nil prev next nil

Implementierung

List()

head = nail ltem

key key
ptr prev
ptr next

ptr head

Search(key k)

x = head
while x # nil and x.key # k do

| X = x.next
return x

Insert(key k)

x=new Item()

x.key=k; x.prev = nil; x.next = head
if head # nil then head.prev = x
head = x: return x

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

Okey”C/—*/O key (—*/Ckeylt

-—

nil prev next nil

Implementierung

List()

head = nail ltem

key key
ptr prev
ptr next

ptr head

Search(key k)

x = head
while x # nil and x.key # k do

| X = x.next
return x

Insert(key k)

x=new Item()

x.key=k; x.prev = nil; x.next = head
if head # nil then head.prev = x
head = x: return x

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

Okey”C/—*/O key (—*/Ckeylt

-—

nil prev next nil

Implementierung

List()

head = nil|ltem(key k, ltem

key key
ptr prev
ptr next

ptr head

Search(key k)

x = head
while x # nil and x.key # k do

| X = x.next
return x

Insert(key k)

x=new Item()

x.key=k; x.prev = nil; x.next = head
if head # nil then head.prev = x
head = x: return x

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

® |key” C/—*/O key| &

-—

nil prev next

Implementierung

o key'| ®

nal

List()

head = nil|ltem(key k,

key = k
next = p
prev = nil

ltem

key key
ptr prev
ptr next

ptr head

Search(key k)

x = head

while x # nil and x.key # k do

| X = x.next
return x

Insert(key k)

x=new Item()

x.key=k; x.prev = nil; x.next = head
if head # nil then head.prev = x
head = x: return x

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

® |key” C/—*/O key| &

-—

nil prev next

Implementierung

o key'| ®

nal

List()

head = nil|ltem(key k,
key = k
next = p
prev = nil

ltem

key key
ptr prev
ptr next

ptr head

Search(key k)

x = head

while x # nil and x.key # k do

| X = x.next
return x

Insert(key k)

x=new ltem(Jk, head)

x.key=k; x.prev = nil; x.next = head
if head # nil then head.prev = x
head = x: return x

III LlSte headg o[o key” C/—*/O key 0/—*/0 key'| @

-
(doppelt verkettet) nal prev mnext nal

Abs. Datentyp
List()

Implementierung

head = nil|ltem(key k, ptr p) |ltem

key = k key key
next = p ptr prev
prev = nil ptr next

ptr head

Search(key k)| | x = head
while x # nil and x.key # k do

| X = x.next
return x

x=new ltem(Jk, head)

X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x
head = x: return x

Insert(key k)

III LlSte headg o[o key” C/—*/O key 0/—*/0 key'| @

-
(doppelt verkettet) nal prev mnext nal

Abs. Datentyp
List()

Implementierung

head = nil|ltem(key k, ptr p) |ltem

key = k key key
next = p ptr prev
prev = nil ptr next

ptr head

Search(key k)| | x = head
while x # nil and x.key # k do

| X = x.next
return x

x=new ltem(Jk, head)

X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x
head = x: return x

Insert(key k)

Aufgabe:

Implementieren Sie

Delete(ptr x)

I I I _ LlSte headg o[o key” o1 key o1 key'| @
_» e
(doppelt verkettet) nal pTev I next nil

Abs. Datentyp
List()

Implementierung

head = nil|ltem(key k, ptr p) |ltem

key = k key key
next = p ptr prev
prev = nil ptr next

ptr head

Search(key k)| | x = head
while x # nil and x.key # k do

| X = x.next
return x

x=new ltem(Jk, head)

X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x
head = x: return x

Insert(key k)

Aufgabe:

Implementieren Sie

Delete(ptr x)

III LlSte headg o[o key” o1 key o1 key'| @
. .
(doppelt verkettet) nal prev next I nal
X

Abs. Datentyp
List()

Implementierung

head = nil|ltem(key k, ptr p) |ltem

key = k key key
next = p ptr prev
prev = nil ptr next

ptr head

Search(key k)| | x = head
while x # nil and x.key # k do

| X = x.next
return x

x=new ltem(Jk, head)

X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x
head = x: return x

Insert(key k)

Aufgabe:

Implementieren Sie

Delete(ptr x)

III LlSte headg o[o key” o1 key o1 key'| @
A e
(doppelt verkettet) nal I prev next nil
X

Abs. Datentyp
List()

Implementierung

head = nil|ltem(key k, ptr p) |ltem

key = k key key
next = p ptr prev
prev = nil ptr next

ptr head

Search(key k)| | x = head
while x # nil and x.key # k do

| X = x.next
return x

x=new ltem(Jk, head)

X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x
head = x: return x

Insert(key k)

Aufgabe:

Implementieren Sie

Delete(ptr x)

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

nal I prev next nal
X

Implementierung

List()

head = nil|ltem(key k, ptr p) |ltem

key = k key key
next = p ptr prev
prev = nil ptr next

ptr head

Search(key k)

Hausaufgabe:

Benutzen Sie
Stopper!

x = head
while x # nil and x.key # k do

| X = x.next
return x

Insert(key k)
Aufgabe:

Implementieren Sie
Delete(ptr x)

x=new ltem(Jk, head)

X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x
head = x: return x

III LlSte headg o[o key” o1 key o1 key'| @
A e
(doppelt verkettet) nal I prev next nil
X

Abs. Datentyp
List()

Implementierung

head = nil|ltem(key k, ptr p) |ltem

key = k key key
next = p ptr prev
prev = nil ptr next

ptr head

Laufzeiten?

Search(key k)| | x = head
while x # nil and x.key # k do

| X = x.next
return x

x=new ltem(Jk, head)

X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x
head = x: return x

Insert(key k)

III LlSte headg o[o key” C/—*/O key O/—*/Q key'| @
(doppelt verkettet) nal I prev next nil
X

Abs. Datentyp Implementierung

List() - head = nil|ltem(key k, ptr p) |ltem

key = k key key
next = p ptr prev
prev = nil ptr next

Laufzeiten?

ptr head

x = head
while x # nil and x.key # k do

L X = x.next

Search(key k)

return x

Insert(x=new ltem($ k, head)

X Kkey =K, Xx_prev—nit—x-rext=head-
if head # nil then head.prev = x
head = x: return x

k)
I

Delete(ptr x)

III LlSte headg o[o key” C/—*/O key O/—*/Q key'| @
(doppelt verkettet) nal I prev next nil
X

Abs. Datentyp Implementierung

List() - head = nil|ltem(key k, ptr p) |ltem

key = k key key
next = p ptr prev
prev = nil ptr next

Laufzeiten?

ptr head

x = head
while x # nil and x.key # k do

L X = x.next

Search(key k)

return x

Insert(x=new ltem($ k, head)

X Kkey =K, Xx_prev—nit—x-rext=head-
if head # nil then head.prev = x
head = x: return x

k)
I

Delete(ptr x)

III LlSte headg o[o key” C/—*/O key O/—*/Q key'| @
(doppelt verkettet) nal I prev next nil
X

Abs. Datentyp Implementierung

List() - head = nil|ltem(key k, ptr p) |ltem

key = k key key
next = p ptr prev
prev = nil ptr next

Laufzeiten?

ptr head

x = head
while x # nil and x.key # k do

L X = x.next

Search(key k)

return x

Insert(x=new ltem($ k, head)

X Kkey =K, Xx_prev—nit—x-rext=head-
if head # nil then head.prev = x
head = x: return x

k)
I

Delete(ptr x)

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

Implementierung

o key'| ®

lst() o)

Laufzeiten?

head = nil|ltem(key k,
key = k
next = p
prev = nil

ltem

key key
ptr prev
ptr next

ptr head

Search(key k)
O(n)

x = head

while x # nil and x.key # k do

| X = x.next
return x

Insert(key k)
O(1)

Delete(ptr x)

x=new ltem(Jk, head)

X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x

head = x: return x

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

Implementierung

o key'| ®

lst() o)

Laufzeiten?

head = nil|ltem(key k,
key = k
next = p
prev = nil

ltem

key key
ptr prev
ptr next

ptr head

Search(key k)
O(n)

x = head

while x # nil and x.key # k do

| X = x.next
return x

Insert(key k)
O(1)

Delete(ptr x)

x=new ltem(Jk, head)

X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x

head = x: return x

IIl. Liste heade—s
(doppelt verkettet)

Abs. Datentyp

Implementierung

lst() o)

Laufzeiten?

head = nil|ltem(key k, ltem

key = k key key
next = p ptr prev
prev = nil ptr next

ptr head

Search(key k)
O(n)

x = head
while x # nil and x.key # k do

| X = x.next
return x

Insert(key k)
O(1)

Delete(ptr x)

x=new ltem(Jk, head)

X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x
head = x: return x

Von Pseudocode zu Javacode: (1) ltem

ltem(key k,
key = k
next = p
prev = nal

p)

ltem

key key
ptr prev
ptr next

Von Pseudocode zu Javacode: (1) ltem

ltem(key k, ptr p) | Item

key = k key key
next = p ptr prev
prev = nil ptr next

Von Pseudocode zu Javacode: (1) ltem

public class Item { [tem(k p) |ltem
private Object key; key = k key key
private Item prev, next = p ptr prev
private Item next; [_ prev = nil ptr Zzea:t

Von Pseudocode zu Javacode: (1) ltem

public class Item { [tem(k p) |Item
private Object key; key = k key key
private Item prev, next::p. ptr prev
private Item next; [_ prev = nil ptr f:zea:t
public Item(Object k, Item p) {
key = k;
next = p; <

prev = null;

Von Pseudocode zu Javacode: (1) ltem

public class Item { ltem(key k, p) |ltem

private Object key; key = k key key
private Item prev; nert = p ptr prev
private Item next; |_ prev = nul ptr neat
public Item(Object k, Item p) {

key = k;

next = p; <

prev = null;
+
public void setPrev(Item p) prev = p; }
public void setNext(Item p) next = p; }

public Item getPrev()
public Item getNext ()

return prev; }
return next; }

el

public Object getKey() return key; 7}

Von Pseudocode zu Javacode: (1) ltem

public class Item { ltem(key k, p) |ltem

private Object key; key = k key key
private Item prev; nert = p ptr prev
private Item next; |_ prev = nul ptr neat
public Item(Object k, Item p) {

key = k;

next = p; <

prev = null;
+
public void setPrev(Item p) prev = p; }
public void setNext(Item p) next = p; }

public Item getPrev()
public Item getNext ()

return prev; }
return next; }

el

public Object getKey() return key; 7}

Von Pseudocode zu Javacode: (2) List

ptr head

List()
head = nail

Insert(key k)

x=new ltem(k, head)

if head # nil then
| head.prev = x

head = x
return x

Von Pseudocode zu Javacode: (2) List

public class List {
private Item head;|-= ptr head

List()
head = nail

Insert(key k)

x=new ltem(k, head)

if head # nil then
| head.prev = x

head = x
return x

Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;

ptr head

public List() {
head = null;

s

List()
head = nail

Insert(key k)

x=new ltem(k, head)

if head # nil then
| head.prev = x

head = x
return x

Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;|-=

s

public List() {

ptr head

head = null;

List()
head = nail

public Item insert(Object k) {

Ttem x = new Item(k, head); \

if (head !'= null) {
head.setPrev(x);

+
head = x;
return x;

Insert(key k)

x=new ltem(k, head)

if head # nil then
| head.prev = x

head = x
return x

Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;|-=
public List() {

ptr head

head = null;

s

List()
head = nail

if (head !'= null) {
head.setPrev(x);

+
head = x;
return x;

}

public Item insert(Object k) {

Ttem x = new Item(k, head); \

Insert(key k)

x=new ltem(k, head)

if head # nil then
| head.prev = x

head = x
return x

public Item getHead() { return head; }

Von Pseudocode zu Javacode:

(2) List

Search(key k)

x = head

while x # nil and x.key # k do

| X = x.next
return x

10

Von Pseudocode zu Javacode:

(2) List

Search(key k)

x = head

while x # nil and x.key # k do

| X = x.next
return x

10

Von Pseudocode zu Javacode:

(2) List

Search(key k)

X = head
while x # nil and x.key # k do

L X = x.next

return Xx
public Item search(Object k) {
Item x = head;

x = x.getNext () ;
}

return Xx;

while (x != null && x.getKey() != k) {

10

Von Pseudocode zu Javacode:

(2) List

Delete(ptr x)

if x.prev # nil then x.prev.next = x.next
else head = x.next
if x.next # nil then x.next.prev = x.prev

11

Von Pseudocode zu Javacode:

(2) List

Delete(ptr x)

if x.prev # nil then x.prev.next = x.next
else head = x.next
if x.next # nil then x.next.prev = x.prev

l

11

Von Pseudocode zu Javacode: (2) List

Delete(ptr x)

if x.prev # nil then x.prev.next = x.next
else head = x.next
if x.next # nil then x.next.prev = x.prev

l

public void delete(Item x) A
if (x == null) System.out.println("Fehler!");
Item prev = x.getPrev();
Item next = x.getNext();
if (prev != null) prev.setNext(next);
else head = next;
if (next !'= null) next.setPrev(prev);

11

Javacode: (3) Main

public class Listentest {
public static void main(String[] args) {

12

Javacode: (3) Main

public class Listentest {
public static void main(String[] args) {
List myList = new List();

12

Javacode: (3) Main

public class Listentest {
public static void main(String[] args) {
List myList = new List();

myList.insert(new Integer(10));
myList.insert(new Integer(16));

12

12

Javacode: (3) Main

public class Listentest {
public static void main(String[] args) {
List myList = new List();

myList.insert(new Integer(10));
myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");
for (Item it = myList.getHead(); it != null;
it = it.getNext()) A
System.out.println((Integer) it.getKey())

12

Javacode: (3) Main

public class Listentest {
public static void main(String[] args) {
List myList = new List();

myList.insert(new Integer(10));
myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");
for (Item it = myList.getHead(); it != null;
it = it.getNext()) A
System.out.println((Integer) it.getKey()).
Y Was wird hier ausgegeben?

12

Javacode: (3) Main

public class Listentest {
public static void main(String[] args) {
List myList = new List();

myList.insert(new Integer(10));
myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");
for (Item it = myList.getHead(); it != null;
it = it.getNext()) A
System.out.println((Integer) it.getKey())

+

Item it = mylList.search(new Integer(16));
myList.delete(it);

12

Javacode: (3) Main

public class Listentest {
public static void main(String[] args) {
List myList = new List();

myList.insert(new Integer(10));
myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");
for (Item it = myList.getHead(); it != null;
it = it.getNext()) A
System.out.println((Integer) it.getKey())

+

Item it = mylList.search(new Integer(16));
myList.delete(it);

12

Javacode: (3) Main

public class Listentest {
public static void main(String[] args) {
List myList = new List();

myList.insert(new Integer(10));
myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");
for (Item it = myList.getHead(); it != null;
it = it.getNext()) A
System.out.println((Integer) it.getKey())

¥

Item it = mylList.search(new Integer(16));

mYLiSt .delete(it) ; Die Liste enthaelt:
} 16

10
} Fehler!

Warum “Fehler!”?

Item. java
/)

public Item search(Object k) {
Item x = head;
while (x != null && x.getKey() != k) {
x = x.getNext();
}

return Xx;

\

¥ —
/ List. java

public void delete(Item x) A

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);
else head next;

if (next != null) next.setPrev(prev);

\

13

Warum “Fehler!”?

Item. java
/)

public Item search(Object k) {
Item x = head;
while (x != null && x.getKey() != k) {
x = x.getNext();
}

return Xx;

\

¥ —
/ List. java

public void delete(Item x) A

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);
else head next;

if (next != null) next.setPrev(prev);

\

13

Warum “Fehler!”?

Item. java
[\

public Item search(Object k) {
Item x = head;

while (x != null && x.getKey() != k) {
x = x.getNext();

}

return Xx;

/Listentest.java

myList.insert(new Integer(16));

Item it = myList.search(new Integer(16))
myList.delete(it);

public void delete(Item x) A

if (x == null) System.out.println("Fehler!");

Item prev
Item next

x.getPrev();
x.getNext () ;

if (prev != null) prev.setNext(next);
else head = next;
if (next != null) next.setPrev(prev);

w o

13

Warum “Fehler!”?

Item. java
[\

public Item search(Object k) {
Item x = head;

while (x != null && x.getKey() != k) {
x = x.getNext();

}

return Xx;

/Listentest.java

myList.insert(new Integer(16));

Item it = myList.search(new Integer(16))
myList.delete(it);

public void delete(Item x) A

if (x == null) System.out.println("Fehler!");

Item prev
Item next

x.getPrev();
x.getNext () ;

if (prev != null) prev.setNext(next);
else head = next;
if (next != null) next.setPrev(prev);

w o

13

Warum “Fehler!”?

Item. java
[\

public Item search(Object k) {
Item x = head;

while (x != null| && x.getKey() != k) {

x = x.getNext();

}

return Xx;

/Listentest.java

myList.insert(new Integer(16));

Item it = myList.search(new Integer(16))
myList.delete(it);

public void delete(Item x) A

if (x == null) System.out.println("Fehler!");

Item prev
Item next

x.getPrev();
x.getNext () ;

if (prev != null) prev.setNext(next);
else head = next;
if (next != null) next.setPrev(prev);

w o

13

Warum “Fehler!”?

Item. java
[\

public Item search(Object k) {
Item x = head;

while (x !'= null| &&|x.getKey() !'= k) {

x = x.getNext();

}

return Xx;

/Listentest.java

myList.insert(new Integer(16));

Item it = myList.search(new Integer(16))
myList.delete(it);

public void delete(Item x) A

if (x == null) System.out.println("Fehler!");

Item prev
Item next

x.getPrev();
x.getNext () ;

if (prev != null) prev.setNext(next);
else head = next;
if (next != null) next.setPrev(prev);

w o

13

Warum “Fehler!”?

Item. java
[\

public Item search(Object k) {
Item x = head;

while (x !'= null| &&|x.getKey() !'= k) {

x = x.getNext();

}

return Xx;

/Listentest.java

myList.insert(new Integer(16));

gleiche Zahlen, aber verschiedene Objekte!
Item it = myList.search(new Integer(16))

myList.delete(it) ;

public void delete(Item x) A

if (x == null) System.out.println("Fehler!");

Item prev
Item next

x.getPrev();
x.getNext () ;

if (prev != null) prev.setNext(next);
else head = next;
if (next != null) next.setPrev(prev);

w o

13

Warum “Fehler!”?

Item. java
[\

public Item search(Object k) {
Item x = head; 'k.equals(x.getKey())

while (x != null && x.getKeyO—=K) {
x = x.getNext();

}

return Xx;

/Listentest.java

myList.insert(new Integer(16));

gleiche Zahlen, aber verschiedene Objekte!
Item it = myList.search(new Integer(16))

myList.delete(it) ;

public void delete(Item x) A
if (x == null) System.out.println("Fehler!");

Item prev
Item next

x.getPrev();
x.getNext () ;

if (prev != null) prev.setNext(next);
else head = next;
if (next != null) next.setPrev(prev);

w o

13

Warum “Fehler!”?

Item. java
[\

public Item search(Object k) {
Item x = head; 'k.equals(x.getKey())

while (x != null && x.getKeyO—=K) {
x = x.getNext();

}

return Xx;

/Listentest.java

myList.insert(new Integer(16));

gleiche Zahlen, aber verschiedene Objekte!
Item it = myList.search(new Integer(16))

myList.delete(it) ;

w o

public void delete(Item x) A
if (x == null) System.out.println("Fehler!");

Item prev
Item next

if (prev != null) prev.setNext(next);
else head = next;
if (next != null) next.setPrev(prev);

x.getPrev();
x.getNext () ;

13

Warum “Fehler!”?

Item. java
[\

public Item search(Object k) {
Item x = head; 'k.equals(x.getKey())

while (x != null && x.getKeyO—=K) {
x = x.getNext();

}

return Xx;

/Listentest.java

myList.insert(new Integer(16));

gleiche Zahlen, aber verschiedene Objekte!
Item it = myList.search(new Integer(16))

myList.delete(it) ;

w o

public void delete(Item x) A
if (x == null) System.out.println("Fehler!");

}

Item prev
Item next

if (prev != null) prev.setNext(next);
else head = next;
if (next != null) next.setPrev(prev);

Unschon: Klasse Item muss public sein, so dass Anwender]
und Bibliotheksklasse List dariiber kommunizieren kdnnen.

x.getPrev();
x.getNext () ;

13

Ubersicht Elementare Datenstrukturen

Operationen

Stapel

Schlange

Liste

Einfligen

Entfernen

weitere Oper.

14

Ubersicht Elementare Datenstrukturen

Operationen Stapel Schlange Liste
Einfligen Push()
Entfernen Pop()

weitere Oper.

Top()

14

Ubersicht Elementare Datenstrukturen

Operationen Stapel Schlange Liste
Einfligen Push() Enqueue()
Entfernen Pop() Dequeue()

weitere Oper.

Top()

14

Ubersicht Elementare Datenstrukturen

Operationen Stapel Schlange Liste
Einfligen Push() Enqueue()
Entfernen Pop() Dequeue()

weitere Oper.

Top()

14

14

Ubersicht Elementare Datenstrukturen

Operationen Stapel Schlange Liste
Einfligen Push() Enqueue() Insert()
Entfernen Pop() Dequeue() Delete()
weitere Oper. Top() Search()

14

Ubersicht Elementare Datenstrukturen

Operationen Stapel Schlange Liste
Einfligen Push() Enqueue() Insert()
Entfernen Pop() Dequeue() Delete()
weitere Oper. Top() Search()

14

Ubersicht Elementare Datenstrukturen

Operationen Stapel Schlange Liste
Einfligen Push() Enqueue() Insert()
Entfernen Pop() Dequeue() Delete()
weitere Oper. Top() Search()

14

Ubersicht Elementare Datenstrukturen

Operationen Stapel Schlange Liste
Einfligen Push() Enqueue() Insert()
Entfernen Pop() Dequeue() Delete()
weitere Oper. Top() Search()

14

Ubersicht Elementare Datenstrukturen

Operationen Stapel Schlange Liste
Einfligen Push() Enqueue() Insert()
Entfernen Pop() Dequeue() Delete()
weitere Oper. Top() Search()

14

Ubersicht Elementare Datenstrukturen

Operationen Stapel Schlange Liste
Einfligen Push() Enqueue() Insert()
Entfernen Pop() Dequeue() Delete()
weitere Oper. Top() Search()

14

Ubersicht Elementare Datenstrukturen

Operationen Stapel Schlange Liste
Einfligen Push() Enqueue() Insert()
Entfernen Pop() Dequeue() Delete()
weitere Oper. Top() Search()

Ubersicht Elementare Datenstrukturen

Operationen Stapel Schlange Liste
Einfligen Push() Enqueue() Insert()
— Einschrankung nur oben nur hinten (nur vorne)
beliebig

Entfernen Pop() Dequeue() Delete()
— Einschrankung nur oben nur vorne beliebig
weitere Oper. Top() Head() Search()

(auBer Konstruktor —I— |

und Empty()) dl ()

Alle hier aufgelisteten Operationen auBer Search() laufen in O(1) Zeit!

Listen sind machtiger als Stapel/Schlangen. Wozu also Stapel/Schlangen?

14

	Titel
	Zur Erinnerung
	Beispiel
	Teil III [CLRS]
	I. Stapel
	II. Schlange
	III. Liste
	Java: Item
	Java: Liste
	Java: Main
	Warum Fehler?
	Übersicht Elementare Datenstrukturen

