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Konzept, mit dem man Daten speichert und anordnet,
so dass man sie schnell finden und andern kann.

Abstrakter Datentyp

beschreibt die ,, Schnittstelle” einer Datenstruktur —
welche Operationen werden unterstiitzt?

Implementierung

wie wird die gewiinschte Funktionalitat realisiert:
— wie sind die Daten gespeichert (Feld, Liste, ...)?
— welche Algorithmen implementieren die Operationen?
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Prioritatsschlange:

verwaltet Elemente einer Menge M, wobei jedes
Element x € M eine Prioritat x.key hat.

Abstrakter Datentyp

stellt folgende Operationen bereit:

O(logn
Insert ExtractMax, Incr@( &)

Implementierung 2

— Daten werden in einem Heap gespeichert
— neue Elemente werden angehangt und raufgereicht
— Maximum steht immer in der Wurzel des Heaps
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infoo

key .




Teil 11l [CLRS]

Dynamische Menge: PAl w

verwaltet Elemente einer sich andernden Menge M

Abstrakter Datentyp Funktionalitat
Insert(key k, )
Delete(ptr x)




Teil 11l [CLRS]

Dynamische Menge:

verwaltet Elemente einer sich dndernden Menge M

Abstrakter Datentyp Funktionalitat
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Delete(ptr x) o M = M\ {(x.key, x.info)}

M
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=
=

top

h_

if top == 0 then return true
else return false

top = top + 1
Altop] = k

Aufgabe:

Empty()

Push(key k)

Pop()

Schreiben Sie Pseudocode, der das
oberste Element vom Stapel nimmt
und zuruckgibt!
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A
top

h_

Empty() || if top == 0 then return true
else return false

Push(key k) top = top + 1

Altop] = k

Pop()

top = top — 1
return Altop + 1]
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top

h_

Empty() || if top == 0 then return true
else return false
Push(key k) top = top + 1
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Empty() || if top == 0 then return true
else return false
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return Altop + 1]

if Empty() then ... else return A[top]




|. Stapel

verwaltet sich andernde Menge nach LIFO-Prinzip

Abstr. Datentyp|| Implementierung
Stack(int n)

Empty() || if top == 0 then return true
else return false
Push(key k) top = top + 1
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top = top — 1
return Altop + 1]

if Empty() then ... else return A[top]
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Stack(int n)

A = new key|[l..n]
top =0

Empty()

if top == 0 then return true
else return false

Push(key k)

top = top + 1
Altop] = k

Pop()

if Empty() then error ,,underflow"
else

top = top — 1
return Altop + 1]

if Empty() then ... else return A[top]
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Implementierung

Stack(int n)

A = new key|[l..n]
top =0

Empty()

if top == 0 then return true
else return false

Push(key k)

top = top + 1 [if top > A.length then
Altop] = k error ,,overflow"

Pop()

if Empty() then error ,,underflow"
else

top = top — 1
return Altop + 1]

if Empty() then ... else return A[top]
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Stack(int n)

Implementierung

A = new key|[l..n] A

top =0 top

if top == 0 then return true
else return false

top = top + 1 [if top > A.length then
Altop] = k error ,,overflow"

if Empty() then error ,,underflow"

Empty()

Push(key k)

Pop()
else Laufzeiten?
top = top — 1
return Altop + 1]

if Empty() then ... else return A[top]
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Abstr. Datentyp
Stack(int n)

Implementierung

A = new" key|[1..n] A

top =0 top

if top == 0 then return true
else return false

top = top + 1 [if top > A.length then
Altop] = k error ,,overflow"

if Empty() then error ,,underflow"

Empty()

Push(key k)

Pop()

else Laufzeiten?
top = top — 1 Alle* O(1),
return Altop + 1] d.h. konstant.

if Empty() then ... else return A[top]
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Pop()
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> Konstruktor Attribute { A
top

Empty() Aufgabe:

Fertigen Sie ein
UML-Diagramm fiir
die Klasse Stack an!

Stack

_ —top: int
Attribute { —A- key[]
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Stack(int n) \ A
top

> Konstruktor Attribute {

Empty() Aufgabe:

Fertigen Sie ein
Push( k) UML-Diagramm fiir
die Klasse Stack an!

Stack
_ —top: Int
Attribute { —A- key[]

+Empty(): boolean
Methoden +Push(key)

Pop() > Methoden
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Abs. Datentyp
Queue(int n)

Implementierung

key[] A
Int tail
Int head
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" anm ﬁ "
verwaltet sich andernde Menge nach FIFO-PrIgF

Abs. Datentyp
Queue(int n)

Implementierung

A = new key[l..n] key[] A
tail = head =1 int tail
Int head
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Il. Schlange A

" anm ﬁ "
verwaltet sich andernde Menge nach FIFO-PrIgF

Abs. Datentyp
Queue(int n)

Implementierung

A = new key[l..n] key[] A
tail = head =1 int tail
Int head

Empty()
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—

verwaltet sich and

Abs. Datentyp
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A = new key[l..n] key[] A
tail = head =1 int tail
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Empty() || if head == tail then return true
else return false
Enqueue(key k) || Altail] = k
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Schlange an

if tail == A.length then tail =1
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if head == A.length then head =1

else head = head + 1
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Queue(int n) A = new key[l..n] key[] A
tail = head =1 int tail

Aufgabe: Fangen Sie underflow & overflow ab! [int head

Empty() || if head == tail then return true
else return false
Enqueue(key k) || Altail] = k

stell neues Element
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Schlange an

if tail == A.length then tail =1
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k = Alhead]

if head == A.length then head =1
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return k

Dequeue()

entnimm Element am
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Die sinnliche Spur der Erinnerung

Wer lernen will, muss vor allem reden und be-greifen

Der Mensch behdlt von dem ...

... was er liest % L 10 Prozent . ’

=
ﬁ ... was er hort E
I: ... was er sieht @

... was er sieht und hort m @

.. woriiber wir selbst sprechen +€&=>-

... was er selbst ausfiihrt @

HANDLUNGSORIENTIERTES LERNEN ist am effektivsten. Diese Einsicht ist seit fast

20 Jahren bekannt. Damals erschien diese Studie der American Audiovisual Society.
Ergebnis: Von dem, was wir mit eigenen Hiinden tun, behalten wir 90 Prozent im
Gedichtnis, von dem, woriiber wir selbst sprechen, immerhin noch 70 Prozent.
Von der reinen Lektiire eines Buches erinnern wir spiter nur noch 10 Prozent
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Ergebnis: Von dem, was wir mit eigenen Hiinden tun, behalten wir 90 Prozent im
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Von der reinen Lektiire eines Buches erinnern wir spiter nur noch 10 Prozent
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Abs. Datentyp

Queue(int n) A = new key[l..n] key[] A
tail = head =1 int tail

Aufgabe: Fangen Sie underflow & overflow ab! [int head

Empty() || if head == tail then return true
else return false
Enqueue(key k) || Altail] = k

stell neues Element
an den Schwanz der
Schlange an

if tail == A.length then tail =1
else tail = tail + 1

k = Alhead]

if head == A.length then head =1

else head = head + 1
return k

Dequeue()

entnimm Element am
Kopf der Schlange
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Abs. Datentyp

Queue(int n) A = new* key[1..n] key[] A
tail = head =1 int tail

Aufgabe: Fangen Sie underflow & overflow ab! [int head

Empty() || if head == tail then return true
else return false
Enqueue(key k) || Altail] = k

stell neues Element
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Schlange an

if tail == A.length then tail =1
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k = Alhead]
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return k Alle® O(1).
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key key
ptr prev
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Search(key k)
O(n)
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while x # nil and x.key # k do

| X = x.next
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O(1)

Delete(ptr x)
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X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x

head = x: return x
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while x # nil and x.key # k do
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Delete(ptr x)
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X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x
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lst() o)

Laufzeiten?

head = nil|ltem(key k, ltem

key = k key key
next = p ptr prev
prev = nil ptr next

ptr head

Search(key k)
O(n)

x = head
while x # nil and x.key # k do

| X = x.next
return x

Insert(key k)
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Delete(ptr x)

x=new ltem(Jk, head)

X ke =K, X-prev—ni—x-rext=head-
if head # nil then head.prev = x
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Von Pseudocode zu Javacode: (1) ltem

ltem(key k,
key = k
next = p
prev = nal

p)

ltem

key key
ptr prev
ptr next




Von Pseudocode zu Javacode: (1) ltem

ltem(key k, ptr p) | Item

key = k key key
next = p ptr prev
prev = nil ptr next




Von Pseudocode zu Javacode: (1) ltem

public class Item { [tem( k p) |ltem
private Object key; key = k key key
private Item prev, next = p ptr prev
private Item next; [_ prev = nil ptr Zzea:t




Von Pseudocode zu Javacode: (1) ltem

public class Item { [tem( k p) |Item
private Object key; key = k key key
private Item prev, next::p. ptr prev
private Item next; [_ prev = nil ptr f:zea:t
public Item(Object k, Item p) {
key = k;
next = p; <

prev = null;




Von Pseudocode zu Javacode: (1) ltem

public class Item { ltem(key k, p) |ltem

private Object key; key = k key key
private Item prev; nert = p ptr prev
private Item next; |_ prev = nul ptr neat
public Item(Object k, Item p) {

key = k;

next = p; <

prev = null;
+
public void setPrev(Item p) prev = p; }
public void setNext(Item p) next = p; }

public Item getPrev()
public Item getNext ()

return prev; }
return next; }

el

public Object getKey() return key; 7}
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Von Pseudocode zu Javacode: (2) List

ptr head

List()
head = nail

Insert(key k)

x=new ltem(k, head)

if head # nil then
| head.prev = x

head = x
return x
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private Item head;|-= ptr head
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head = nail

Insert(key k)

x=new ltem(k, head)
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Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;

ptr head

public List() {
head = null;

s

List()
head = nail

Insert(key k)

x=new ltem(k, head)

if head # nil then
| head.prev = x

head = x
return x




Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;|-=

s

public List() {

ptr head

head = null;

List()
head = nail

public Item insert(Object k) {

Ttem x = new Item(k, head); \

if (head !'= null) {
head.setPrev(x);

+
head = x;
return x;

Insert(key k)

x=new ltem(k, head)

if head # nil then
| head.prev = x

head = x
return x




Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;|-=
public List() {

ptr head

head = null;

s

List()
head = nail

if (head !'= null) {
head.setPrev(x);

+
head = x;
return x;

}

public Item insert(Object k) {

Ttem x = new Item(k, head); \

Insert(key k)

x=new ltem(k, head)

if head # nil then
| head.prev = x

head = x
return x

public Item getHead() { return head; }




Von Pseudocode zu Javacode:

(2) List

Search(key k)

x = head

while x # nil and x.key # k do

| X = x.next
return x
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Search(key k)
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Von Pseudocode zu Javacode:

(2) List

Search(key k)

X = head
while x # nil and x.key # k do

L X = x.next

return Xx
public Item search(Object k) {
Item x = head;

x = x.getNext () ;
}

return Xx;

while (x != null && x.getKey() != k) {
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Von Pseudocode zu Javacode:

(2) List

Delete(ptr x)

if x.prev # nil then x.prev.next = x.next
else head = x.next
if x.next # nil then x.next.prev = x.prev
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Von Pseudocode zu Javacode:

(2) List

Delete(ptr x)

if x.prev # nil then x.prev.next = x.next
else head = x.next
if x.next # nil then x.next.prev = x.prev

l
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Von Pseudocode zu Javacode: (2) List

Delete(ptr x)

if x.prev # nil then x.prev.next = x.next
else head = x.next
if x.next # nil then x.next.prev = x.prev

l

public void delete(Item x) A
if (x == null) System.out.println("Fehler!");
Item prev = x.getPrev();
Item next = x.getNext();
if (prev != null) prev.setNext(next);
else head = next;
if (next !'= null) next.setPrev(prev);
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Javacode: (3) Main

public class Listentest {
public static void main(String[] args) {
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Javacode: (3) Main

public class Listentest {
public static void main(String[] args) {
List myList = new List();

myList.insert(new Integer(10));
myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");
for (Item it = myList.getHead(); it != null;
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Item it = mylList.search(new Integer(16));
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} 16

10
} Fehler!



Warum “Fehler!”?

Item. java
/ )

public Item search(Object k) {
Item x = head;
while (x != null && x.getKey() != k) {
x = x.getNext();
}

return Xx;

\

¥ —
/ List. java

public void delete(Item x) A

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);
else head next;

if (next != null) next.setPrev(prev);

\
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Warum “Fehler!”?
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Warum “Fehler!”?

Item. java
[ \

public Item search(Object k) {
Item x = head; 'k.equals(x.getKey())

while (x != null && x.getKeyO—=K) {
x = x.getNext();

}

return Xx;

/Listentest.java

myList.insert(new Integer(16));

gleiche Zahlen, aber verschiedene Objekte!
Item it = myList.search(new Integer(16))

myList.delete(it) ;

w o

public void delete(Item x) A
if (x == null) System.out.println("Fehler!");

}

Item prev
Item next

if (prev != null) prev.setNext(next);
else head = next;
if (next != null) next.setPrev(prev);

Unschon: Klasse Item muss public sein, so dass Anwender]
und Bibliotheksklasse List dariiber kommunizieren kdnnen.

x.getPrev();
x.getNext () ;
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Ubersicht Elementare Datenstrukturen

Operationen

Stapel

Schlange

Liste

Einfligen

Entfernen

weitere Oper.
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Ubersicht Elementare Datenstrukturen

Operationen Stapel Schlange Liste
Einfligen Push() Enqueue() Insert()
— Einschrankung nur oben nur hinten (nur vorne)
beliebig

Entfernen Pop() Dequeue() Delete()
— Einschrankung nur oben nur vorne beliebig
weitere Oper. Top() Head() Search()

(auBer Konstruktor —I— |

und Empty()) dl ()

Alle hier aufgelisteten Operationen auBer Search() laufen in O(1) Zeit!

Listen sind machtiger als Stapel/Schlangen. Wozu also Stapel/Schlangen?
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