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Algorithmen und Datenstrukturen

Wintersemester 2020/21

11. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Elementare Datenstrukturen:
Stapel + Schlange + Liste
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Datenstruktur:

Abstrakter Datentyp

beschreibt die
”
Schnittstelle“ einer Datenstruktur –

welche Operationen werden unterstützt?

Implementierung

wie wird die gewünschte Funktionalität realisiert:
– wie sind die Daten gespeichert (Feld, Liste, . . .)?
– welche Algorithmen implementieren die Operationen?

Konzept, mit dem man Daten speichert und anordnet,
so dass man sie schnell finden und ändern kann.
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Prioritätsschlange:

stellt folgende Operationen bereit:
Insert, FindMax, ExtractMax, IncreaseKey

verwaltet Elemente einer Menge M, wobei jedes
Element x ∈ M eine Priorität x .key hat.

Implementierung 2

Abstrakter Datentyp

– Daten werden in einem Heap gespeichert
– neue Elemente werden angehängt und raufgereicht
– Maximum steht immer in der Wurzel des Heaps

O(1)

O(log n)
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if top == 0 then return true
else return false
top = top + 1

A[top] = k

if Empty() then ... else return A[top]

if Empty() then error
”
underflow“

else
top = top − 1
return A[top + 1]

Stack(int n) A = new key[1..n]
top = 0
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Von Pseudocode zu Javacode: (1) Item
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Von Pseudocode zu Javacode: (1) Item
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private Item prev;
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public class Item {

private Object key;

private Item prev;

private Item next;

public Item(Object k, Item p) {

key = k;

next = p;

prev = null;

}
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Von Pseudocode zu Javacode: (1) Item
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key key
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key = k
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public class Item {

private Object key;

private Item prev;

private Item next;

public Item(Object k, Item p) {

key = k;

next = p;

prev = null;

}

}

public void setPrev(Item p) { prev = p; }

public void setNext(Item p) { next = p; }

public Object getKey() { return key; }

public Item getPrev() { return prev; }

public Item getNext() { return next; }
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Von Pseudocode zu Javacode: (1) Item

Item

ptr prev
key key

ptr next

Item(key k, ptr p)
key = k

prev = nil
next = p

public class Item {

private Object key;

private Item prev;

private Item next;

public Item(Object k, Item p) {

key = k;

next = p;

prev = null;

}

}

public void setPrev(Item p) { prev = p; }

public void setNext(Item p) { next = p; }

public Object getKey() { return key; }

public Item getPrev() { return prev; }

public Item getNext() { return next; }

setter-
und
getter-
Methoden





9

Von Pseudocode zu Javacode: (2) List

List()

head = nil

ptr Insert(key k)

x =new Item(k, head)
if head 6= nil then

head .prev = x

head = x
return x

ptr head
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Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;

List()

head = nil

ptr Insert(key k)

x =new Item(k, head)
if head 6= nil then

head .prev = x

head = x
return x

ptr head
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Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;

public List() {

head = null;

}

List()

head = nil

ptr Insert(key k)

x =new Item(k, head)
if head 6= nil then

head .prev = x

head = x
return x

ptr head
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Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;

public List() {

head = null;

}

public Item insert(Object k) {

Item x = new Item(k, head);

if (head != null) {

head.setPrev(x);

}

head = x;

return x;

}

List()

head = nil

ptr Insert(key k)

x =new Item(k, head)
if head 6= nil then

head .prev = x

head = x
return x

ptr head
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Von Pseudocode zu Javacode: (2) List

public class List {

private Item head;

public List() {

head = null;

}

public Item insert(Object k) {

Item x = new Item(k, head);

if (head != null) {

head.setPrev(x);

}

head = x;

return x;

}

public Item getHead() { return head; }

List()

head = nil

ptr Insert(key k)

x =new Item(k, head)
if head 6= nil then

head .prev = x

head = x
return x

ptr head
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Von Pseudocode zu Javacode: (2) List

ptr Search(key k)

x = head
while x 6= nil and x .key 6= k do

x = x .next
return x
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Von Pseudocode zu Javacode: (2) List

ptr Search(key k)

x = head
while x 6= nil and x .key 6= k do

x = x .next
return x
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Von Pseudocode zu Javacode: (2) List

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

ptr Search(key k)

x = head
while x 6= nil and x .key 6= k do

x = x .next
return x
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Von Pseudocode zu Javacode: (2) List

Delete(ptr x)

if x .prev 6= nil then x .prev .next = x .next
else head = x .next
if x .next 6= nil then x .next .prev = x .prev
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Von Pseudocode zu Javacode: (2) List

Delete(ptr x)

if x .prev 6= nil then x .prev .next = x .next
else head = x .next
if x .next 6= nil then x .next .prev = x .prev
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Von Pseudocode zu Javacode: (2) List

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

}

Delete(ptr x)

if x .prev 6= nil then x .prev .next = x .next
else head = x .next
if x .next 6= nil then x .next .prev = x .prev
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Javacode: (3) Main

public class Listentest {

public static void main(String[] args) {

List myList = new List();

myList.insert(new Integer(10));

myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");

for (Item it = myList.getHead(); it != null;

it = it.getNext()) {

System.out.println((Integer) it.getKey());

}

Item it = myList.search(new Integer(16));

myList.delete(it);

}

}
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Was wird hier ausgegeben?
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Javacode: (3) Main

public class Listentest {

public static void main(String[] args) {

List myList = new List();

myList.insert(new Integer(10));

myList.insert(new Integer(16));

System.out.println("Die Liste enthaelt:");

for (Item it = myList.getHead(); it != null;

it = it.getNext()) {

System.out.println((Integer) it.getKey());

}

Item it = myList.search(new Integer(16));

myList.delete(it);

}

}

Die Liste enthaelt:
16
10
Fehler!



13

Warum “Fehler!”?
Item.java

public Item search(Object k) {

Item x = head;

while (x != null && x.getKey() != k) {

x = x.getNext();

}

return x;

}

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

List.java
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gleiche Zahlen, aber verschiedene Objekte!
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public Item search(Object k) {
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x = x.getNext();

}

return x;

}

public void delete(Item x) {

if (x == null) System.out.println("Fehler!");

Item prev = x.getPrev();

Item next = x.getNext();

if (prev != null) prev.setNext(next);

else head = next;

if (next != null) next.setPrev(prev);

}

Listentest.java

!k.equals(x.getKey())

List.java

myList.insert(new Integer(16));

...

Item it = myList.search(new Integer(16));

myList.delete(it);

gleiche Zahlen, aber verschiedene Objekte!

[Unschön: Klasse Item muss public sein, so dass Anwender
und Bibliotheksklasse List darüber kommunizieren können.]X
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Übersicht Elementare Datenstrukturen
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Listen sind mächtiger als Stapel/Schlangen. Wozu also Stapel/Schlangen?
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