Computational Geometry

Lecture 6:

Point Localization
or

Where am I?

Part I:
Detinition & First Approach

Philipp Kindermann Winter Semester 2020

What’s the Problem?

[Stefan-Xp, CC BY-SA 3.0, via wikipedia]

What’s the Problem?

[Stefan-Xp, CC BY-SA 3.0, via wikipedia]

What's the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

What's the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

What's the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

What's the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

What's the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query:

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

What’s the Problem?

/L]

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

What’s the Problem?

/L]

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab
— search in slab

What’s the Problem?

|/ Lx]

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab
— search in slab

What’s the Problem?

|/ Lx]

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into s.

Query: — find correct slab

abs induced by vertices.

> 2 bin. searches!

— search in slab

/

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into s.

Query: — find correct slab

abs induced by vertices.

> 2 bin. searches!

— search in slab

/

O(logn)

time!

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab
—search in slab |

But: O(logn)
time!

> 2 bin. searches!

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? O(logn)
time!

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? ©(n?) Ot(log '")
ime!

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into s.

Query: — find correct slab

abs induced by vertices.

> 2 bin. searches!

— search in slab
But: Space? ©(n?)

/

Task: Give lower-bound example!

O(logn)

time!

What’s the Problem?
| —|

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? ©(n?) O(logn)

‘mel
Task: Give lower-bound example! time:

What’s the Problem?
|

C

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? ©(n?) O(logn)

‘mel
Task: Give lower-bound example! time:

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? ©(n?) O(logn)

‘mel
Task: Give lower-bound example! time:

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? ©(n?) O(logn)

‘mel
Task: Give lower-bound example! time:

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? ©(n?) O(logn)

‘mel
Task: Give lower-bound example! time:

What’s the Problem?

7

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into s.

Query: — find correct slab

abs induced by vertices.

> 2 bin. searches!

— search in slab
But: Space? ©(n?)

/

Task: Give lower-bound example!

O(logn)

time!

What’s the Problem?

7

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? ©(n?) O(logn)

‘mel
Task: Give lower-bound example! time:

What’s the Problem?

ot S
C) +n—-1
C)
OO
7
Task: Given a planar subdivision § with n segments,

preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? ©(n?) O(logn)

‘mel
Task: Give lower-bound example! time:

What’s the Problem?

ot S
C) +n—-1
C)
OO
7
Task: Given a planar subdivision § with n segments,

preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? ©(n?) O(logn)

‘mel
Task: Give lower-bound example! time:

What’s the Problem?

ot S
C) +n—-1
C)
+ ..
OO
7
Task: Given a planar subdivision § with n segments,

preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? ©(n?) O(logn)

‘mel
Task: Give lower-bound example! time:

What’s the Problem?

ot S
C) +n—-1
C)
+ ..
o e = n’/4
7
Task: Given a planar subdivision § with n segments,

preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? ©(n?) O(log'n)
Task: Give lower-bound example! time:

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? ©(n?) Preproc? O(logn)
time!

What’s the Problem?

Task: Given a planar subdivision § with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition § into slabs induced by vertices.

Query: — find correct slab

, > 2 bin. searches!
— search in slab

/

But: Space? @(n?) Preproc? O(n®logn) Ot<108'”)
ime!

Computational Geometry

Lecture 6:

Point Localization
or

Where am I?

Part II:
Decreasing the Complexity

Philipp Kindermann Winter Semester 2020

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

A A

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

A A

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

A A A A

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

A A

o=
o%
o=

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

R

Assumption: S is in general position, that is,
no two vertices have the same x-coordinates.

Decreasing the Complexity

Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

See Lecture 5

R

Assumption: S is in general position, that is,
no two vertices have the same x-coordinates.

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length contained in the boundary of the face.

-

—+

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length contained in the boundary of the face.

—+

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length contained in the boundary of the face.

-

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length contained in the boundary of the face.

—+

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length contained in the boundary of the face.

—+

Observation: § in gen. pos. = each face A of 7(S) has:

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length contained in the boundary of the face.

-

Observation: § in gen. pos. = each face A of 7(S) has:
— one or two vertical sides

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length contained in the boundary of the face.

L “~— top(A)

T ~~bot(A)

Observation: § in gen. pos. = each face A of 7(S) has:
— one or two vertical sides
— exactly 2 non-vertical sides

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length contained in the boundary of the face.

L “~— top(A)

T wat(A)
Observation: § in gen. pos. = each face A of 7(S) has:

— one or two vertical sides
Left side: { A

— exactly 2 non-vertical sides

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length contained in the boundary of the face.

L “~— top(A)

T ~~bot(A)

Observation: § in gen. pos. = each face A of 7(S) has:
— one or two vertical sides
— exactly 2 non-vertical sides

Left side: i A E

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length Contamed in the boundary of the face.

B T top(A
‘\!;r ~—bot(A
Observation: § in gen. pos. = each face A of 7(S) has:

— one or two Vertlcal sides
— exactly 2 non-vertical sides

Left side: jf '}7A\ 3?

- 10

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length Contamed in the boundary of the face.

B T top(A
‘\!;r ~—bot(A
Observation: § in gen. pos. = each face A of 7(S) has:

— one or two Vertlcal sides
— exactly 2 non-vertical sides

Left side: jf '}7A\ 3? 4

-11

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length contained in the boundary of the face.

L “~— top(A)

T ~~bot(A)

Observation: § in gen. pos. = each face A of 7(S) has:
— one or two vertical sides
— exactly 2 non-vertical sides

Left side: ('iA 14%4

leftp(A)

-12

Notation

Definition: A side of a face of 7 (S) is a segment of max.
length contained in the boundary of the face.

l | 4 top(A

1 ~—bot(A

Observation: § in gen. pos. = each face A of 7(S) has:
— one or two Vertlcal sides
— exactly 2 non-vertical sides

Left side: ('th 1&@ A A

Complexity of T (S)

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Complexity of T (S) p—

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Complexity of T (S) ﬂ [

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Complexity of T (S) ﬂ I

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Complexity of T (S) ﬂ [

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < vtc and < trapezoids.

Complexity of T (S) ﬂ

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < vtc and < trapezoids.

Proof. ~ The vertices of T (S) are
— endpts of segments in &

Complexity of T (S) ﬂ

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < vtc and < trapezoids.

Proof. ~ The vertices of T (S) are
— endpts of segments in & < 2n

Complexity of T (S) ﬂ [

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < vtc and < trapezoids.

Proof. ~ The vertices of T (S) are

— endpts of segments in & < 2n
— endpts of vertical extensions

Complexity of T (S) ﬂ [

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < vtc and < trapezoids.

Proof. The vertices of T (S) are

— endpts of segments in & < 2n
— endpts of vertical extensions < 2 -2n

Complexity of T (S) ﬂ

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < vtc and < trapezoids.

Proof. The vertices of T (S) are

— endpts of segments in & < 2n
— endpts of vertical extensions < 2 -2n
— vertices of R

Complexity of T (S) ﬂ

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < vtc and < trapezoids.

Proof. The vertices of T (S) are

— endpts of segments in & < 2n
— endpts of vertical extensions < 2 -2n
— vertices of R 4

Complexity of T (S) ﬂ

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < vtc and < trapezoids.

Proof. The vertices of T (S) are

— endpts of segments in & < 2n
— endpts of vertical extensions < 2-2n
— vertices of R 4 J

\

Complexity of T (S) ﬂ

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < vtc and < trapezoids.

Proof. The vertices of T (S) are

— endpts of segments in & < 2n
— endpts of vertical extensions < 2-2n o < 6n+4

— vertices of R 4)

\

Complexity of T (S) ﬂ

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < 6n+4 vtc and < 3n + 1 trapezoids.

Proof. The vertices of T (S) are

— endpts of segments in & < 2n
— endpts of vertical extensions < 2-2n o < 6n+4

— vertices of R 4)

\

Complexity of T (S) ﬂ

Observe: A face A of T (S) is uniquely defined by

top(A), bot(A), leftp(A), and rightp(A).

Lemma.

S planar subdivision in gen. pos. with n segments
= T (S) has < 6n + 4 vtc and < 3n + 1 trapezoids.

Proof.

The vertices of T (S) are

— endpts of segments in & <2n)
— endpts of vertical extensions < 2-2n o < 6n+4
— vertices of R 4)

Bound #trapezoids via Euler or directly (segments/lettp).

Complexity of T (S) ﬂ

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < 6n+4 vtc and < 3n + 1 trapezoids.

Proof. The vertices of T (S) are

— endpts of segments in & <2n)
— endpts of vertical extensions < 2-2n o < 6n+4
— vertices of R 4)

Bound #trapezoids via Euler or directly (segments/lettp).

Approach:

Complexity of 7 (S) ﬂ

Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < 6n+4 vtc and < 3n + 1 trapezoids.

Proof. The vertices of T (S) are

— endpts of segments in & <2n)
— endpts of vertical extensions < 2-2n o < 6n+4
— vertices of R 4)

Bound #trapezoids via Euler or directly (segments/lettp).

Approach: Construct trapezoidal map 7 (S) and
point-location data structure D(S) for T (S)
incrementally!

Computational Geometry

Lecture 6:

Point Localization
or

Where am I?

Part I1I:
The 1D Problem

Philipp Kindermann Winter Semester 2020

The 1D Problem

Given a set S of n real numbers...

The 1D Problem

Given a set S of n real numbers...
<+——@ @ @ O—0 0

The 1D Problem

Given a set S of n real numbers... 1e€{l,...,n}

+—0—O0—0—000—0O0—0—>
Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

The 1D Problem

Given a set S of n real numbers... 1e€{l,...,n}

+—0—O0—0—000—0O0—0—>
Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

— pick an arbitrary point s; from S\ S; 4

The 1D Problem

Given a set S of n real numbers... 1e€{l,...,n}
«—e— 00 e 0 e—0—eo——»
Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

— pick an arbitrary point s; from S\ S; 4

The 1D Problem

Given a set S of n real numbers... 1e€{l,...,n}
«—e— 00 e 0 e—0—eo——»
Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

— pick an arbitrary point s; from S\ S;_4
— locate s; in the search structure D;_q1 of S;_1

PN

(1)

The 1D Problem

Given a set S (zf n real numbers... 1e€{l,...,n}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

— pick an arbitrary point s; from S\ S;_4
— locate s; in the search structure D;_q1 of S;_1

PN

(4,7)

The 1D Problem

Given a set S (zf n real numbers... 1e€{l,...,n}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

— pick an arbitrary point s; from S\ S;_4
— locate s; in the search structure D;_q1 of S;_1
— split interval (¢, r) of I;_1 containing s;

O

=
(1)

D;_q

The 1D Problem

Given a set S (zf n real numbers... 1e€{l,...,n}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

— pick an arbitrary point s; from S\ S;_4
— locate s; in the search structure D;_q1 of S;_1
— split interval (¢, r) of I;_1 containing s;
— build D;: /_

=
(1)

D;_q

The 1D Problem

Given a set S (zf n real numbers... 1e€{l,...,n}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

— pick an arbitrary point s; from S\ S;_4
— locate s; in the search structure D;_q1 of S;_1
— split interval (¢, r) of I;_1 containing s;

— build D;: /\

e —>
(4 r)

D;_q

The 1D Problem

Given a set S (zf n real numbers... 1e€{l,...,n}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

— pick an arbitrary point s; from S\ S;_4

— locate s; in the search structure D;_q1 of S;_1

— split interval (¢, r) of I;_1 containing s;

— build D;: /\ /\

v I

D;_q D,

The 1D Problem

Given a set S (zf n real numbers... 1e€{l,...,n}
S; r

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

— pick an arbitrary point s; from S\ S;_4
— locate s; in the search structure D;_q1 of S;_1
— split interval (¢, r) of I;_1 containing s;

— build D;: /\ /\

@ | T e

Di—l (61 Si) (Si/ 1”) Di

The 1D Problem

Given a set S (zf n real numbers... 1e€{l,...,n}
S; r

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

— pick an arbitrary point s; from S\ S;_4
— locate s; in the search structure D;_q1 of S;_1
— split interval (¢, r) of I;_1 containing s;

— build D;: /\ /\

@ | T e

Di—l (61 Si) (Si/ 1”) Di

Problem:

The 1D Problem

Given a set S (zf n real numbers... 1e€{l,...,n}
S; r

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

— pick an arbitrary point s; from S\ S;_4
— locate s; in the search structure D;_q1 of S;_1
— split interval (¢, r) of I;_1 containing s;

— build D;: /\ /\

e —>
&) /@<
D;_q (61 Si) (Si/ 1”) D;
Problem: looong search paths!

The 1D Problem

Given a set S (zf n real numbers... 1e€{l,...,n}
S; r

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

Solution:

— pick an arbitrary point s; from S\ S;_4

— locate s; in the search structure D;_q1 of S;_1
— split interval (¢, r) of I;_1 containing s;

— build D;: /\ /\

Z —>
& 8
D;_q (61 Si) (Si/ 1”) D;

Problem: looong search paths!

The 1D Problem

Given a set S (zf n real numbers... 1e€{l,...,n}
S; r

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

Solution:

— pick anzaEb#raty point s; from S\ S;_1

— locate s; in the search structure D;_q1 of S;_1
— split interval (¢, r) of I;_1 containing s;

— build D;: /\ /\

Z —>
& 8
D;_q (61 Si) (Si/ 1”) D;

Problem: looong search paths!

The 1D Problem

Given a set S (zf n real numbers... 1e€{l,...,n}
S; r

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

Solution: random!

— pick anzaEb#raty point s; from S\ S;_1

— locate s; in the search structure D;_q1 of S;_1
— split interval (¢, r) of I;_1 containing s;

— build D;: /\ /\

Z —>
& 8
D;_q (61 Si) (Si/ 1”) D;

Problem: looong search paths!

The 1D Problem

Given a set S (zf n real numbers... 1e€{l,...,n}
S; r

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

Solution: random!

— pick anzaEb#raty point s; from S\ S;_1

— locate s; in the search structure D;_q1 of S;_1
— split interval (¢, r) of I;_1 containing s;

— build D;: /\ /\

The 1D Result

Given a set S (zf n real numbers... 1€4{1,...,n+1}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

‘Theorem. The randomized-incremental alg. preproc.)

a set S of n reals in O(nlogn) expected time
such that a query takes O(logn) expected time. |

The 1D Result

Given a set S (zf n real numbers... 1€4{1,...,n+1}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

‘Theorem. The randomized-incremental alg. preproc.)

a set S of n reals in O(nlogn) expected time
such that a query takes O(logn) expected time. |

.

Proof. Letg € R (wlog. g € S) and [;(g) = arg{l € [;: g € I}.

The 1D Result

Given a set S (zf n real numbers... 1€4{1,...,n+1}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

‘Theorem. The randomized-incremental alg. preproc.)

a set S of n reals in O(nlogn) expected time
such that a query takes O(logn) expected time. |

.

Proof. Letg € R (wlog. g € S) and [;(g) = arg{l € [;: g € I}.

E|query time in D,,| =

The 1D Result

Given a set S (zf n real numbers... 1e{l,...,n+1}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

‘Theorem. The randomized-incremental alg. preproc.)

a set S of n reals in O(nlogn) expected time
such that a query takes O(logn) expected time. |

.

Proof. Letg € R (wlog. g € S) and [;(g) = arg{l € [;: g € I}.

E|query time in D, | = Ellength search path in D, | =

The 1D Result

Given a set S (Zf n real numbers... 1e{l,...,n+1}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

~\

‘Theorem. The randomized-incremental alg. preproc.
a set S of n reals in O(nlogn) expected time
such that a query takes O(logn) expected time. |

\.

Proof. Letg € R (wlog. g € S) and [;(g) = arg{l € [;: g € I}.
1 if iq) # lia(q),

\ 0 else.

Define random variable X; = {

E|query time in D, | = E|length search path in D,,| =

The 1D Result

Given a set S (Zf n real numbers... 1e{l,...,n+1}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

~\

‘Theorem. The randomized-incremental alg. preproc.
a set S of n reals in O(nlogn) expected time
such that a query takes O(logn) expected time. |

\.

Proof. Letg € R (wlog. g € S) and [;(g) = arg{l € [;: g € I}.
1 if iq) # lia(q),

\ 0 else.

Define random variable X; = {

E|query time in D, | = E|length search path in D,,| =
= E[Y, Xi| =

The 1D Result

Given a set S (Zf n real numbers... 1e{l,...,n+1}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

\

‘Theorem. The randomized-incremental alg. preproc.
a set S of n reals in O(nlogn) expected time
such that a query takes O(logn) expected time. |

.

Proof. Letg € R (wlog. g € S) and [;(g) = arg{l € [;: g € I}.
1 if iq) # lia(q),

\ 0 else.

Define random variable X; = {

E|query time in D, | = E|length search path in D,,| =
= E[i Xil = Lin EIXi] =7

10-1

Expected Query Time of D,

(1 if Ii(q) # Li—1(q),

Define random variable X; = <
\O else.

E|query time in D, | = E|length search path in D,,| =
=E[} L Xil = L E[Xi] =7

10-2

Expected Query Time of D,

E[X;] =

(1 if Ii(q) # Li—1(q),

Define random variable X; = <
0 else.

\

E|query time in D, | = E|length search path in D,,| =
=E[} L Xil = L E[Xi] =7

10 -

Expected Query Time of D,

E[X;] = P[X; = 1] =

Define random variable X; = <

E|query time in D, | = Ellengt

(1 if Ii(q) # Li—1(q),

0 else.

\

h search path in D,,| =

= E[YL Xi] = Y E[Xi] =72

10 -

Expected Query Time of D,

ElX;]=PX;=1] =
= probability that I;(q) # I;_1(q)

1 if Ii(q) # Ii1(q),

Define random variable X; = <
\O else.

E|query time in D, | = Ellength search path in D,| =
= E[YL Xi] = Y E[Xi] =2

10-5

Expected Query Time of D,

EIXi] = PIX; =1] =

= probability that I;(gq) # [;_1(q), i.e., s; € I,_1(q).

Define random variable X; = <

E|query time in D, | = Ellengt

1 if Ii(q) # Ii1(q),

\ 0 else.

h search path in D,,| =

= E[YL Xi] = Y E[Xi] =2

10-6

Expected Query Time of D,

ElXi] = P[X; = 1] =

= probability that I;(gq) # [;_1(q), i.e., s; € I,_1(q).
Backwards
analysis:

(see Lecture 04)

1 if Ii(q) # Ii1(q),

Define random variable X; = <
0 else.

\

E|query time in D, | = El[length search path in D, | =
= E[YL Xi] = Y E[Xi] =2

10-7

Expected Query Time of D,

ElX;] =PX;=1] =
= probability that I;(g) # [;_1(q), i-e., s; € [;_1(q).
Backwards

analysis:
(see Lecture 04)

1 if Ii(q) # Li-1(q),

\ 0 else.

Define random variable X; = |

E|query time in D,| = E|length search path in D, | =
— E[?:1 Xi] — ?:1 E[Xi] =?

10 -8

Expected Query Time of D,

ElX;] =PX;=1] =
= probability that I;(g) # [;_1(q), i-e., s; € [;_1(q).
Backwards

analysis:
(see Lecture 04)

1 if Ii(q) # Li-1(q),

\ 0 else.

Define random variable X; = |

E|query time in D,| = E|length search path in D, | =
— E[?:1 Xi] — ?:1 E[Xi] =?

10 -

Expected Query Time of D,

E[Xi] = P[Xi =1] =
= probability that I;(gq) # [;_1(q), i.e., s; € I,_1(q).

Backwards Consider S; fixed.
analysis: If we remove a randomly chosen pt from S;,

(see Lecture 04) what’s the probability that the interval
containing g changes?

/

1 if Li(q) # Li-1(q),

Define random variable X; = <
0 else.

\

E|query time in D, | = El[length search path in D, | =
= EY 1 Xi| = L ElXi] =7

10 -10

Expected Query Time of D,

E[Xi| =PX;=1]| =
= probability that I;(gq) # [;_1(q), i.e., s; € I,_1(q).

Backwards Consider S; fixed.
analysis: If we remove a randomly chosen pt from S;,
(see Lecture 04) what’s the probability that the interval
containing g changes?
— we have i choices, identically distributed

/

1 if Li(q) # Li-1(q),

Define random variable X; = <
0 else.

\

E|query time in D, | = Ellength search path in D,| =
= EY 1 Xi| = L ElXi] =7

10-11

Expected Query Time of D,

E[Xi| =PX;=1]| =
= probability that I;(gq) # [;_1(q), i.e., s; € I,_1(q).

Backwards Consider S; fixed.

analysis: If we remove a randomly chosen pt from §S;,

(see Lecture 04) what’s the probability that the interval
containing g changes?
— we have i choices, identically distributed
— at most two of these change the interval

1 if L(q) # Ii_1(q),

Define random variable X; = <
0 else.

\

E|query time in D, | = El[length search path in D, | =
= EY 1 Xi| = L ElXi] =7

10-12

Expected Query Time of D,

EX;]=PX;=1| = =

= probability that I;(gq) # [;_1(q), i.e., s; € I,_1(q).
Backwards Consider S; fixed.
analysis: If we remove a randomly chosen pt from S;,

(see Lecture 04) what’s the probability that the interval
containing g changes?

— we have i choices, identically distributed
— at most two of these change the interval

1 if L(g) # L_1(q),

0 else.

Define random variable X; = <

\

E|query time in D, | = El[length search path in D, | =
= EY 1 Xi| = L ElXi] =7

10-13

Expected Query Time of D,

EX]=P[X;=1]=2/i <
= probability that I;(gq) # [;_1(q), i.e., s; € I,_1(q).

Backwards Consider S; fixed.
analysis: If we remove a randomly chosen pt from §S;,
(see Lecture 04) what’s the probability that the interval
containing g changes?
— we have i choices, identically distributed
— at most two of these change the interval

1 if L(g) # L_1(q),

0 else.

Define random variable X; = <

\

E|query time in D, | = El[length search path in D, | =
= EY 1 Xi| = L ElXi] =7

10- 14

Expected Query Time of D,

_E[X]=P[X;=1] = 2/i=
= probability that I;(gq) # [;_1(q), i.e., s; € I,_1(q).

Backwards Consider S; fixed.
analysis: If we remove a randomly chosen pt from §S;,
(see Lecture 04) what’s the probability that the interval
containing g changes?
— we have i choices, identically distributed
— at most two of these change the interval

1 if L(g) # L_1(q),

0 else.

Define random variable X; = <

\

E|query time in D, | = El[length search path in D, | =
= Elli Xil = L E[Xi] =7

10-15

Expected Query Time of D,

_E[X]=P[X;=1] = 2/i=
= probability that I;(gq) # [;_1(q), i.e., s; € I,_1(q).

Backwards Consider S; fixed.
analysis: If we remove a randomly chosen pt from §S;,
(see Lecture 04) what’s the probability that the interval
containing g changes?
— we have i choices, identically distributed
— at most two of these change the interval

1 if L(g) # L_1(q),

0 else.

Define random variable X; = <

\

E|query time in D, | = El[length search path in D, | =

—EY" . X]= YY" E[X]="7?
[1=1 l] 1—1’[Z]O(logn)

11

The 1D Result

Given a set S (zf n real numbers... 1€4{1,...,n+1}
. - ~Si >0 6 : :

Si1:=1s1,---,8-1}, I _1:=setof conn. comp. of R\ S; 1

‘Theorem. The randomized-incremental alg. preproc.)

a set S of n reals in O(nlogn) expected time
such that a query takes O(logn) expected time. |

Computational Geometry

Lecture 6:

Point Localization
or

Where am I?

Part 1V:
The 2D Problem

Philipp Kindermann Winter Semester 2020

13 -

The 2D Problem

Approach: randomized-incremental construction of 7 and D

13 -

The 2D Problem trapezoidal map —

Approach: randomized-incremental construction of 7 and D

13 -

The 2D Problem trapezoidal map —

Approach: randomized-incremental construction of 7 and D

T
B
S o1
o—
2 D
A
C

point-location data structure (DAG) 13-4
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D

T
B
51 o
o—
/4 .
A
C

point-location data structure (DAG) =~
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D

T -

B
A "
51 oM
O— 2 i

/4 .

A B .
C

point-location data structure (DAG) =
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D

(O x-node
! i D O y-node
B leaf
A " |
" (trapezoid)
o 5 E
2 |
A B =
C

point-location data structure (DAG) 13-7
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D

O x-node
! i D O y-node
B leaf
A " |
" (trapezoid)
O— s E
2 ‘ |
A O~ B =
C 92\01’2

point-location data structure (DAG) =~
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D
—use D to locate left endpoint of next segment s

O x-node
! i D O y-node
B leaf
A ” |
" 1 (trapezoid)
/ o= 5 E
1 ‘, .
A O~ B =
C 52\07’2

point-location data structure (DAG) =~
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D
—use D to locate left endpoint of next segment s

(O x-node
! n_D O y-node
i leaf
A - |
51 4" 1 (tl‘apezmd)
o— - E
/4 0 .

13-10

point-location data structure (DAG)
The 2D Problem rapezoidal map —— \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

(O x-node
T n D O y-node
B leaf
A r :
s dn ; (trapezoid)
o 51 D
ar D

13-11

point-location data structure (DAG)
The 2D Problem rapezoidal map —— \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

(O x-node
T n D O y-node
B leaf
A r :
s dn ; (trapezoid)
o 51 D
ar D

13-12

point-location data structure (DAG)
The 2D Problem rapezoidal map —— \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T
— destroy all trapezoids of 7 intersecting s

(O x-node
T n D O y-node
B leaf
A r :
s dn ; (trapezoid)
o 51 D
ar D

13-13

point-location data structure (DAG)
The 2D Problem rapezoidal map —— \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T
— destroy all trapezoids of 7 intersecting s

O x-node

T n D O y-node

B leaf

s dn A & (trapezoid)
61(37 51 D

)
A O— B C
5?\0,,2

13-14

point-location data structure (DAG)
The 2D Problem rapezoidal map —— \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

O x-node

T n D O y-node

B leaf

s dn A & (trapezoid)
6107 51 D

)
A O— B C
5“2\07,2

13-15

point-location data structure (DAG)
The 2D Problem rapezoidal map —— \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

O x-node
T n D O y-node
B leaf
s dn A & (trapezoid)
e —1 51 D
)
4 O B C
$2[0,
C 2

13-16

point-location data structure (DAG)
The 2D Problem rapezoidal map —— \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

O x-node

T n D O y-node

B leaf

s dn A & (trapezoid)

)
4 O B C
82 0,
C 2

The 2D Problem

point-location data structure (DAG)

13-17

trapezoidal map — \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s

— “walk” along s through T

— destroy all trapezoids of 7 intersecting s
— construct new trapezoids of 7 (adjacent to s)

T
B
S o
015
1 ‘) D E |G
O
A Sz\

O x-node

O y-node

leaf
(trapezoid)

The 2D Problem

point-location data structure (DAG)

13-18

trapezoidal map — \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s

— “walk” along s through T

— destroy all trapezoids of 7 intersecting s
— construct new trapezoids of 7 (adjacent to s)

— update D
T
B
S o
015
1 ‘) D E |G
O
A 5“2\0,,2
F

O x-node

O y-node

leaf
(trapezoid)

The 2D Problem

point-location data structure (DAG)

13-19

trapezoidal map — \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s

— “walk” along s through T

— destroy all trapezoids of 7 intersecting s
— construct new trapezoids of 7 (adjacent to s)

— update D

O x-node

O y-node

leaf
(trapezoid)

point-location data structure (DAG) 13-20
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

—update D O x-node
T n D O y-node
B leaf
s dn A & (trapezoid)
61(17) D E C 51 D
2
C B %)
A)5\2(>r2
C
F

point-location data structure (DAG) 1521
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

—update D O x-node
T n D O y-node
B leaf
s dn A & (trapezoid)
61(17) D E C 51 D
2
C B %)
A)5\2(>r2
C C
F

point-location data structure (DAG) 15-22
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

—update D O x-node
T n D O y-node
B leaf
s dn A & (trapezoid)
61(17) D E C 51 D
2
C B %)
A)5\2(>r2
C . C $2

point-location data structure (DAG) 13-23
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

—update D O x-node
T n D O y-node
B leaf
s dn A & (trapezoid)
61(17) D E C 51 D
2
C B %)
A)5\20;/‘2
C . C $2

point-location data structure (DAG) 1524
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

—update D O x-node
T n D O y-node
B leaf
s dn A & (trapezoid)
61(17) D E C 51 D
2
C B %)
A)5\20;/‘2
C . C $2

point-location data structure (DAG) 13-25
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

—update D O x-node

T n D O y-node

B leaf

s dn A & (trapezoid)
gl(J’ , D E C 51 D
A 20‘ B /5

52\0,,2
C . C $2

point-location data structure (DAG) 13-26
The 2D Problem trapezoidal map ——— N\

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

—update D O x-node

T n D O y-node

B leaf

s dn A & (trapezoid)
61(17 g D E C 51
A 20‘ B /5

52\0,,2
C . C $2

The 2D Problem

point-location data structure (DAG) h

-27

trapezoidal map — \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T
— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

— update D
T
B
S1 o'
A
1 ‘) D E |G
O—
A 52\0,,2
F

O x-node

O y-node

leaf
(trapezoid)

)

The 2D Problem

point-location data structure (DAG) h

-28

trapezoidal map — \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T
— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

— update D
T
B
S1 o'
A
1 ‘) D E |G
O—
A 52\0,,2
F

O x-node

O y-node

leaf
(trapezoid)

)

-29

point-location data structure (DAG) N
The 2D Problem rapezoidal map ——— \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T

— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

- update D O x-node

T n D O y-node

B leaf

s dn A & (trapezoid)
61(17 , D E C 51)
A 2o B l 52 G

52\0,,2
C . C $2

The 2D Problem

point-location data structure (DAG)

13-30

trapezoidal map — \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T
— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

— update D
T
B
S _o1
A
1 ‘) D E |
O
A 52\0,,2
F

O x-node

O y-node

leaf
(trapezoid)

)

The 2D Problem

point-location data structure (DAG)

13-31

trapezoidal map — \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T
— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

— update D
T
B
S _o1
A
1 ‘) D E |
O
A 52\0,,2
F

O x-node

O y-node

leaf
(trapezoid)

)

The 2D Problem

point-location data structure (DAG)

13-32

trapezoidal map — \v

Approach: randomized-incremental construction of 7 and D

—use D to locate left endpoint of next segment s
— “walk” along s through T
— destroy all trapezoids of 7 intersecting s

— construct new trapezoids of 7 (adjacent to s)

— update D
T
B
S1 o'
A
1 ‘) D E |g
O—
A 5“2\0,,2
F

O x-node

O y-node

leaf
(trapezoid)

)

Walking Through 7 and Updating D

bed

T(Si-1)

Walking Through 7 and Updating D

Walking Through 7 and Updating D

‘TrapezoidalMap(set S of n non-crossing seg.)
R = BBox(S); T .init(); D.init() '
(s1,82,...,52) = RandomPermutation(S)
fori =1 to n do

(Ao, ..., Ar) = FollowSegment(7T, D, s;)

14 -

Walking Through 7 and Updating D

‘TrapezoidalMap(set S of n non-crossing seg.)
R = BBox(S); T .init(); D.init() '
(s1,82,...,52) = RandomPermutation(S)
fori =1 to n do

(Ao, ..., Ar) = FollowSegment(7T, D, s;)

14 -

Walking Through 7 and Updating D

‘TrapezoidalMap(set S of n non-crossing seg.)
R = BBox(S); T .init(); D.init()
(s1,82,...,5,) = RandomPermutation(S)
fori =1 to n do

(Ao, - -.,Ar) = FollowSegment(7, D, sl)

Tremove(Ao, o,)

14 -

14 -

Walking Through 7 and Updating D

TrapezoidalMap(set S of n non-crossing seg.)
R = BBox(S); T .init(); D.init()
(s1,82,...,5,) = RandomPermutation(S)
fori =1 to n do

(Ao, - -.,Ar) = FollowSegment(7, D, sl)

Tremove(Ao, o,)

14 -

Walking Through 7 and Updating D

TrapezoidalMap(set S of n non-crossing seg.)
R = BBox(S); T .init(); D.init()
(s1,82,...,5,) = RandomPermutation(S)
fori =1 to n do

(Ao, - -.,Ar) = FollowSegment(7, D, sl)

Tremove(AO, o,)

T .add(new trapezmds incident to s;)

14 -

Walking Through 7 and Updating D

TrapezoidalMap(set S of n non-crossing seg.)
R = BBox(S); T .init(); D.init()
(s1,82,...,5,) = RandomPermutation(S)
fori =1 to n do

(Ao, - -.,Ar) = FollowSegment(7, D, sl)

Tremove(AO, o,)

T .add(new trapezmds incident to s;)

14 -

Walking Through 7 and Updating D

TrapezoidalMap(set S of n non-crossing seg.)
R = BBox(S); T .init(); D.init()
(s1,82,...,5,) = RandomPermutation(S)
fori =1 to n do

(Ao, - -.,Ar) = FollowSegment(7, D, sl)

Tremove(AO, o,)

T .add(new trapezmds incident to s;)

14 - 10

Walking Through 7 and Updating D

TrapezoidalMap(set S of n non-crossing seg.)
R = BBox(S); T .init(); D.init()
(s1,82,...,5,) = RandomPermutation(S)
fori =1 to n do

(Ao, - -.,Ar) = FollowSegment(7, D, sl)

Tremove(AO, o,)

T .add(new trapezmds incident to s;)

D.remove_leaves(Ay, ..., Ay)

14 - 11

Walking Through 7 and Updating D

TrapezoidalMap(set S of n non-crossing seg.)
R = BBox(S); T .init(); D.init()
(s1,82,...,5,) = RandomPermutation(S)
fori =1 to n do

(Ao, - -.,Ar) = FollowSegment(7, D, sl)

Tremove(Ao, o,)

T .add(new trapezmds incident to s;)

D.remove_leaves(Ay, ..., Ay)

14 - 12

Walking Through 7 and Updating D

TrapezoidalMap(set S of n non-crossing seg.)
R = BBox(S); T .init(); D.init()
(s1,82,...,5,) = RandomPermutation(S)
fori =1 to n do
(Ao, - -.,Ar) = FollowSegment(7, D, sl)
Tremove(Ao, o,)
T .add(new trapezmds incident to s;)
D.remove_leaves(Ay, ..., Ay)
D.add_leaves(new trapez. incident to s;)

14 - 13

Walking Through 7 and Updating D

‘TrapezoidalMap(set S of n non-crossing seg.) =[5 D
R = BBox(S); T .init(); D.init() L 7
(s1,82,...,51) = RandomPermutation(S) = "~ [a
fori =1tondo - C

(Ag, - -.,Ar) = FollowSegment(7, D, s;)
T .remove(Ay, ..., Ay) ’
T .add(new trapezoids incident to s;)

D.remove_leaves(Ay, . . ., A)
D.add_leaves(new trapez. incident to s;) |

14 - 14

Walking Through 7 and Updating D

‘TrapezoidalMap(set S of n non-crossing seg.) B D F
R = BBox(S); T .init(); D.init() - = -"
(s1,82,...,5n) = RandomPermutation(S) = - [a

fori=1ton do :
(Ao, ..., Ar) = FollowSegment(7T, D, s;)
T .remove(Ay, ..., A) :
T .add(new trapezoids incident to s;)
D.remove_leaves(Ay, . . ., A)
D.add_leaves(new trapez. incident to s;)
D.add_new_inner_nodes() '

14 - 15

Walking Through 7 and Updating D

................... DS,
D(Si-1)
‘TrapezoidalMap(set S of n non-crossing seg.) = | [B| | | b, & F|
R = BBox(S); T .init(); D.init() L P _;
(s1,52,...,51) = RandomPermutation(S) “la
fori =1tondo T C

(Ao, ..., Ar) = FollowSegment(7T, D, s;)
T .remove(Ay, ..., A) :
T .add(new trapezoids incident to s;)
D.remove_leaves(Ay, . . ., A)
D.add_leaves(new trapez. incident to s;)
D.add_new_inner_nodes() '

The 2D Result

15 -

The 2D Result

‘Theorem. TrapezoidalMap(S) computes T (S) for a set of 1
line segments in general position and a search
structure D for 7 (S) in O(nlogn) expected time.
The expected size of D is O(n) and the

expected query time is O(logn).

\

15 - ¢

The 2D Result

.

‘Theorem. TrapezoidalMap(S) computes T (S) for a set of n

line segments in general position and a search
structure D for 7 (S) in O(nlogn) expected time.
The expected size of D is O(n) and the

expected query time is O(logn).

\

Invariant: Before step i, T is a trapezoidal map for S;_1

and D is a valid search structure for 7.

15 - 4

The 2D Result

‘Theorem. TrapezoidalMap(S) computes T (S) for a set of n
line segments in general position and a search
structure D for 7 (S) in O(nlogn) expected time.
The expected size of D is O(n) and the

expected query time is O(logn).

. J

\

Invariant: Before step i, T is a trapezoidal map for S;_1
and D is a valid search structure for 7.

Proof. — Correctness by loop invariant.

15 -

The 2D Result

‘Theorem. TrapezoidalMap(S) computes T (S) for a set of n
line segments in general position and a search
structure D for 7 (S) in O(nlogn) expected time.
The expected size of D is O(n) and the

expected query time is O(logn).

\. J

\

Invariant: Before step i, T is a trapezoidal map for S;_1
and D is a valid search structure for 7.

Proof. — Correctness by loop invariant.
— Query time similar to 1D analysis.

15 -

The 2D Result

‘Theorem. TrapezoidalMap(S) computes T (S) for a set of n
line segments in general position and a search
structure D for 7 (S) in O(nlogn) expected time.
The expected size of D is O(n) and the

expected query time is O(logn).

. J

\

Invariant: Before step i, T is a trapezoidal map for S;_1
and D is a valid search structure for 7.

Proof. — Correctness by loop invariant.
— Query time similar to 1D analysis.
— construction time

Computational Geometry

Lecture 6:

Point Localization
or

Where am I?

Part V:
Query Time and Size

Philipp Kindermann Winter Semester 2020

Query Time

Let T(q) be the query time for a fixed query pt g.

17 -

Query Time

Let T(q) be the query time for a fixed query pt g.

= T(q) = O()-

17 -

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

17 - 2

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

17 -

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step.

17 -

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) <

17 -

17 -7

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) < 3n.

17 -8

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) < 3n.

We are interested in the expected behaviour of D:

17 -9

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) < 3n.

We are interested in the expected behaviour of D:

= average of T(q) over

17 -10

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) < 3n.

We are interested in the expected behaviour of D:

= average of T(g) over all n! insertion orders

17 -11

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) < 3n.

We are interested in the expected behaviour of D:

= average of T(g) over all n! insertion orders (permut. of S)

17 -12

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) < 3n.

We are interested in the expected behaviour of D:

= average of T(g) over all n! insertion orders (permut. of S)

X; := #nodes that are added to the query path in iteration i.

17 -13

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) < 3n.

We are interested in the expected behaviour of D:

= average of T(g) over all n! insertion orders (permut. of S)

X; := #nodes that are added to the query path in iteration i.
S and g are fixed.

17 - 14

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) < 3n.

We are interested in the expected behaviour of D:

= average of T(g) over all n! insertion orders (permut. of S)

X; := #nodes that are added to the query path in iteration i.
S and g are fixed.

= X; random var. that depends only on insertion order of S.

17 -15

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) < 3n.

We are interested in the expected behaviour of D:

= average of T(g) over all n! insertion orders (permut. of S)

X; := #nodes that are added to the query path in iteration i.
S and g are fixed.
= X; random var. that depends only on insertion order of S.

= expected path length from D.root to g is

17 - 16

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) < 3n.

We are interested in the expected behaviour of D:

= average of T(g) over all n! insertion orders (permut. of S)

X; := #nodes that are added to the query path in iteration i.
S and g are fixed.
= X; random var. that depends only on insertion order of S.

= expected path length from D.root to g is
E[Y i Xil =

17 -17

Query Time

Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) < 3n.

We are interested in the expected behaviour of D:

= average of T(g) over all n! insertion orders (permut. of S)

X; := #nodes that are added to the query path in iteration i.
S and g are fixed.
= X; random var. that depends only on insertion order of S.

= expected path length from D.root to g is
B[i Xi] = Lis E[Xi) =7

18 -

Query Time (cont’d)

p; = prob. that the search path I, of 4 in D contains a node
that was created in iteration i.

18 -

Query Time (cont’d)

p; = prob. that the search path I, of 4 in D contains a node
that was created in iteration i.

Query Time (cont’d)

p; = prob. that the search path I

18 -

I; of g in D contains a node

that was created in iteration i.

:>[]20]P[= j] <

Query Time (cont’d)

p; = prob. that the search path I

18 -

I; of g in D contains a node

that was created in iteration i.

= E[Xi]] =17 j -P[Xi=j] < 3-P[X; > 1] =

Query Time (cont’d)

p; = prob. that the search path I

18 -

I; of g in D contains a node

that was created in iteration i.

= E[X;] =L j P[Xi=j] < 3-P[X; > 1] = 3p,

18 -

Query Time (cont’d)

p; = prob. that the search path I, of 4 in D contains a node
that was created in iteration i.

= E[X] Y oj PXi=j]l < 3-P[X; > 1] = 3p,
= trapezoid in 7 (S;) that contains g.

18 -

Query Time (cont’d)

Pi

=N

E[X

= prob. that the search path I, of 4 in D contains a node

that was created in iteration i.
] =37 0j-P[X; =j] < 3-P[X; > 1] = 3p,
= trapezoid in 7 (S;) that contains g.

Key idea: Iteration i contributes a node to I, iff

18 -

Query Time (cont’d)

Pi

=N

E[X

= prob. that the search path I, of 4 in D contains a node

that was created in iteration i.
] =37 0j-P[X; =j] < 3-P[X; > 1] = 3p,
= trapezoid in 7 (S;) that contains g.

Key idea: Iteration i contributes a node to I, iff

£

18-9

Query Time (cont’d)

p; = prob. that the search path I, of 4 in D contains a node
that was created in iteration i.

= E[X] Yioj PIXi=j] < 3-P[X; > 1] = 3p;
= trapezoid in 7 (S;) that contains 4.

Key idea: Iteration i contributes a node to I, iff

£

In this case must have been created in iteration 1.

18 - 10

Query Time (cont’d)

p; = prob. that the search path I, of 4 in D contains a node
that was created in iteration i.

= E[X;] =Y} j P[X; =j] < 3-P[X; > 1] = 3p,
:= trapezoid in 7 (S;) that contains g.

Key idea: Iteration i contributes a node to I, iff

£

In this case must have been created in iteration 1.

== is adjacent to the new segment s;.

18-11

Query Time (cont’d)

p; = prob. that the search path I, of g in D contains a node
that was created in iteration i.

= E[Xj] =1, oj-P[X;=j] < 3-P[X; > 1] = 3p,
Ag(S;) = trapezoid in T (S;) that contains g.

Key idea: Iteration i contributes a node to I, iff
7 8q(Si).
In this case A, (5;) must have been created in iteration i.

= A= A,(S5;) is adjacent to the new segment s;.

o || =] || ==L

18 -12

Query Time (cont’d)

p; = prob. that the search path I, of g in D contains a node
that was created in iteration i.

= E[Xi] =Y o] P[X; =j] < 3-P[X; > 1] = 3p,

Ag(S;) = trapezoid in T (S;) that contains g.

Key idea: Iteration i contributes a node to I, iff
Ag(Si).

In this case A, (5;) must have been created in iteration i.
= A= A,(S5;) is adjacent to the new segment s;.
= top(A) = s;,

18-13

Query Time (cont’d)

p; = prob. that the search path I, of g in D contains a node
that was created in iteration i.

= E[Xi] =Y o] P[X; =j] < 3-P[X; > 1] = 3p,

Ag(S;) = trapezoid in T (S;) that contains g.

Key idea: Iteration i contributes a node to I, iff
Ag(Si).

In this case A, (5;) must have been created in iteration i.
= A= A,(S5;) is adjacent to the new segment s;.
= tOp() = 5, bOt(A) = 5,

18-14

Query Time (cont’d)

p; = prob. that the search path I, of g in D contains a node
that was created in iteration i.

= E[Xi] =Y o] P[X; =j] < 3-P[X; > 1] = 3p,

Ag(S;) = trapezoid in T (S;) that contains g.

Key idea: Iteration i contributes a node to I, iff
Ag(Si).

In this case A, (5;) must have been created in iteration i.
= A= A,(S5;) is adjacent to the new segment s;.
= tOp() = S, bOt(A) = S, leftp(A) € S,

18 -15

Query Time (cont’d)

p; = prob. that the search path I, of g in D contains a node
that was created in iteration i.

= E[Xi] =Y o] P[X; =j] < 3-P[X; > 1] = 3p,

Ag(S;) = trapezoid in T (S;) that contains g.

Key idea: Iteration i contributes a node to I, iff
Ag(Si).

In this case A, (5;) must have been created in iteration i.
= A= A,(S5;) is adjacent to the new segment s;.
= top() = s;, bot(A) = s;, leftp(/A) € s;, or rightp(A) € s;.

18- 16

Query Time (cont’d)

p; = prob. that the search path I, of 4 in D contains a node
that was created in iteration i.

= E[X] Yioj PIXi=j] < 3-P[X; > 1] = 3p;
= trapezoid in 7 (S;) that contains 4.

Key idea: Iteration i contributes a node to I, iff

"
In this case must have been created in iteration i.
== is adjacent to the new segment s;.

= top(A) = s;, bot(A) = s;, leftp(A) € s;, or rightp(A) € s;.
Trick: T (S;) (and thus A) is uniquely determined by S;.

18 -17

Query Time (cont’d)

p; = prob. that the search path I, of 4 in D contains a node
that was created in iteration i.

= E[X] Yioj PIXi=j] < 3-P[X; > 1] = 3p;
= trapezoid in 7 (S;) that contains 4.

Key idea: Iteration i contributes a node to I, iff

"
In this case must have been created in iteration i.
== is adjacent to the new segment s;.

= top(A) = s;, bot(A) = s;, leftp(A) € s;, or rightp(A) € s;.

Trick: T (S;) (and thus A) is uniquely determined by S;.
Consider S; C S fixed.

18 - 18

Query Time (cont’d)

p; = prob. that the search path I, of 4 in D contains a node
that was created in iteration i.

= E[X] Yioj PIXi=j] < 3-P[X; > 1] = 3p;
= trapezoid in 7 (S;) that contains 4.

Key idea: Iteration i contributes a node to I, iff

"
In this case must have been created in iteration i.
== is adjacent to the new segment s;.

= top(A) = s;, bot(A) = s;, leftp(A) € s;, or rightp(A) € s;.

Trick: T (S;) (and thus A) is uniquely determined by S;.
Consider S; C S fixed.
= /A does not depend on insertion order.

19 -

Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,

i.e., prob. that A changes when inserting s;.
Aim: bound p;.

19 -

Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,
i.e., prob. that A changes when inserting s;.

Aim: bound p;.

Tool:

19 -

Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,
i.e., prob. that A changes when inserting s;.

Aim: bound p;.

Tool: Backwards analysis!

19 -

Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,

i.e., prob. that A changes when inserting s;.
Aim: bound p;.
Tool: Backwards analysis!
p; = prob. that A changes when s; is removed

19 -

Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,

i.e., prob. that A changes when inserting s;.
Aim: bound p;.
Tool: Backwards analysis!
p; = prob. that A changes when s; is removed

Four cases:

19 -

Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,

i.e., prob. that A changes when inserting s;.
Aim: bound p;.
Tool: Backwards analysis!
p; = prob. that A changes when s; is removed

Four cases:

P(top(A) =s;) =7

19 -

Query Time (cont’d)

p; = prob.

that the search path I, of 4 in D contains a node

that was created in iteration i,
i.e., prob. that A changes when inserting s;.

Aim:
Tool:
p; = prob.

Four cases:

bound p;.
Backwards analysis!

that A changes when s; is removed

s;) = 1/i (since exactly 1 of i segments is top(/)).

19 -

Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,

i.e., prob. that A changes when inserting s;.
Aim: bound p;.
Tool: Backwards analysis!
p; = prob. that A changes when s; is removed

Four cases:

P(top(A) = s;) = 1/i (since exactly 1 of i segments is top(/)).
= Pi <4/i

19 -

Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,

i.e., prob. that A changes when inserting s;.
Aim: bound p;.
Tool: Backwards analysis!
p; = prob. that A changes when s; is removed

Four cases:

P(top(A) = s;) = 1/i (since exactly 1 of i segments is top(/)).
= Pi <4/i
=B} Xi] =L E[X) <32L,3-pi

19-10

Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,

i.e., prob. that A changes when inserting s;.
Aim: bound p;.
Tool: Backwards analysis!
p; = prob. that A changes when s; is removed

Four cases:

P(top(A) = s;) = 1/i (since exactly 1 of i segments is top(/)).
= Pi <4/i
=B} Xi] =L E[X) <32L,3-pi

— 12y ,1/i

19-11

Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,

i.e., prob. that A changes when inserting s;.
Aim: bound p;.
Tool: Backwards analysis!
p; = prob. that A changes when s; is removed

Four cases:

P(top(A) = s;) = 1/i (since exactly 1 of i segments is top(/)).
= Pi <4/i
=B} Xi] =L E[X) <32L,3-pi

=127 11/i € O(logn)

19 -12

Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,

i.e., prob. that A changes when inserting s;.
Aim: bound p;.
Tool: Backwards analysis!
p; = prob. that A changes when s; is removed

Four cases:

P(top(A) = s;) = 1/i (since exactly 1 of i segments is top(/)).
= Pi <4/i
=B} Xi] =L E[X) <32L,3-pi

=127 11/i € O(logn)

Size

X; := # int. nodes that are added to D in iteration 1.

20 -

Size

X; := # int. nodes that are added to D in iteration 1.
Size: |'T(S)| + Y1 E| X

20 -

20 - G

Size

Lemma. § planar subdivision in gen. pos. with n segments
= T (S) has < 6n + 4 vtc and < 3n + 1 trapezoids.

X; := # int. nodes that are added to D in iteration 1.
Size: | T(S)| + Ly E[X]

20 -

Size

Lemma. § planar subdivision in gen. pos. with n segments
= T (S) has < 6n + 4 vtc and < 3n + 1 trapezoids.

X; := # int. nodes that are added to D in iteration 1.
Size: |T(S)| + Xy E[X;] = O(n) + £, E[X]

20 -

Size

Lemma. § planar subdivision in gen. pos. with n segments
= T (S) has < 6n + 4 vtc and < 3n + 1 trapezoids.

X; := # int. nodes that are added to D in iteration 1.

Y (A) = <(1 if A disapp. from 7 (S;) when s; is removed
Z —

\ 0 otherwise

Size
Lemma. § planar subdivision in gen. pos. with n segments
= T (S) has < 6n + 4 vtc and < 3n + 1 trapezoids.

X; := # int. nodes that are added to D in iteration 1.
Size: |T(S)| + Xy E[X;] = O(n) + £, E[X]

(1 if disapp. from 7 (S;) when s; is removed

\ 0 otherwise

(p; = prob. that A changes when s; is removed)

Size
Lemma. § planar subdivision in gen. pos. with n segments
= T (S) has < 6n + 4 vtc and < 3n + 1 trapezoids.

X; := # int. nodes that are added to D in iteration 1.
Size: |T(S)| + Xy E[X;] = O(n) + £, E[X]

Y (A) = <(1 if A disapp. from 7 (S;) when s; is removed
Z B 0 otherwise

(p; = prob. that A changes when s; is removed)
= E[Yi(A)] = pi < 4/i

Size
Lemma. § planar subdivision in gen. pos. with n segments
= T (S) has < 6n + 4 vtc and < 3n + 1 trapezoids.

X; := # int. nodes that are added to D in iteration 1.
Size: |T(S)| + Xy E[X;] = O(n) + £, E[X]

(

Yi(A) = < 1 it A disapp. from 7 (S;) when s; is removed
Z B 0 otherwise

(pi = prob. that A changes when s; is removed)
= E[Yj(A)] = pi < 4/i

= E[Xi] = Laer(s) E[Yi(A)]

Size
Lemma. § planar subdivision in gen. pos. with n segments
= T (S) has < 6n + 4 vtc and < 3n + 1 trapezoids.

X; := # int. nodes that are added to D in iteration 1.
Size: |T(S)| + Xy E[X;] = O(n) + £, E[X]

(

Yi(A) = < 1 it A disapp. from 7 (S;) when s; is removed
Z B 0 otherwise

(pi = prob. that A changes when s; is removed)
= E[Yj(A)] = pi < 4/i

= E[Xi] = Laers) E[Yi(A)] < (3i+1)-4/i

Size
Lemma. § planar subdivision in gen. pos. with n segments
= T (S) has < 6n + 4 vtc and < 3n + 1 trapezoids.

X; := # int. nodes that are added to D in iteration 1.
Size: |T(S)| + Xy E[X;] = O(n) + £, E[X]

(

Yi(A) = < 1 it A disapp. from 7 (S;) when s; is removed
Z B 0 otherwise

(pi = prob. that A changes when s; is removed)
= E[Yj(A)] = pi < 4/i

= E[X;] = Lacr(s) E[Yi(A)] < (Bi+1)-4/i = 124+ 4/i

Size
Lemma. § planar subdivision in gen. pos. with n segments
= T (S) has < 6n + 4 vtc and < 3n + 1 trapezoids.

X; := # int. nodes that are added to D in iteration 1.
Size: |T(S)| + Xy E[X;] = O(n) + £, E[X]

Y (A) = <(1 if A disapp. from 7 (S;) when s; is removed
Z B 0 otherwise

(pi = prob. that A changes when s; is removed)
= E[Yj(A)] = pi < 4/i

= E[X;] = Lacr(s) EYi(A)] < (Bi+1)-4/i = 124+ 4/i <13

Size
Lemma. § planar subdivision in gen. pos. with n segments
= T (S) has < 6n + 4 vtc and < 3n + 1 trapezoids.

X; := # int. nodes that are added to D in iteration 1.
Size: |T(S)| + Xy E[X;] = O(n) + £, E[X]

Y (A) = <(1 if A disapp. from 7 (S;) when s; is removed
Z B 0 otherwise

(pi = prob. that A changes when s; is removed)
= E[Yj(A)] = pi < 4/i

= E[X;] = Lacr(s) EYi(A)] < (Bi+1)-4/i = 124+ 4/i <13

= Size: O(n) + Y., E[X;] <O(n)+13n € O(n)

21

The 2D Result

‘Theorem. TrapezoidalMap(S) computes T (S) for a set of 1
line segments in general position and a search
structure D for 7 (S) in O(nlogn) expected time.
The expected size of D is O(n) and the

expected query time is O(logn).

\

	Definition & First Approach
	Decreasing the Complexity
	Notation
	Complexity of T(S)

	The 1D Problem
	The 1D Result
	Expected Query Time of D_n

	The 2D Problem
	Walking Through T and Updating D
	The 2D Result

	Query Time and Size
	Query Time (Part 1)
	Query Time (Part 2)
	Query Time (Part 3)
	Size

