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Observation: The slab partition of S is a refinement S’ of S
that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution:  Trapezoidal map T (S)

See Lecture 5
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Observe: A face A of 7(S) is uniquely defined by
top(A), bot(A), leftp(A), and rightp(A).

Lemma. § planar subdivision in gen. pos. with n segments
= T(S) has < 6n+4 vtc and < 3n + 1 trapezoids.

Proof.  The vertices of T (S) are

— endpts of segments in & <2n )
— endpts of vertical extensions < 2-2n o < 6n+4
— vertices of R 4 )

Bound #trapezoids via Euler or directly (segments/lettp).

Approach: Construct trapezoidal map 7 (S) and
point-location data structure D(S) for T (S)
incrementally!
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Approach: randomized-incremental construction of 7 and D
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structure D for 7 (S) in O(nlogn) expected time.
The expected size of D is O(n) and the
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Invariant: Before step i, T is a trapezoidal map for S;_1
and D is a valid search structure for 7.

Proof. — Correctness by loop invariant.
— Query time similar to 1D analysis.
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Let T(q) be the query time for a fixed query pt g.
= T(g) = O(length of the path from D.root to g).

height(D) increases by at most 3 in each step. = T(g) < 3n.

We are interested in the expected behaviour of D:

= average of T(g) over all n! insertion orders (permut. of S)

X; := #nodes that are added to the query path in iteration i.
S and g are fixed.
= X; random var. that depends only on insertion order of S.

= expected path length from D.root to g is
B[ i Xi] = Lis E[Xi) =7
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Query Time (cont’d)

p; = prob. that the search path I, of g in D contains a node
that was created in iteration i.

= E[Xj] =1, oj-P[X;=j] < 3-P[X; > 1] = 3p,
Ag(S;) = trapezoid in T (S;) that contains g.

Key idea: Iteration i contributes a node to I, iff
7 8q(Si).
In this case A, (5;) must have been created in iteration i.

= A= A,(S5;) is adjacent to the new segment s;.
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Query Time (cont’d)

p; = prob. that the search path I, of g in D contains a node
that was created in iteration i.

= E[Xi] =Y o] P[X; =j] < 3-P[X; > 1] = 3p,

Ag(S;) = trapezoid in T (S;) that contains g.

Key idea: Iteration i contributes a node to I, iff
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p; = prob. that the search path I, of g in D contains a node
that was created in iteration i.

= E[Xi] =Y o] P[X; =j] < 3-P[X; > 1] = 3p,

Ag(S;) = trapezoid in T (S;) that contains g.

Key idea: Iteration i contributes a node to I, iff
# Ag(Si).
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= tOp( ) = S, bOt(A) = S, leftp(A) € S,




18 -15

Query Time (cont’d)

p; = prob. that the search path I, of g in D contains a node
that was created in iteration i.

= E[Xi] =Y o] P[X; =j] < 3-P[X; > 1] = 3p,

Ag(S;) = trapezoid in T (S;) that contains g.

Key idea: Iteration i contributes a node to I, iff
# Ag(Si).

In this case A, (5;) must have been created in iteration i.
= A= A,(S5;) is adjacent to the new segment s;.
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Query Time (cont’d)

p; = prob. that the search path I, of 4 in D contains a node
that was created in iteration i.

= E[X ] Yioj PIXi=j] < 3-P[X; > 1] = 3p;
= trapezoid in 7 (S;) that contains 4.

Key idea: Iteration i contributes a node to I, iff

"
In this case must have been created in iteration i.
== is adjacent to the new segment s;.

= top(A) = s;, bot(A) = s;, leftp(A) € s;, or rightp(A) € s;.

Trick: T (S;) (and thus A) is uniquely determined by S;.
Consider S; C S fixed.
= /A does not depend on insertion order.
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Query Time (cont’d)

p; = prob.

that the search path I, of 4 in D contains a node

that was created in iteration i,
i.e., prob. that A changes when inserting s;.

Aim:
Tool:
p; = prob.

Four cases:

bound p;.
Backwards analysis!
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Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,
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Four cases:

P(top(A) = s;) = 1/i (since exactly 1 of i segments is top(/)).
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— 12y ,1/i
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Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,

i.e., prob. that A changes when inserting s;.
Aim: bound p;.
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p; = prob. that A changes when s; is removed

Four cases:

P(top(A) = s;) = 1/i (since exactly 1 of i segments is top(/)).
= Pi <4/i
=B} Xi] =L E[X) <32L,3-pi

=127 11/i € O(logn)
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Query Time (cont’d)

p; = prob. that the search path Il of g in D contains a node
that was created in iteration i,

i.e., prob. that A changes when inserting s;.
Aim: bound p;.
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p; = prob. that A changes when s; is removed

Four cases:

P(top(A) = s;) = 1/i (since exactly 1 of i segments is top(/)).
= Pi <4/i
=B} Xi] =L E[X) <32L,3-pi

=127 11/i € O(logn)
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Z B 0 otherwise
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The 2D Result

‘Theorem. TrapezoidalMap(S) computes T (S) for a set of 1
line segments in general position and a search
structure D for 7 (S) in O(nlogn) expected time.
The expected size of D is O(n) and the

expected query time is O(logn).

\
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