Computational Geometry Lecture 6: Point Localization or Where am I? Part I: Definition & First Approach #### What's the Problem? Task: Given a planar subdivision S with n segments, preprocess S to allow for fast pt. location queries! **Solution:** Preproc.: Partition S into slabs induced by vertices. **But:** Space? $\Theta(n^2)$ Task: Give lower-bound example! $O(\log n)$ time! ### What's the Problem? Task: Given a planar subdivision S with n segments, preprocess S to allow for fast pt. location queries! **Solution:** Preproc.: Partition S into slabs induced by vertices. Query: – find correct slab – search in slab 2 bin. searches! **But:** Space? $\Theta(n^2)$ Preproc? $O(n^2 \log n)$ $O(\log n)$ ## Computational Geometry Lecture 6: Point Localization or Where am I? Part II: Decreasing the Complexity ### Decreasing the Complexity **Observation:** The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids. Task: Find "good" refinement of S of low complexity! **Solution:** Trapezoidal map $\mathcal{T}(S)$ ### Decreasing the Complexity **Observation:** The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids. Task: Find "good" refinement of S of low complexity! **Solution:** Trapezoidal map $\mathcal{T}(S)$ **Assumption:** S is in *general position*, that is, no two vertices have the same x-coordinates. #### Notation **Definition:** A *side* of a face of $\mathcal{T}(S)$ is a segment of max. length contained in the boundary of the face. ### Notation **Definition:** A *side* of a face of $\mathcal{T}(S)$ is a segment of max. length contained in the boundary of the face. **Observation:** S in gen. pos. \Rightarrow each face Δ of T(S) has: - one or two vertical sides - exactly 2 non-vertical sides Left side: ## Complexity of $\mathcal{T}(S)$ **Observe:** A face Δ of $\mathcal{T}(S)$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$. **Lemma.** S planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids. *Proof.* The vertices of $\mathcal{T}(S)$ are - endpts of segments in $S \leq 2n$ - endpts of vertical extensions $\leq 2 \cdot 2n$ - vertices of R $\leq 6n + 4$ Bound #trapezoids via Euler or directly (segments/leftp). **Approach:** Construct trapezoidal map $\mathcal{T}(\mathcal{S})$ and point-location data structure $\mathcal{D}(\mathcal{S})$ for $\mathcal{T}(\mathcal{S})$ *incrementally*! # Computational Geometry Lecture 6: Point Localization or Where am I? Part III: The 1D Problem #### The 1D Problem Given a set *S* of *n* real numbers... $$i \in \{1,\ldots,n\}$$ - pick an arbitrary point s_i from $S \setminus S_{i-1}$ - locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1} - split interval (ℓ, r) of I_{i-1} containing s_i - build \mathcal{D}_i : **Problem:** *looong* search paths! #### The 1D Problem Given a set *S* of *n* real numbers... $$i \in \{1,\ldots,n\}$$ #### **Solution:** random! - pick an arbitrary point s_i from $S \setminus S_{i-1}$ - locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1} - split interval (ℓ, r) of I_{i-1} containing s_i - build \mathcal{D}_i : Problem: looong search paths! #### The 1D Result Given a set S of n real numbers... $i \in \{1, ..., n+1\}$ $$S_{i-1} := \{s_1, \dots, s_{i-1}\}, \quad I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$$ **Theorem.** The randomized-incremental alg. preproc. a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time. **Proof.** Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_i(q) = \arg\{I \in I_i : q \in I\}$. Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$ $E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$ $= E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = ?$ ### Expected Query Time of \mathcal{D}_n $$-E[X_i] = P[X_i = 1] = \frac{2}{i}$$ = probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$. Backwards analysis: (see Lecture 04) Consider S_i fixed. If we *remove* a randomly chosen pt from S_i , what's the probability that the interval containing q changes? - we have *i* choices, identically distributed - at most two of these change the interval Define random variable $$X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$$ $$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$$ $$= E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = ?$$ $O(\log n)$ #### The 1D Result Given a set S of n real numbers... $i \in \{1, ..., n+1\}$ $S_{i-1} := \{s_1, ..., s_{i-1}\}, \quad I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$ **Theorem.** The randomized-incremental alg. preproc. a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time. # Computational Geometry Lecture 6: Point Localization or Where am I? Part IV: The 2D Problem ### The 2D Problem point-location data structure (DAG) 13-32 trapezoidal map **Approach:** randomized-incremental construction of $\mathcal T$ and $\mathcal D$ - use $\mathcal D$ to locate left endpoint of next segment s - "walk" along s through \mathcal{T} - destroy all trapezoids of $\mathcal T$ intersecting s - construct new trapezoids of \mathcal{T} (adjacent to s) ### Walking Through \mathcal{T} and Updating \mathcal{D} TrapezoidalMap(set S of n non-crossing seg.) $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$ $(s_1, s_2, \dots, s_n) = \text{RandomPermutation}(S)$ for i = 1 to n do $(\Delta_0,\ldots,\Delta_k) = \text{FollowSegment}(\mathcal{T},\mathcal{D},s_i)$ \mathcal{T} .remove $(\Delta_0,\ldots,\Delta_k)$ \mathcal{T} .add(new trapezoids incident to s_i) \mathcal{D} .remove_leaves $(\Delta_0, \ldots, \Delta_k)$ \mathcal{D} .add_leaves(new trapez. incident to s_i) D.add_new_inner_nodes() #### The 2D Result **Theorem.** TrapezoidalMap(S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is O(n) and the expected query time is $O(\log n)$. **Invariant:** Before step i, \mathcal{T} is a trapezoidal map for S_{i-1} and \mathcal{D} is a valid search structure for \mathcal{T} . Proof. - Correctness by loop invariant. - Query time similar to 1D analysis. - \Rightarrow construction time # Computational Geometry Lecture 6: Point Localization or Where am I? Part V: Query Time and Size ### Query Time - Let T(q) be the query time for a fixed query pt q. - \Rightarrow $T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$ - height(\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$. - We are interested in the *expected* behaviour of \mathcal{D} : - \Rightarrow average of T(q) over all n! insertion orders (permut. of S) - $X_i :=$ # nodes that are added to the query path in iteration i. S and q are fixed. - \Rightarrow X_i random var. that depends only on insertion order of S. - \Rightarrow expected path length from \mathcal{D} .root to q is $$\mathbf{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbf{E}[X_i] = ?$$ ### Query Time (cont'd) p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i. $$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$ $\Delta_q(S_i) := \text{trapezoid in } \mathcal{T}(S_i) \text{ that contains } q.$ **Key idea:** Iteration *i* contributes a node to Π_q iff $\Delta_q(S_{i-1}) \neq \Delta_q(S_i)$. In this case $\Delta_q(S_i)$ must have been created in iteration *i*. - $\Rightarrow \Delta := \Delta_q(S_i)$ is adjacent to the new segment S_i . - $\Rightarrow \operatorname{top}(\Delta) = s_i$, $\operatorname{bot}(\Delta) = s_i$, $\operatorname{leftp}(\Delta) \in s_i$, or $\operatorname{rightp}(\Delta) \in s_i$. ### Query Time (cont'd) p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i. $$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$ $\Delta_q(S_i) := \text{trapezoid in } \mathcal{T}(S_i) \text{ that contains } q.$ **Key idea:** Iteration *i* contributes a node to Π_q iff $\Delta_q(S_{i-1}) \neq \Delta_q(S_i)$. In this case $\Delta_q(S_i)$ must have been created in iteration *i*. $\Rightarrow \Delta := \Delta_q(S_i)$ is adjacent to the new segment S_i . $\Rightarrow \operatorname{top}(\Delta) = s_i$, $\operatorname{bot}(\Delta) = s_i$, $\operatorname{leftp}(\Delta) \in s_i$, or $\operatorname{rightp}(\Delta) \in s_i$. Trick: $\mathcal{T}(S_i)$ (and thus Δ) is uniquely determined by S_i . Consider $S_i \subseteq S$ fixed. $\Rightarrow \triangle$ does *not* depend on insertion order. ### Query Time (cont'd) p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i, i.e., prob. that \triangle changes when inserting s_i . Aim: bound p_i . **Tool:** Backwards analysis! $p_i = \text{prob. that } \Delta \text{ changes when } s_i \text{ is removed}$ Four cases: $\mathbf{P}(\mathsf{top}(\Delta) = \mathbf{s}_i) = 1/i \text{ (since exactly 1 of } i \text{ segments is } \mathsf{top}(\Delta)).$ $$\Rightarrow p_i \leq 4/i$$ $$\Rightarrow \mathbf{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbf{E}[X_i] \leq \sum_{i=1}^{n} 3 \cdot p_i$$ $$= 12 \sum_{i=1}^{n} 1/i \in O(\log n)$$ ### Size **Lemma.** S planar subdivision in gen. pos. with n segments $\Rightarrow T(S)$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids. $X_i := \#$ int. nodes that are added to \mathcal{D} in iteration i. Size: $$|\mathcal{T}(S)| + \sum_{i=1}^{n} \mathbf{E}[X_i] = O(n) + \sum_{i=1}^{n} \mathbf{E}[X_i]$$ $$Y_i(\Delta) = \begin{cases} 1 & \text{if } \Delta \text{ disapp. from } \mathcal{T}(S_i) \text{ when } s_i \text{ is removed} \\ 0 & \text{otherwise} \end{cases}$$ $(p_i = \text{prob. that } \Delta \text{ changes when } s_i \text{ is removed})$ $$\Rightarrow \mathbf{E}[\bar{Y}_i(\Delta)] = p_i \leq 4/i$$ $$\Rightarrow \mathbf{E}[X_i] = \sum_{\Delta \in \mathcal{T}(S)} \mathbf{E}[Y_i(\Delta)] \le (3i+1) \cdot 4/i = 12 + 4/i \le 13$$ $$\Rightarrow$$ Size: $O(n) + \sum_{i=1}^{n} \mathbf{E}[X_i] \leq O(n) + 13n \in O(n)$ #### The 2D Result **Theorem.** TrapezoidalMap(S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is O(n) and the expected query time is $O(\log n)$.