Computational Geometry

Lecture 6:
Point Localization
or
Where am I?

Part I: Definition & First Approach

What's the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

But: Space? $\Theta(n^2)$

Task: Give lower-bound example!

 $O(\log n)$ time!

What's the Problem?

Task:

Given a planar subdivision S with n segments, preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query: – find correct slab – search in slab 2 bin. searches!

But:

Space? $\Theta(n^2)$ Preproc? $O(n^2 \log n)$

 $O(\log n)$

Computational Geometry

Lecture 6:
Point Localization
or
Where am I?

Part II:
Decreasing the Complexity

Decreasing the Complexity

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Task: Find "good" refinement of S of low complexity!

Solution: Trapezoidal map $\mathcal{T}(S)$

Decreasing the Complexity

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Task: Find "good" refinement of S of low complexity!

Solution: Trapezoidal map $\mathcal{T}(S)$

Assumption: S is in *general position*, that is, no two vertices have the same x-coordinates.

Notation

Definition:

A *side* of a face of $\mathcal{T}(S)$ is a segment of max. length contained in the boundary of the face.

Notation

Definition:

A *side* of a face of $\mathcal{T}(S)$ is a segment of max. length contained in the boundary of the face.

Observation: S in gen. pos. \Rightarrow each face Δ of T(S) has:

- one or two vertical sides
- exactly 2 non-vertical sides

Left side:

Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $top(\Delta)$, $bot(\Delta)$, $leftp(\Delta)$, and $rightp(\Delta)$.

Lemma. S planar subdivision in gen. pos. with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

- endpts of segments in $S \leq 2n$ - endpts of vertical extensions $\leq 2 \cdot 2n$ - vertices of R $\leq 6n + 4$

Bound #trapezoids via Euler or directly (segments/leftp).

Approach: Construct trapezoidal map $\mathcal{T}(\mathcal{S})$ and point-location data structure $\mathcal{D}(\mathcal{S})$ for $\mathcal{T}(\mathcal{S})$ *incrementally*!

Computational Geometry

Lecture 6:
Point Localization
or
Where am I?

Part III:
The 1D Problem

The 1D Problem

Given a set *S* of *n* real numbers...

$$i \in \{1,\ldots,n\}$$

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build \mathcal{D}_i :

Problem: *looong* search paths!

The 1D Problem

Given a set *S* of *n* real numbers...

$$i \in \{1,\ldots,n\}$$

Solution: random!

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure \mathcal{D}_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build \mathcal{D}_i :

Problem: looong search paths!

The 1D Result

Given a set S of n real numbers... $i \in \{1, ..., n+1\}$

$$S_{i-1} := \{s_1, \dots, s_{i-1}\}, \quad I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$$

Theorem. The randomized-incremental alg. preproc. a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $I_i(q) = \arg\{I \in I_i : q \in I\}$. Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

 $E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$ $= E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = ?$

Expected Query Time of \mathcal{D}_n

$$-E[X_i] = P[X_i = 1] = \frac{2}{i}$$
= probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

Backwards analysis: (see Lecture 04) Consider S_i fixed.

If we *remove* a randomly chosen pt from S_i , what's the probability that the interval containing q changes?

- we have *i* choices, identically distributed
- at most two of these change the interval

Define random variable
$$X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$$

$$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$$

$$= E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = ?$$
 $O(\log n)$

The 1D Result

Given a set S of n real numbers... $i \in \{1, ..., n+1\}$ $S_{i-1} := \{s_1, ..., s_{i-1}\}, \quad I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

Theorem. The randomized-incremental alg. preproc. a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Computational Geometry

Lecture 6:
Point Localization
or
Where am I?

Part IV:
The 2D Problem

The 2D Problem

point-location data structure (DAG) 13-32 trapezoidal map

Approach: randomized-incremental construction of $\mathcal T$ and $\mathcal D$

- use $\mathcal D$ to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of $\mathcal T$ intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)

Walking Through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing seg.)

 $R = BBox(S); \mathcal{T}.init(); \mathcal{D}.init()$

 $(s_1, s_2, \dots, s_n) = \text{RandomPermutation}(S)$

for i = 1 to n do

 $(\Delta_0,\ldots,\Delta_k) = \text{FollowSegment}(\mathcal{T},\mathcal{D},s_i)$

 \mathcal{T} .remove $(\Delta_0,\ldots,\Delta_k)$

 \mathcal{T} .add(new trapezoids incident to s_i)

 \mathcal{D} .remove_leaves $(\Delta_0, \ldots, \Delta_k)$

 \mathcal{D} .add_leaves(new trapez. incident to s_i)

D.add_new_inner_nodes()

The 2D Result

Theorem. TrapezoidalMap(S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is O(n) and the expected query time is $O(\log n)$.

Invariant: Before step i, \mathcal{T} is a trapezoidal map for S_{i-1} and \mathcal{D} is a valid search structure for \mathcal{T} .

Proof.

- Correctness by loop invariant.
- Query time similar to 1D analysis.
 - \Rightarrow construction time

Computational Geometry

Lecture 6:
Point Localization
or
Where am I?

Part V: Query Time and Size

Query Time

- Let T(q) be the query time for a fixed query pt q.
- \Rightarrow $T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q).$
- height(\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.
- We are interested in the *expected* behaviour of \mathcal{D} :
- \Rightarrow average of T(q) over all n! insertion orders (permut. of S)
- $X_i :=$ # nodes that are added to the query path in iteration i. S and q are fixed.
- \Rightarrow X_i random var. that depends only on insertion order of S.
- \Rightarrow expected path length from \mathcal{D} .root to q is

$$\mathbf{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbf{E}[X_i] = ?$$

Query Time (cont'd)

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$

 $\Delta_q(S_i) := \text{trapezoid in } \mathcal{T}(S_i) \text{ that contains } q.$

Key idea: Iteration *i* contributes a node to Π_q iff $\Delta_q(S_{i-1}) \neq \Delta_q(S_i)$.

In this case $\Delta_q(S_i)$ must have been created in iteration *i*.

- $\Rightarrow \Delta := \Delta_q(S_i)$ is adjacent to the new segment S_i .
- $\Rightarrow \operatorname{top}(\Delta) = s_i$, $\operatorname{bot}(\Delta) = s_i$, $\operatorname{leftp}(\Delta) \in s_i$, or $\operatorname{rightp}(\Delta) \in s_i$.

Query Time (cont'd)

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i.

$$\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^3 j \cdot \mathbf{P}[X_i = j] \le 3 \cdot \mathbf{P}[X_i \ge 1] = 3p_i$$

 $\Delta_q(S_i) := \text{trapezoid in } \mathcal{T}(S_i) \text{ that contains } q.$

Key idea: Iteration *i* contributes a node to Π_q iff $\Delta_q(S_{i-1}) \neq \Delta_q(S_i)$.

In this case $\Delta_q(S_i)$ must have been created in iteration *i*.

 $\Rightarrow \Delta := \Delta_q(S_i)$ is adjacent to the new segment S_i .

 $\Rightarrow \operatorname{top}(\Delta) = s_i$, $\operatorname{bot}(\Delta) = s_i$, $\operatorname{leftp}(\Delta) \in s_i$, or $\operatorname{rightp}(\Delta) \in s_i$.

Trick: $\mathcal{T}(S_i)$ (and thus Δ) is uniquely determined by S_i . Consider $S_i \subseteq S$ fixed.

 $\Rightarrow \triangle$ does *not* depend on insertion order.

Query Time (cont'd)

 p_i = prob. that the search path Π_q of q in \mathcal{D} contains a node that was created in iteration i,

i.e., prob. that \triangle changes when inserting s_i .

Aim: bound p_i .

Tool: Backwards analysis!

 $p_i = \text{prob. that } \Delta \text{ changes when } s_i \text{ is removed}$

Four cases:

 $\mathbf{P}(\mathsf{top}(\Delta) = \mathbf{s}_i) = 1/i \text{ (since exactly 1 of } i \text{ segments is } \mathsf{top}(\Delta)).$

$$\Rightarrow p_i \leq 4/i$$

$$\Rightarrow \mathbf{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbf{E}[X_i] \leq \sum_{i=1}^{n} 3 \cdot p_i$$

$$= 12 \sum_{i=1}^{n} 1/i \in O(\log n)$$

Size

Lemma. S planar subdivision in gen. pos. with n segments $\Rightarrow T(S)$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

 $X_i := \#$ int. nodes that are added to \mathcal{D} in iteration i.

Size:
$$|\mathcal{T}(S)| + \sum_{i=1}^{n} \mathbf{E}[X_i] = O(n) + \sum_{i=1}^{n} \mathbf{E}[X_i]$$

$$Y_i(\Delta) = \begin{cases} 1 & \text{if } \Delta \text{ disapp. from } \mathcal{T}(S_i) \text{ when } s_i \text{ is removed} \\ 0 & \text{otherwise} \end{cases}$$

 $(p_i = \text{prob. that } \Delta \text{ changes when } s_i \text{ is removed})$

$$\Rightarrow \mathbf{E}[\bar{Y}_i(\Delta)] = p_i \leq 4/i$$

$$\Rightarrow \mathbf{E}[X_i] = \sum_{\Delta \in \mathcal{T}(S)} \mathbf{E}[Y_i(\Delta)] \le (3i+1) \cdot 4/i = 12 + 4/i \le 13$$

$$\Rightarrow$$
 Size: $O(n) + \sum_{i=1}^{n} \mathbf{E}[X_i] \leq O(n) + 13n \in O(n)$

The 2D Result

Theorem. TrapezoidalMap(S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is O(n) and the expected query time is $O(\log n)$.