
1

Philipp Kindermann Winter Semester 2020

Lecture 6:
Point Localization

or
Where am I?

Part I:
Definition & First Approach

Computational Geometry

2 - 32

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

}
2 bin. searches!

O(log n)
time!

But: Space? Θ(n2)

Task: Give lower-bound example!

...

n + 1
n− 1
n− 3+

+

. . .+
= n2/4

2 - 34

What’s the Problem?

Task: Given a planar subdivision S with n segments,
preprocess S to allow for fast pt. location queries!

Solution: Preproc.: Partition S into slabs induced by vertices.

Query:
– search in slab
– find correct slab

}
2 bin. searches!

O(log n)
time!

But: Space? Θ(n2) Preproc? O(n2 log n)

3

Philipp Kindermann Winter Semester 2020

Lecture 6:
Point Localization

or
Where am I?

Part II:
Decreasing the Complexity

Computational Geometry

4 - 11

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

R

4 - 13

Decreasing the Complexity
Observation: The slab partition of S is a refinement S ′ of S

that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map T (S)

Assumption: S is in general position, that is,
no two vertices have the same x-coordinates.

R

5 - 1

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

5 - 13

Notation
Definition: A side of a face of T (S) is a segment of max.

length contained in the boundary of the face.

Observation: S in gen. pos.⇒ each face ∆ of T (S) has:
– one or two vertical sides
– exactly 2 non-vertical sides

top(∆)

bot(∆)

∆

Left side:

R

∆ ∆ ∆ ∆ ∆

leftp(∆)

6 - 17

Complexity of T (S)

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

Observe: A face ∆ of T (S) is uniquely defined by
top(∆), bot(∆), leftp(∆), and rightp(∆).

Approach: Construct trapezoidal map T (S) and
point-location data structure D(S) for T (S)
incrementally!

Proof. The vertices of T (S) are

– vertices of R

– endpts of segments in S
– endpts of vertical extensions

4

≤ 2n
≤ 2 · 2n

}
≤ 6n + 4

Bound #trapezoids via Euler or directly (segments/leftp).

7

Philipp Kindermann Winter Semester 2020

Lecture 6:
Point Localization

or
Where am I?

Part III:
The 1D Problem

Computational Geometry

8 - 14

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

– build Di:

si

(`, si) (si, r) Di

Problem: looong search paths!

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

8 - 18

The 1D Problem
Given a set S of n real numbers...

– pick an arbitrary point si from S \ Si−1

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

– locate si in the search structure Di−1 of Si−1

– split interval (`, r) of Ii−1 containing si

– build Di:

si

(`, si) (si, r) Di

Problem: looong search paths!

Solution: random!

(`, r)

i ∈ {1, . . . , n}
` rsi

Di−1

Problem:

Solution:

9 - 7

The 1D Result

Proof.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

Given a set S of n real numbers...

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n + 1}
` rsi

Let q ∈ R (wlog. q 6∈ S) and Ii(q) = arg{I ∈ Ii : q ∈ I}.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

Theorem. The randomized-incremental alg. preproc.
a set S of n reals in O(n log n) expected time
such that a query takes O(log n) expected time.

10 - 15

Expected Query Time of Dn

Consider Si fixed.

Define random variable Xi =

{
1 if Ii(q) 6= Ii−1(q),
0 else.

E[query time in Dn] = E[length search path in Dn] =

= E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

E[Xi] = P[Xi = 1] =
= probability that Ii(q) 6= Ii−1(q) , i.e., si ∈ Ii−1(q).

Backwards
analysis:
(see Lecture 04)

If we remove a randomly chosen pt from Si,
what’s the probability that the interval
containing q changes?
– we have i choices, identically distributed

2/i

O(log n)

– at most two of these change the interval

11

The 1D Result

Theorem. The randomized-incremental alg. preproc.
a set S of n reals in O(n log n) expected time
such that a query takes O(log n) expected time.

Given a set S of n real numbers...

Si−1 := {s1, . . . , si−1}, Ii−1 := set of conn. comp. of R \ Si−1

i ∈ {1, . . . , n + 1}
` rsi

12

Philipp Kindermann Winter Semester 2020

Lecture 6:
Point Localization

or
Where am I?

Part IV:
The 2D Problem

Computational Geometry

13 - 32

The 2D Problem

– use D to locate left endpoint of next segment s
– “walk” along s through T
– destroy all trapezoids of T intersecting s
– construct new trapezoids of T (adjacent to s)
– update D

Approach: randomized-incremental construction of T and D

s1

A

B

`1

r1

s1

`1

r1A

B

T D
x-node
y-node
leaf
(trapezoid)

trapezoidal map
point-location data structure (DAG)

`2

r2
s2

C

D E

F

G
`2

C s2

D F

r2

Gs2

E

14 - 15

Walking Through T and Updating D
T (Si−1)∆0

∆1

∆2

∆3

si

`i

ri

risi

B

A
C

D

E

F

A
B

D

C

E
F

∆0 ∆1 ∆2 ∆3

D(Si−1) D(Si−1)

D(Si)

si si

siTrapezoidalMap(set S of n non-crossing seg.)
R = BBox(S); T .init(); D.init()
(s1, s2, . . . , sn) = RandomPermutation(S)
for i = 1 to n do

(∆0, . . . , ∆k) = FollowSegment(T , D, si)
T .remove(∆0, . . . , ∆k)
T .add(new trapezoids incident to si)
D.remove leaves(∆0, . . . , ∆k)
D.add leaves(new trapez. incident to si)
D.add new inner nodes()

T (Si)

si

15 - 6

The 2D Result

Invariant: Before step i, T is a trapezoidal map for Si−1
and D is a valid search structure for T .

Proof. – Correctness by loop invariant.
– Query time similar to 1D analysis.
⇒ construction time

TrapezoidalMap(S) computes T (S) for a set of n
line segments in general position and a search
structure D for T (S) in O(n log n) expected time.

Theorem.

The expected size of D is O(n) and the
expected query time is O(log n).

16

Philipp Kindermann Winter Semester 2020

Lecture 6:
Point Localization

or
Where am I?

Part V:
Query Time and Size

Computational Geometry

17 - 17

Query Time

Let T(q) be the query time for a fixed query pt q.

⇒ T(q) = O(length of the path from D.root to q).

height(D) increases by at most 3 in each step.⇒ T(q) ≤

We are interested in the expected behaviour of D:

⇒ average of T(q) over all n! insertion orders (permut. of S)

Xi := # nodes that are added to the query path in iteration i.

S and q are fixed.

⇒ Xi random var. that depends only on insertion order of S.

⇒ expected path length from D.root to q is

E[∑n
i=1 Xi] = ∑n

i=1 E[Xi] = ?

3n.

18 - 15

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

Key idea: Iteration i contributes a node to Πq iff

∆q(Si) := trapezoid in T (Si) that contains q.

∆q(Si−1) 6= ∆q(Si).

In this case ∆q(Si) must have been created in iteration i.
⇒ ∆ := ∆q(Si) is adjacent to the new segment si.
⇒ top(∆) = si, bot(∆) = si, leftp(∆) ∈ si, or rightp(∆) ∈ si.

∆ ∆ ∆ ∆

si

si
si

si

18 - 18

Query Time (cont’d)
pi = prob. that the search path Πq of q in D contains a node

that was created in iteration i.

⇒ E[Xi] =∑3
j=0 j · P[Xi = j] ≤ 3 · P[Xi ≥ 1] = 3pi

Key idea: Iteration i contributes a node to Πq iff

∆q(Si) := trapezoid in T (Si) that contains q.

∆q(Si−1) 6= ∆q(Si).

In this case ∆q(Si) must have been created in iteration i.
⇒ ∆ := ∆q(Si) is adjacent to the new segment si.
⇒ top(∆) = si, bot(∆) = si, leftp(∆) ∈ si, or rightp(∆) ∈ si.

Trick:
Consider Si ⊆ S fixed.
T (Si) (and thus ∆) is uniquely determined by Si.

⇒ ∆ does not depend on insertion order.

19 - 12

Query Time (cont’d)

Aim: bound pi.
Tool: Backwards analysis!

pi = prob. that the search path Πq of q in D contains a node
that was created in iteration i,
i.e., prob. that ∆ changes when inserting si.

pi = prob. that ∆ changes when si is removed
Four cases:

P(top(∆) = si) = 1/i (since exactly 1 of i segments is top(∆)).
⇒ pi ≤ 4/i
⇒E[∑n

i=1 Xi] = ∑n
i=1 E[Xi] ≤ ∑n

i=1 3 · pi

= 12 ∑n
i=1 1/i ∈ O(log n)

∆ ∆ ∆ ∆

si

si
si

si

20 - 12

Size

Xi := # int. nodes that are added to D in iteration i.
Size: |T (S)|+ ∑n

i=1 E[Xi]

Lemma. S planar subdivision in gen. pos. with n segments
⇒ T (S) has ≤ 6n + 4 vtc and ≤ 3n + 1 trapezoids.

= O(n) + ∑n
i=1 E[Xi]

Yi(∆) =

{
1 if ∆ disapp. from T (Si) when si is removed
0 otherwise

⇒ E[Xi] = ∑∆∈T (S) E[Yi(∆)] ≤ (3i + 1) · 4/i = 12 + 4/i ≤ 13

(pi = prob. that ∆ changes when si is removed)
⇒ E[Yi(∆)] = pi ≤ 4/i

⇒ Size: O(n) + ∑n
i=1 E[Xi] ≤ O(n) + 13n ∈ O(n)

21

The 2D Result
TrapezoidalMap(S) computes T (S) for a set of n
line segments in general position and a search
structure D for T (S) in O(n log n) expected time.

Theorem.

The expected size of D is O(n) and the
expected query time is O(log n).

	Definition & First Approach
	Decreasing the Complexity
	Notation
	Complexity of T(S)

	The 1D Problem
	The 1D Result
	Expected Query Time of D_n

	The 2D Problem
	Walking Through T and Updating D
	The 2D Result

	Query Time and Size
	Query Time (Part 1)
	Query Time (Part 2)
	Query Time (Part 3)
	Size

