
1

Philipp Kindermann Winter Semester 2020

Lecture 5:
Orthogonal Range Queries

or
Fast Access to Data Bases

Part I:
1D Range Searching

Computational Geometry

2 - 7

Orthogonal Range Queries
Example: Personnel management in a company

19,500,000 19,559,999

3,000

4,000

2

4

Typical queries for data bases!

e

3 - 13

1D Range Searching

6 21

Solution: balanced binary search trees. . .

11

4 8 11 13 17 21 27

4 17

8 13 21

Small changes: – keys only in leaves
– inner nodes store max. of their left subtrees

27

query

Return
all leaves
‘inbetween”.

3.

vsplit
1. Search x = 6.

2. Search x′ = 21.

Task: Preprocess a finite set P ⊂ R such that for any
interval [x, x′] the set P ∩ [x, x′] can be reported
quickly.

4 - 8

1D Range Searching

Observe: The result of a query is the disjoint union of at most
2h canonical subsets
– h ∈ O(log n) is the tree height,
– a canonical subset is an interval that contains all

points stored in a subtree.

, where

O(k + log n) , where k = |output|.

11

4 8 11 13 17 21 27

4 17

8 13 21

27

vsplit

output
sensitive!

Theorem. A set of n real numbers can be preprocessed in
O(n log n) time and O(n) space such that 1D range
queries take time.

5 - 7

Extensions to 2D

� one tree;
query path alternates between x- and y-coord.

� first-level tree for x-coordinates;
many second-level trees for y-coord.

Task: Preprocess a finite set P ⊂ R2 such that for any
range query R = [x, x′]× [y, y′] the set P ∩ R can
be reported quickly.

Solutions:

kd-tree

range tree

}
}

Assume: General position!
Here: no two points have the same x- or y-coordinate.

6

Philipp Kindermann Winter Semester 2020

Lecture 5:
Orthogonal Range Queries

or
Fast Access to Data Bases

Part II:
Kd-Trees: Contruction

Computational Geometry

7

Extensions to 2D

� one tree;
query path alternates between x- and y-coord.

� first-level tree for x-coordinates;
many second-level trees for y-coord.

Task: Preprocess a finite set P ⊂ R2 such that for any
range query R = [x, x′]× [y, y′] the set P ∩ R can
be reported quickly.

Solutions:

kd-tree

range tree

}
}

Assume: General position!
Here: no two points have the same x- or y-coordinate.

8 - 30

Kd-Trees: Example

p

`1
`7

`3

`6

`5

`2

p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

`8

`4

`1

`2 `3

`5 `6 `7

`8 `9

`4

4

p1

p5

p3

p2

p7

p9

p10

p6

p8

`9

[dBCvKO’08]

Vertical left.

� Split any region that contains more than one point.
� Horizontal split lines/segm. belong to the region below.

9 - 14

Kd-Trees: Construction
`

4

1

5

3

7

9

10

6

8

Pseudo-code:

BuildKdTree(points P, int depth)
if |P| = 1 then

return (leaf storing the pt in P)
else

if depth is even then
split P with the vertical line
` : x = xmedian(P) into
P1 (pts left of or on `) and
P2 = P \ P1

else
split P horizontally...

vleft ← BuildKdTree(P1, depth + 1)
vright ← BuildKdTree(P2, depth + 1)
create a node v storing `
make vleft and vright the children of v
return (v)

2

vleft vright

v
`

p

p

p

p

p

p

p

p

p

p

10

Philipp Kindermann Winter Semester 2020

Lecture 5:
Orthogonal Range Queries

or
Fast Access to Data Bases

Part III:
Kd-Trees: Analysis & Querying

Computational Geometry

11 - 6

Kd-Trees: Analysis
Construction time?

T(n) =

{
O(1) if n = 1
O(n) + 2T(dn/2e) else.

}
= O(n log n)

see Mergesort!

Lemma. A kd-tree for a set of n pts in the plane takes
O(n log n) time to construct and uses
O(n) storage.

12 - 21

Kd-Trees: Querying

*p1 p2

p2

p1

p3

p3 p4

p4 p5

p5

p6

p6

p7

p7 p8

p8

p9

p9

p10

p10

p11

p11

p12

p12 p13
p13

O(k + n1−1/d)

in Rd

Lemma. Querying a kd-tree for n pts in the plane with
an axis-parallel rectangle R takes O(k +

√
n)

time, where k = |output|.

Q(n) =

{
O(1) if n = 1
2 + 2Q(dn/4e) else.

regions intersected by query boundary:

= O(
√

n)

13

Philipp Kindermann Winter Semester 2020

Lecture 5:
Orthogonal Range Queries

or
Fast Access to Data Bases

Part IV:
Range Trees: Querying & Construction

Computational Geometry

14

Extensions to 2D

� one tree;
query path alternates between x- and y-coord.

� first-level tree for x-coordinates;
many second-level trees for y-coord.

Task: Preprocess a finite set P ⊂ R2 such that for any
range query R = [x, x′]× [y, y′] the set P ∩ R can
be reported quickly.

Solutions:

kd-tree

range tree

}
}

Assume: General position!
Here: no two points have the same x- or y-coordinate.

15 - 9

Range Trees: Query Algorithm
1. Search in main tree for x-coordinate

v

︸ ︷︷ ︸
P(v) = canonical subset of Tv

︸ ︷︷ ︸
P(v)

2. For each node u
on the path from vsplit to µ:

For the right child v of u:

u

3. Symmetrically for the
path from vsplit to µ′.

Tv

Search in auxiliary tree Tv
for points with
y-coordinate ∈ [y, y′]

µ µ′

vsplit

16 - 14

Range Trees: Construction

>

vleft TP
Pleft Pright

xmid
v

Running time?

O(n log n) :-(

Better:
Pre-sort once,
then build tree
bottom-up
in linear time.

⇓
Total

construction
time O(n log n)

Build2DRangeTree(point[] P)
construct 2nd-level tree TP on P (y-order)
if P = {p} then

create leaf v:
else

xmid = median x-coordinate of P
Pleft = pts in P with x-coordinate ≤ xmid
Pright =

vleft = Build2DRangeTree(Pleft)
vright = Build2DRangeTree(Pright)

create node v:

return v

TP
pv

vright

17

Philipp Kindermann Winter Semester 2020

Lecture 5:
Orthogonal Range Queries

or
Fast Access to Data Bases

Part V:
Range Trees: Analysis

Computational Geometry

18 - 6

Range Trees: Space Consumption

A: Each p ∈ P is stored in h = Θ(log n) 2nd-level trees.
⇒ Θ(n log n) space

p

p

p

p

Each node v of the 1st-level tree has a
pointer to a 2nd-level tree Tv with
|Tv| = Θ(|P(v)|).

Q: What’s the total space consumption

What’s your guess:
� Θ(n2),
� Θ(n log n),
� Θ(n log2 n), or
� Θ(n)?

of all 2nd-level trees?

How many trees
will contain a
given point?

19 - 11

Range Trees: Query time

∑
u ∈ paths to µ and µ′

O(ku + log n)

= O(∑u ku) + O(∑u log n)

= O(k) + 2h ·O(log n)

= O(k + log2 n)

Rd? O(n logd−1 n) storage and construction time

O(k + logd n) query time

T(n, k) =

See Chapter 5.4 in Comp. Geom A&A

v
u

µ µ′

vsplit

k
︸ ︷︷ ︸

︸
︷︷

︸
h

20 - 2

Comparison

kd-tree range tree
construction time O(n log n) O(n log n)
storage O(n) O(n log n)
query time O(k +

√
n) O(k + log2 n)

Note: trade-off between space and query time

21 - 13

General Sets of Points
Idea: use composite numbers (a|b) with lex order

p = (x, y) p̂ =
(
(x|y), (y|x)

)
unique coordin.

range R = [x, x′]× [y, y′]

R̂ = [(x| −∞), (x′|+ ∞)]× [(y| −∞), (y′|+ ∞)]

p ∈ R ⇔ p̂ ∈ R̂Show:

This removes our assumption about the input points being
in general position.
We can use kd-trees and range trees for any set of points;
no matter how many points have the same x- or y-coord.

22

Philipp Kindermann Winter Semester 2020

Lecture 5:
Orthogonal Range Queries

or
Fast Access to Data Bases

Part VI:
Fractional Cascading

Computational Geometry

23 - 13

Fractional Cascading
Task 1: Given sets B ⊂ A ⊂N stored in sorted order in

arrays A[1..n] and B[1..m], support 1d range
queries in the multiset A ∪ B in k + 1 · log n time!
We allow n log m bits extra space.

Task 2: Speed up 2d range queries:
O(k + log2 n)→ O(k + log n) time!

3 10 19 23 30 37 59 62 70 80 100 105

10 19 30 62 70 80 100

A

B

23

30

query with
range [20, 65]

link a ∈ A
with smallest
b ≥ a in B

[dBCvKO’08]

24 - 36

Layered Range Trees

2

5 7 8 12 15

17

21 33 41 52

58

672 93

67584121127

5

8

15

52

33

3 99

10 19 37 80

30 49

80 3 99 3049

99

6210 37

10 3719

8019

996237103 80 30 49 59 70 89 95

3 95 59 70 89

23 95 59 70 89

95 23 89 70

3 10 23 30 37 49 59 62 70 80 89 95 99

x y

[16, 53]× [18, 60]

19

19

62

23

23 30 49

→ (21, 49), (33, 30), (52, 23)

Theorem: Let d ≥ 2 and let P be a set of n pts in Rd.
Given O(n logd−1 n) preprocessing time &
storage, d-dim range queries on P can be
answered in O(k + logd−1 n) time.

17

	1D Range Searching
	Orthogonal Range Queries
	1D Range Searching
	1D Range Searching: Analysis
	Extensions to 2D

	Kd-Trees
	Kd-Trees: Example
	Kd-Trees: Construction
	Kd-Trees: Analysis
	Kd-Trees: Querying

	Range Trees
	Range Trees: Query Algorithm
	Range Trees: Construction
	Range Trees: Space Consumption
	Range Trees: Query time

	Comparison
	General Sets of Points
	Fractional Cascading
	Layered Range Trees

