Computational Geometry

Lecture 5:
Orthogonal Range Queries
or
Fast Access to Data Bases

Part I:
1D Range Searching

Orthogonal Range Queries

Example: Personnel management in a company

Typical queries for data bases!

1D Range Searching

Task:
Preprocess a finite set $P \subset \mathbb{R}$ such that for any interval $\left[x, x^{\prime}\right]$ the set $P \cap\left[x, x^{\prime}\right]$ can be reported quickly.

Solution: balanced binary search trees...
27
(1.) Search $x=6$.
(2.) Search $x^{\prime}=21$.
(3.) Return
all leaves 'inbetween".

Small changes: - keys only in leaves

- inner nodes store max. of their left subtrees

Observe: The result of a query is the disjoint union of at most $2 h$ canonical subsets, where
$-h \in O(\log n)$ is the tree height,

- a canonical subset is an interval that contains all points stored in a subtree.
Theorem. A set of n real numbers can be preprocessed in output $O(n \log n)$ time and $O(n)$ space such that 1D range sensitive! queries take $O(k+\log n)$ time, where $k=\mid$ output \mid.

Extensions to 2D

Task: \quad Preprocess a finite set $P \subset \mathbb{R}^{2}$ such that for any range query $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$ the set $P \cap R$ can be reported quickly.

Solutions:

- one tree;
query path alternates between x - and y-coord. $\} k d$-tree
■ first-level tree for x-coordinates; many second-level trees for y-coord.

Assume: General position!
Here: no two points have the same x - or y-coordinate.

Computational Geometry

Lecture 5:
Orthogonal Range Queries
or
Fast Access to Data Bases

Part II:

Kd-Trees: Contruction

Extensions to 2D

Task: \quad Preprocess a finite set $P \subset \mathbb{R}^{2}$ such that for any range query $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$ the set $P \cap R$ can be reported quickly.

Solutions:

- one tree;
query path alternates between x - and y-coord. $\} k d$-tree
- first-level tree for x-coordinates; many second-level trees for y-coord.

Assume: General position!
Here: no two points have the same x - or y-coordinate.

Kd-Trees: Example

- Split any region that contains more than one point.
- Horizontal split lines/segm. belong to the region below. Vertical left.

Kd-Trees: Construction

Pseudo-code:

BuildKdTree(points P, int depth) if $|P|=1$ then
return (leaf storing the pt in P) else
if depth is even then
split P with the vertical line
$\ell: x=x_{\text {median }(P)}$ into
P_{1} (pts left of or on ℓ) and $P_{2}=P \backslash P_{1}$
else
L split P horizontally...
$v_{\text {left }} \leftarrow \operatorname{BuildKdTree}\left(P_{1}\right.$, depth +1$)$
$v_{\text {right }} \leftarrow \operatorname{BuildKdTree}\left(P_{2}\right.$, depth +1$)$
create a node v storing ℓ make $v_{\text {left }}$ and $v_{\text {right }}$ the children of v return (v)

Computational Geometry

Lecture 5:
Orthogonal Range Queries or
Fast Access to Data Bases

Part III:
Kd-Trees: Analysis \& Querying

Kd-Trees: Analysis
Construction time?
$T(n)=\left\{\begin{array}{ll}O(1) & \text { if } n=1 \\ O(n)+2 T(\lceil n / 2\rceil) & \text { else. }\end{array}\right\} \stackrel{\text { see Mergesort! }}{=} O(n \log n)$

Lemma. A kd-tree for a set of n pts in the plane takes $O(n \log n)$ time to construct and uses $O(n)$ storage.

Kd-Trees: Querying

Lemma. Querying a kd-tree for $n \mathrm{pts}$ in the plane with an axis-parallel rectangle R takes $O(k+\sqrt{n})$ time, where $k=\mid$ output \mid.
regions intersected by query boundary:
$Q(n)=\left\{\begin{array}{ll}O(1) & \text { if } n=1 \\ 2+2 Q(\lceil n / 4\rceil) & \text { else. }\end{array}=O(\sqrt{n})\right.$ \square

Computational Geometry

Lecture 5:
Orthogonal Range Queries
or
Fast Access to Data Bases

Part IV:
Range Trees: Querying \& Construction

Extensions to 2D

Task: \quad Preprocess a finite set $P \subset \mathbb{R}^{2}$ such that for any range query $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$ the set $P \cap R$ can be reported quickly.

Solutions:

- one tree;
$\left.\begin{array}{l}\text { one tree; } \\ \text { query path alternates between } x \text { - and } y \text {-coord. }\end{array}\right\} k d$-tree
- first-level tree for x-coordinates; many second-level trees for y-coord.
range tree

Assume: General position!
Here: no two points have the same x - or y-coordinate.

Range Trees: Query Algorithm

1. Search in main tree for x-coordinate
2. For each node u on the path from $v_{\text {split }}$ to μ :
For the right child v of u :
Search in auxiliary tree $\mathcal{T}_{\%}$ for points with y -coordinate $\in\left[y, y^{\prime}\right]$
3. Symmetrically for the path from $v_{\text {split }}$ to μ^{\prime}.

Range Trees: Construction

Build2DRangeTree(point[] P)
construct 2nd-level tree \mathcal{T}_{P} on P (y-order)
if $P=\{p\}$ then
create leaf v :
else

$$
\begin{aligned}
& x_{\text {mid }}=\text { median x-coordinate of } P \\
& P_{\text {left }}=\text { pts in } P \text { with x-coordinate } \leq x_{\text {mid }} \\
& P_{\text {right }}= \\
& v_{\text {left }}=\text { Build2DRangeTree }\left(P_{\text {left }}\right) \\
& v_{\text {right }}=\text { Build2DRangeTree }\left(P_{\text {right }}\right)
\end{aligned}
$$

create node v :
return v

$\stackrel{v}{p}$
Running time?
$O(n \log n):-($
Better:
Pre-sort once, then build tree bottom-up in linear time.

Total
construction time $O(n \log n)$

Computational Geometry

Lecture 5:
Orthogonal Range Queries
or
Fast Access to Data Bases

Part V:
Range Trees: Analysis

Range Trees: Space Consumption

Each node v of the 1st-level tree has a pointer to a 2 nd-level tree \mathcal{T}_{v} with $\left|\mathcal{T}_{v}\right|=\Theta(|P(v)|)$.

Q: What's the total space consumption of all 2nd-level trees?

What's your guess:

- $\Theta\left(n^{2}\right)$,
- $\Theta(n \log n)$,
- $\Theta\left(n \log ^{2} n\right)$, or $■ \Theta(n)$?

A: Each $p \in P$ is stored in $h=\Theta(\log n)$ 2nd-level trees.
How many trees will contain a given point?

$\Rightarrow \Theta(n \log n)$ space

Range Trees: Query time

$$
\begin{aligned}
& T(n, k)= \sum_{u \in \text { paths to } \mu \text { and } \mu^{\prime}} O\left(k_{u}+\log n\right) \\
&= O\left(\sum_{u} k_{u}\right)+O\left(\sum_{u} \log n\right) \\
&=O(k)+2 h \cdot O(\log n) \\
&=O\left(k+\log ^{2} n\right)
\end{aligned}
$$

\mathbb{R}^{d} ?
$O\left(n \log ^{d-1} n\right)$ storage and construction time $O\left(k+\log ^{d} n\right)$ query time

Comparison

	kd -tree	range tree
construction time	$O(n \log n)$	$O(n \log n)$
storage	$O(n)$	$O(n \log n)$
query time	$O(k+\sqrt{n})$	$O\left(k+\log ^{2} n\right)$

Note: trade-off between space and query time

General Sets of Points

Idea: use composite numbers $(a \mid b)$ with lex order

$$
\begin{aligned}
& \begin{aligned}
& p=(x, y) \rightarrow \hat{p}=((x \mid y),(y \mid x)) \rightarrow \text { unique coordin. } \\
& \text { range } R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right] \\
& \downarrow \\
& \quad \hat{R}=\left[(x \mid-\infty),\left(x^{\prime} \mid+\infty\right)\right] \times\left[(y \mid-\infty),\left(y^{\prime} \mid+\infty\right)\right]
\end{aligned}
\end{aligned}
$$

Show: $p \in R \Leftrightarrow \hat{p} \in \hat{R}$
This removes our assumption about the input points being in general position.
We can use kd-trees and range trees for any set of points; no matter how many points have the same x - or y-coord.

Computational Geometry

Lecture 5:
Orthogonal Range Queries
or
Fast Access to Data Bases

Part VI:
Fractional Cascading

Fractional Cascading

Task 1: Given sets $B \subset A \subset \mathbb{N}$ stored in sorted order in arrays $A[1 . . n]$ and $B[1 . . m]$, support 1 d range queries in the multiset $A \cup B$ in $k+1 \cdot \log n$ time!
We allow $n \log m$ bits extra space.
Task 2: Speed up 2d range queries:
$O\left(k+\log ^{2} n\right) \rightarrow O(k+\log n)$ time!
query with
range $[20,65]$

$\operatorname{link} a \in A$
with smallest $b \geq a$ in B

Layered Range Trees

$$
[16,53] \times[18,60] \rightarrow(21,49),(33,30),(52,23)
$$

Theorem: Let $d \geq 2$ and let P be a set of n pts in \mathbb{R}^{d}. Given $O\left(n \log ^{d-1} n\right)$ preprocessing time \& storage, d-dim range queries on P can be answered in $O\left(k+\log ^{d-1} n\right)$ time.

