Lecture 5: Orthogonal Range Queries

Fast Access to Data Bases

Part I:
1D Range Searching

Orthogonal Range Queries

Example: Personnel management in a company

Typical queries for data bases!

1D Range Searching

Task:

Preprocess a finite set $P \subset \mathbb{R}$ such that for any interval [x, x'] the set $P \cap [x, x']$ can be reported quickly.

Small changes: - keys only in leaves

- inner nodes store max. of their left subtrees

Observe:

The result of a query is the disjoint union of at most 2*h* canonical subsets, where

- $-h \in O(\log n)$ is the tree height,
- a canonical subset is an interval that contains all points stored in a subtree.

Theorem.
output
sensitive!

A set of n real numbers can be preprocessed in $O(n \log n)$ time and O(n) space such that 1D range queries take $O(k + \log n)$ time, where k = |output|.

Extensions to 2D

Task:

Preprocess a finite set $P \subset \mathbb{R}^2$ such that for any range query $R = [x, x'] \times [y, y']$ the set $P \cap R$ can be reported quickly.

Solutions:

- one tree; query path alternates between x- and y-coord. $\begin{cases} kd$ -tree
- first-level tree for x-coordinates; many second-level trees for y-coord.

range tree

Assume: General position!

Here: no two points have the same *x*- or *y*-coordinate.

Lecture 5:

Orthogonal Range Queries

Fast Access to Data Bases

Part II:

Kd-Trees: Contruction

Extensions to 2D

Task:

Preprocess a finite set $P \subset \mathbb{R}^2$ such that for any range query $R = [x, x'] \times [y, y']$ the set $P \cap R$ can be reported quickly.

Solutions:

- one tree; query path alternates between x- and y-coord.

I first-level tree for *x*-coordinates; many second-level trees for y-coord.

range tree

Assume: General position!

Here: no two points have the same x- or y-coordinate.

Kd-Trees: Example

- Split any region that contains more than one point.
- Horizontal split lines/segm. belong to the region below. Vertical left.

Kd-Trees: Construction

Pseudo-code:

```
BuildKdTree(points P, int depth)
  if |P| = 1 then
        return (leaf storing the pt in P)
  else
        if depth is even then
              split P with the vertical line
                 \ell \colon x = x_{\text{median}(P)} into
                 P_1 (pts left of or on \ell) and
                 P_2 = P \setminus P_1
        else
              split P horizontally...
        v_{\text{left}} \leftarrow \text{BuildKdTree}(P_1, depth + 1)
        v_{\text{right}} \leftarrow \text{BuildKdTree}(P_2, depth + 1)
        create a node v storing \ell
        make v_{\text{left}} and v_{\text{right}} the children of v
        return (v)
```

Lecture 5:

Orthogonal Range Queries

Fast Access to Data Bases

Part III:

Kd-Trees: Analysis & Querying

Kd-Trees: Analysis

Construction time?

Construction time? see Mergesort!
$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ O(n) + 2T(\lceil n/2 \rceil) & \text{else.} \end{cases} = O(n \log n)$$

A kd-tree for a set of *n* pts in the plane takes Lemma. $O(n \log n)$ time to construct and uses O(n) storage.

Kd-Trees: Querying

Lemma. Querying a kd-tree for n pts in the plane with an axis-parallel rectangle R takes $O(k + \sqrt{n})$ time, where k = |output|.

regions intersected by query boundary:

$$Q(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2 + 2Q(\lceil n/4 \rceil) & \text{else.} \end{cases} = O(\sqrt{n})$$

 $\int_{\mathbf{V}} \operatorname{in} \mathbb{R}^d \\
O(k + n^{1 - 1/d})$

Lecture 5:

Orthogonal Range Queries

Fast Access to Data Bases

Part IV:

Range Trees: Querying & Construction

Extensions to 2D

Task:

Preprocess a finite set $P \subset \mathbb{R}^2$ such that for any range query $R = [x, x'] \times [y, y']$ the set $P \cap R$ can be reported quickly.

Solutions:

- one tree; query path alternates between x- and y-coord. $\begin{cases} kd$ -tree
- first-level tree for x-coordinates; many second-level trees for y-coord.

range tree

Assume: General position!

Here: no two points have the same *x*- or *y*-coordinate.

Range Trees: Query Algorithm

1. Search in main tree for x-coordinate 2. For each node *u* on the path from $v_{\rm split}$ to μ : For the right child *v* of *u*: Search in auxiliary tree T_{v} $v_{
m split}$ for points with \mathcal{U} y-coordinate $\in [y, y']$ 3. Symmetrically for the path from $v_{\rm split}$ to μ' .

P(v) = canonical subset of \mathcal{T}_v

Range Trees: Construction

Build2DRangeTree(point[] P)

construct 2nd-level tree \mathcal{T}_P on P (y-order)

if $P = \{p\}$ then

create leaf v:

else

 $x_{\rm mid}$ = median x-coordinate of P

 $P_{\text{left}} = \text{pts in } P \text{ with x-coordinate } \leq x_{\text{mid}}$

 $P_{\text{right}} =$

 $v_{\text{left}} = \text{Build2DRangeTree}(P_{\text{left}})$

 $v_{\text{right}} = \text{Build2DRangeTree}(P_{\text{right}})$

create node v:

Running time?

 $O(n \log n) :-($

Better:

Pre-sort once, then build tree bottom-up in linear time.

Total construction time $O(n \log n)$

return v

Lecture 5:

Orthogonal Range Queries

Fast Access to Data Bases

Part V:

Range Trees: Analysis

Range Trees: Space Consumption

Each node v of the 1st-level tree has a pointer to a 2nd-level tree \mathcal{T}_v with $|\mathcal{T}_v| = \Theta(|P(v)|)$.

Q: What's the *total* space consumption of all 2nd-level trees?

What's your guess:

- \blacksquare $\Theta(n^2)$,
- lacksquare $\Theta(n \log n)$,
- \blacksquare $\Theta(n \log^2 n)$, or
- $\Theta(n)$?

How many trees will contain a given point?

A: Each $p \in P$ is stored in $h = \Theta(\log n)$ 2nd-level trees. $P \Rightarrow \Theta(n \log n)$ space

Range Trees: Query time

$$T(n,k) = \sum_{u \in \text{ paths to } \mu \text{ and } \mu'} O(k_u + \log n)$$

$$= O(\sum_u k_u) + O(\sum_u \log n)$$

$$= O(k) + 2h \cdot O(\log n)$$

$$= O(k + \log^2 n)$$

 \mathbb{R}^{d} ?

 $O(n \log^{d-1} n)$ storage and construction time $O(k + \log^d n)$ query time

See Chapter 5.4 in Comp. Geom A&A

Comparison

	kd-tree	range tree
construction time	$O(n \log n)$	$O(n \log n)$
storage	O(n)	$O(n \log n)$
query time	$O(k+\sqrt{n})$	$O(k + \log^2 n)$

Note: trade-off between space and query time

General Sets of Points

Idea: use *composite numbers* (a|b) with lex order

Show:
$$p \in R \Leftrightarrow \hat{p} \in \hat{R}$$

This removes our assumption about the input points being in general position.

We can use kd-trees and range trees for any set of points; no matter how many points have the same x- or y-coord.

Lecture 5: Orthogonal Range Queries

Fast Access to Data Bases

Part VI: Fractional Cascading

Fractional Cascading

Task 1: Given sets $B \subset A \subset \mathbb{N}$ stored in sorted order in arrays A[1..n] and B[1..m], support 1d range queries in the multiset $A \cup B$ in $k + 1 \cdot \log n$ time! We allow $n \log m$ bits extra space.

Task 2: Speed up 2d range queries: $O(k + \log^2 n) \rightarrow O(k + \log n)$ time!

link $a \in A$ with smallest $b \ge a$ in B

Layered Range Trees

Theorem: Let $d \ge 2$ and let P be a set of n pts in \mathbb{R}^d . Given $O(n \log^{d-1} n)$ preprocessing time & storage, d-dim range queries on P can be answered in $O(k + \log^{d-1} n)$ time.