
1

Algorithmen und Datenstrukturen

Wintersemester 2020/21

8. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Sortieren – mit dem Würfel!

2

Und noch einmal: Sortieren!

Zur Erinnerung: MergeSort...

+

−
gute Worst-Case-Laufzeit (durch Teile-und-Herrsche)
kein in-situ-Verfahren (benötigt extra Felder beim Mergen)

Teile-&-Herrsche-Verfahren, das trotzdem in situ sortiert!Ziel:

Teile:

Herrsche:

Kombiniere:

Sortiere ein Teilfeld A[`..r] wie folgt:

Bestimme einen Index m ∈ {`, . . . , r} und teile
A[`..r] so in A[`..m − 1] und A[m + 1..r] auf,
dass alle Element im ersten Teilfeld kleiner gleich
A[m] sind und alle im zweiten größer als A[m].

durch rekursives Sortieren der beiden Teilfelder.

—

Partition(A, `, r)



QuickSort(int[] A, int `, r)

Schreiben Sie QuickSort in Pseudocode
unter Verwendung von Partition(A, `, r)!

[liefert m zurück]

int

3

QuickSort

QuickSort(A, ` = 1, r = A.length)

if ` < r then
m = Partition(A, `, r)
QuickSort(A, `, m − 1)
QuickSort(A, m + 1, r)

pivot = A[r]
i = `
for j = ` to r − 1 do

if A[j] ≤ pivot then
Swap(A, i , j)
i = i + 1

Swap(A, i , r)
return i

int Partition(int[] A, int `, int r)

` ri j

︸︷︷︸︸︷︷︸︸︷︷︸
≤ pivot > pivot beliebig

= pivot

Schleifeninvariante:

Für k = `, . . . , i − 1 gilt
A[k] ≤ pivot .

(i)

Für k = i , . . . , j − 1 gilt
A[k] > pivot .

(ii)

A[r] = pivot .(iii)

A[`..j−1] enthält die gleichen
Elemente wie zu Beginn.

(iv)

4

Ein Beispiel

int Partition(A, `, r)

QuickSort(A, ` = 1, r = ...)

if ` < r then
m = Partition(A, `, r)
QuickSort(A, `, m−1)
QuickSort(A, m+1, r)

87 90 72 53 61 62 99

5 6 4 1 2 3 7

5 6 4 1 2 3 7 –

1 2 3 5 6 4

1 2 – – 4 6 5

– 5 6

pivot = A[r]
i = `
for j = ` to r − 1 do

if A[j] ≤ pivot then
Swap(A, i , j)
i = i + 1

Swap(A, i , r)
return i

5

Laufzeit

int Partition(A, `, r)

Zähle Anzahl der Vergleiche!

QuickSort(A, ` = 1, r = ...)

if ` < r then
m = Partition(A, `, r)
QuickSort(A, `, m−1)
QuickSort(A, m +1, r)

pivot = A[r]
i = `
for j = ` to r − 1 do

if A[j] ≤ pivot then
Swap(A, i , j)
i = i + 1

Swap(A, i , r)
return i

Beob. Partition benötigt immer
Vergleiche.r − `

Wovon hängt dann die Laufzeit ab?

TQS(n) =

1. Extremfall: m immer erstes Element

TQS(n) = TQS(0) + TQS(n − 1) + n−1

= (TQS(n − 2) + n − 2) + n−1...

∈ Θ(n2)

2. Extremfall: m immer mittleres Element

= TQS(1) + 1 + 2 + · · ·+ n−2 + n−1

TQS(n) ≈ 2TQS(n/2) + n − 1
siehe MergeSort

∈ Θ(n log n)

TQS(m − 1)+TQS(n −m) + n−1

6

Wo ist die Wahrheit?

M.a.W. was passiert im Durchschnittsfall (average case)?

Vgl. InsertionSort: Bester Fall = n − 1 ∈ Θ(n) Vergleiche

Schlechtester Fall =
(

n
2

)
∈ Θ(n2) Vergleiche

Durchschnittsfall =

Mittle die Laufzeit über alle Permutationen der Eingabe!
Schwierig. . .

Statt dessen:
Berechne erwartete Laufzeit E [TIS] einer zufälligen Permutation

n/4 n/4 n/4n/4

E [TIS] ≥ E [Aufwand für letzte n
4 Elem.] ≥ ∈ Ω(n2)

Θ(n2)

· n
4

n
4
· 1
2

Schätze ab!

7

Zurück zu QuickSort

k = Random(`, r)
Swap(A, r , k)
return Partition(A, `, r)

RandomizedPartition(A, `, r)

Partition(A, `, r)

Seien z1, z2, . . . , zn die Elemente
von A in sortierter Reihenfolge.

Wann vergleicht Alg. zi und zj ?

* höchstens ein Mal:
wenn eins von beiden pivot ist.

pivot = A[r]
i = `
for j = ` to r − 1 do

if A[j] ≤ pivot then
Swap(A, i , j)
i = i + 1

Swap(A, i , r)
return i

Idee: Steck Zufall in den Algorithmus!

Liefert Zufallszahl
∈ {`, . . . , r}.

5 6 4 1 2 3 7

5 6 4 1 2 3 7 –

1 2 3 5 6 4

1 2 – – 4 6 5

– 5 6

5 Vergleiche

2 Vgl.

1 Vgl.

1 Vgl.

Wie viele Vergleiche bräuchte
InsertionSort für diese Instanz?

6 Vergleiche

7

Zurück zu QuickSort

k = Random(`, r)
Swap(A, r , k)
return Partition(A, `, r)

RandomizedPartition(A, `, r)

Partition(A, `, r)

Seien z1, z2, . . . , zn die Elemente
von A in sortierter Reihenfolge.

Wann vergleicht Alg. zi und zj ?

* höchstens ein Mal:

Definiere Indikator-Zufallsvariable:

Vij =

{
1, falls Alg. zi und zj vergleicht,

0 sonst.

Sei V ZV für Gesamtanz. von Vgl.

Dann gilt V =
∑

1≤i<j≤n Vi j .

⇒ E [V] =
∑

1≤i<j≤n E [Vi j]

wenn eins von beiden pivot ist.
pivot = A[r]
i = `
for j = ` to r − 1 do

if A[j] ≤ pivot then
Swap(A, i , j)
i = i + 1

Swap(A, i , r)
return i

Idee: Steck Zufall in den Algorithmus!

Liefert Zufallszahl
∈ {`, . . . , r}.

Linearität des Erwartungswerts!

8

First come, first serve

E [Vi j] = Pr[Alg. vergleicht zi und zj] = ?
Betrachte die Menge Zi j := {zi , zi+1, . . . , zj}.

Sei z? die erste Zahl in Zi j , die Pivot wird.

Es gilt: Alg. vergleicht zi und zj ⇔ z? = zi oder z? = zj .

⇒ Pr[Alg. vergleicht zi und zj] = Pr[z? = zi oder z? = zj]

= Pr[z? = zi] + Pr[z? = zj]

=
1

|Zi j |
+

1

|Zi j |

=
2

j − i + 1

i 6= j

9

Auf zum letzten Gefecht. . .

Pr[Alg. vergleicht zi und zj] =
2

j − i + 1
E [Vi j] =

E [V] =

Wir wissen:∑
1≤i<j≤n

E [Vi j] =
∑

1≤i<j≤n

2

j − i + 1

=
n−1∑
i=1

n∑
j=i+1

2

j − i + 1

=
n−1∑
i=1

n−i∑
k=1

2

k + 1

Trick: ersetze j − i durch k!

−i

9

Auf zum letzten Gefecht. . .

Pr[Alg. vergleicht zi und zj] =
2

j − i + 1
E [Vi j] =

E [V] =

Wir wissen:∑
1≤i<j≤n

E [Vi j] =
∑

1≤i<j≤n

2

j − i + 1

=
n−1∑
i=1

n∑
j=i+1

2

j − i + 1

=
n−1∑
i=1

n−i∑
k=1

2

k + 1
<

n−1∑
i=1

n∑
k=1

2

k
∈ O()n log n

Trick: ersetze j − i durch k!

Satz: RandomizedQuickSort sortiert n Zahlen in O(n log n)
erwarteter Zeit.

harmonische Reihe!

10

Zusammenfassung Sortierverfahren

InsertionSort MergeSort

Laufzeit

HeapSort

Worst-Case- Θ(n2) Θ(n log n) Θ(n log n)

Best-Case-
Laufzeit

Θ(n) Θ(n log n) Θ(n log n)

in situ
(in place)

stabil

QuickSort

Θ(n2)

Avg.-Case-
Laufzeit

Θ(n2) Θ(n log n) Θ(n log n) Θ(n log n)

Θ(n log n)

1

1) Ein in-situ-Algorithmus benötigt nur O(1) extra Speicher.

2

2) Sortieralg. stabil, wenn er gleiche Schlüssel in Ursprungsreihenf. belässt.

(X)?XX
X X

QuickSort muss für jeden rekursiven Aufruf die Variable m zwischenspeichern. Dafür wird im worst case Ω(n)
zusätzlicher Speicherplatz benötigt. Mit Tricks kann man dieses Problem umgehen und so QuickSort in-situ machen.

?)

	Titel
	Und noch einmal: Sortieren!
	QuickSort
	Ein Beispiel
	Laufzeit
	Wo ist die Wahrheit?
	Zurück zu QuickSort
	First come, first serve
	Auf zum letzten Gefecht...
	Zusammenfassung Sortierverfahren

