Algorithmen & Komplexitat Institut fiir Informatik

Julius-Maximilians-
UNIVERSITAT Lohetunin I 1 I " f
WURZBURG INFORMATIK | I I

Algorithmen und Datenstrukturen

Wintersemester 2020/21
8. Vorlesung

Sortieren — mit dem Wiirfel!

Prof. Dr. Alexander Wolff Lehrstuhl fiir Informatik |

Und noch einmal: Sortieren!

Zur Erinnerung: MergeSort...

+ gute Worst-Case-Laufzeit (durch Teile-und-Herrsche)
— kein in-situ-Verfahren (benotigt extra Felder beim Mergen)

Ziel: Teile-&-Herrsche-Verfahren, das trotzdem in situ sortiert!

Sortiere ein Teilfeld A[£..r] wie folgt: |QuickSort(int[| A, int/, r)

Teile: ‘Bestimme einen Index m € {/, ..., r} und teile
int All..r] so in A[{..m — 1] und A[m + 1..r] auf,
Partition(A, £, 1) dass alle Element im ersten Teilfeld kleiner gleich
A[m] sind und alle im zweiten groBer als A[m].

Herrsche: durch rekursives Sortieren der beiden Teilfelder.
Kombiniere: — Schreiben Sie QuickSort in Pseudocode
ombiniere. unter Verwendung von Partition(A, ¢, r)!

QUICkSOrt e RS

QuickSort(A, ¢ = 1, r = A.length)
if £ <r then < piwot > pwot beliebig

m = Partition(A, ¢, r) : |
QuickSort(A, ¢, m — 1) e DUVOT
| QuickSort(A, m 41, r) int Partition(int[] A, int/, intr)
Schleifeninvariante: prvot = Alr]
(i) Fir k=14, ..., i — 1 gilt ’:é
A[k] S p’l;’UOt. for{ — gtO r — 1 do
N . . . if A[Jj] < pivot then
(ii) Fir k=1,..., J—1 gilt Swap(A, i,)
Alk] > pivot. P i+1

(iii) A:r] = pivot. Swap(A, i, r)
(iv) A[¢.j—1] enth3lt die gleichen return |
Elemente wie zu Beginn.

Ein Beispiel
37 90 72 b3 61 62 99

56 41237
56 4 12 3|7|-

K
1 2|8|5 6 4
K R N
12|- —|4]6 5
R N
- |5]6

QuickSort(A,f=1,r = ...)

if £ < r then
m = Partition(A, ¢, r)
QuickSort(A, £, m—1)
. QuickSort(A, m+1, r)

int Partition(A, ¢, r)
pivot = Alr]
| =/
for j=/tor—1do
if Alj] < pivot then
Swap(A, i, J)
| =1+ 1
Swap(A, i, r)
return /

5

Laufzeit QuickSort(A, £ =1,r = ...)

. . if / < r then
Zihle Anzahl der Vergleiche! '
dhle Anza er Vergleiche m = Partition(A, ¢, r)
Beob. Partition ben_btigt immer QuickSort(A, ¢, m—1)
r — £ Vergleiche. B QuickSort(A, m+1,r)

Wovon hangt dann die Laufzeit ab?

Tos(n) = Tas(m — 1)+ Tos(n — m) + n—1 int Partition(A, ¢, r)

| pivot = Alr|

1. Extremfall: m immer erstes Element P—
TQS(”) — TQS(O) T TQS(” — 1) + n—1 forj —/tor—1do

= (Tas(n=2)+n—2)+n-1 if A[j] < pivot then

= Tas(1) + 142+ +n—2+n-1 Swap(A, 7, j)

€ () r=1+1
2. Extremfall: m immer mittleres Element Swap(A, I, r)

return |

Tqs(n) ~2Tgs(n/2)+n—1¢€ O(nlogn)

Wo ist die Wahrheit?

M.a.W. was passiert im Durchschnittsfall (average case)?

Vgl. InsertionSort: Bester Fall = n—1 € ©(n) Vergleiche

Schlechtester Fall = () € ©(n?) Vergleiche
Durchschnittsfall = ©(n?)

Mittle die Laufzeit liber alle Permutationen der Eingabe!

Schwierig. . .
Statt dessen:

_Bglgv]:gchfe erwartete Laufzeit E|[Ts] einer zufalligen Permutation

~ N\

leQ

abll

n/4 n/4 n/4
E[Tis] > E[Aufwand fiir letzte 7 Elem.] >

I\)II—‘

7
¥ : Idee: Steck Zufall in den Algorithmus!
ZUFUCk 77U QUleSOH ee eck Zufall in den Algori us

Seien zy1, 2, . . ., z, die Elemente
von A in sortierter Reihenfolge.

Wann vergleicht Alg. z; und z;?

* hochstens ein Mal:
wenn eins von beiden pivot ist.

56 41237
56 4 12 3|7|-

Vg
1 2|8|5 6 4
r'e R'N
12]|- -|4]6 5

N
-[5]6

RandomizedPartition(A, ¢, r)

k = Random(/, r) &0 200"
Swap(A, r, k)
return Partition(A, Z, r)

Partition(A, ¢, r)
pivot = A|r]
=/
for j=/7tor—1do
if Alj] < pivot then
Swap(A, i, J)
I =1-+1
Swap(A, i, r)
return |

7
] .C S t Idee: Steck Zufall in den Algorithmus!

Seien z{, z», ..., z, die Elemente
von A in sortierter Reihenfolge.

Wann vergleicht Alg. z; und z;?

* hochstens ein Mal:
wenn eins von beiden pivot ist.

Definiere Indikator-Zufallsvariable:

=
J O sonst.

Sei V ZV fiir Gesamtanz. von Vgl.

Dann gilt V.= > i<, Vij.
= E[V] = Zl§i<j§n E[Vj]

‘\ Linearitdt des Erwartungswerts!

o {1, falls Alg. z und z; vergleicht,

RandomizedPartition(A, ¢, r)

k = Random(/, r) &0 200"
Swap(A, r, k)
return Partition(A, Z, r)

Partition(A, ¢, r)
pivot = Alr]
=/
for j=/tor—1do
if Alj] < pivot then
Swap(A, i, J)
I =1-+1
Swap(A, i, r)
return |

First come, first serve

E[Vij] = Pr[Alg. vergleicht z; und z]|] = ?

Betrachte die Menge Z,'j = {Z,', Zitl, .-, Zj}.

Sei z* die erste Zahl in Z;;, die Pivot wird.
Es gilt: Alg. vergleicht z; und z; & z* =2z oder z¥ = z;.

= Pr[Alg. vergleicht z; und z] = Pr[z* = z oder z* = z]]

= Pr|z* = z;] + Pr[z* = z]
11
1zl 1zl
,
T i+

Auf zum letzten Gefecht. ..

_ 2
E[Vij] = Pr[Alg. vergleicht z; und z]|] = PR
Wir wissen:
2
ElVI= > E[Vy] = Y —
— —_ J—i+1
1<i<j<n 1<i<y<n
n—1 n 9
= Z Z 1 Trick: ersetze j — i durch k!
i—1 | j=it1 ! T
n—1 _ji

2
k+1

-5

n
=1 k=1

Auf zum letzten Gefecht. ..

. 2
E[Vij] = Pr[Alg. vergleicht z; und z]|] = PR
Wir wissen:
2
V- Y Bl - Y
1<i<j<n 1§i<j§n‘/

n—1 n

2
= Z Z — Trick: ersetze j — i durch k!
J—1+1

i=1 j=i+1
n—1 n@ n—1 n vfharmonische Reihe!

2 2
- k@D > 2. 1 € Olnlogn)

=1 k=1

Satz: RandomizedQuickSort sortiert n Zahlen in O(nlog n)
erwarteter Zeit.

10

/usammenfassung Sortierverfahren

InsertionSort | MergeSort | HeapSort | QuickSort

Worst-Case-
| aufzeit

Avg.-Case-
Laufzeit

Best-Case-
Laufzeit

e | | X V)
stabil v v X X

1) Ein in-situ-Algorithmus bendtigt nur O(1) extra Speicher.

%) Sortieralg. stabil, wenn er gleiche Schliissel in Ursprungsreihenf. belisst.

*) QuickSort muss fiir jeden rekursiven Aufruf die Variable m zwischenspeichern. Dafiir wird im worst case £2(n)
zusatzlicher Speicherplatz bendtigt. Mit Tricks kann man dieses Problem umgehen und so QuickSort in-situ machen.

	Titel
	Und noch einmal: Sortieren!
	QuickSort
	Ein Beispiel
	Laufzeit
	Wo ist die Wahrheit?
	Zurück zu QuickSort
	First come, first serve
	Auf zum letzten Gefecht...
	Zusammenfassung Sortierverfahren

