Computational Geometry

Lecture 4: Linear Programming or Profit Maximization

Part I: Introduction to Linear Programming

Philipp Kindermann

Winter Semester 2020

You're the boss of a small company that produces two products P_1 and P_2 .

You're the boss of a small company that produces two products P_1 and P_2 .

You're the boss of a small company that produces two products P_1 and P_2 . For the production of x_1 units of P_1 and x_2 units of P_2 , you're profit in \in is:

$$G(x_1, x_2) = 30x_1 + 50x_2$$

You're the boss of a small company that produces two products P_1 and P_2 . For the production of x_1 units of P_1 and x_2 units of P_2 , you're profit in \in is:

$$G(x_1, x_2) = 30x_1 + 50x_2$$

Three machines M_A , M_B and M_C produce the required components A, B and C for the products.

$$M_A$$
 :
 M_B :
 M_C :

You're the boss of a small company that produces two products P_1 and P_2 . For the production of x_1 units of P_1 and x_2 units of P_2 , you're profit in \in is:

$$G(x_1, x_2) = 30x_1 + 50x_2$$

Three machines M_A , M_B and M_C produce the required components A, B and C for the products. The components are used in different quantities for the products

$$M_A: 4x_1 + 11x_2 \ M_B: x_1 + x_2 \ M_C: x_2$$

You're the boss of a small company that produces two products P_1 and P_2 . For the production of x_1 units of P_1 and x_2 units of P_2 , you're profit in \in is:

$$G(x_1, x_2) = 30x_1 + 50x_2$$

Three machines M_A , M_B and M_C produce the required components A, B and C for the products. The components are used in different quantities for the products, and each machine requires some time for the production.

$$M_A: 4x_1 + 11x_2 \le 880 M_B: x_1 + x_2 \le 150 M_C: x_2 \le 60$$

You're the boss of a small company that produces two products P_1 and P_2 . For the production of x_1 units of P_1 and x_2 units of P_2 , you're profit in \in is:

$$G(x_1, x_2) = 30x_1 + 50x_2$$

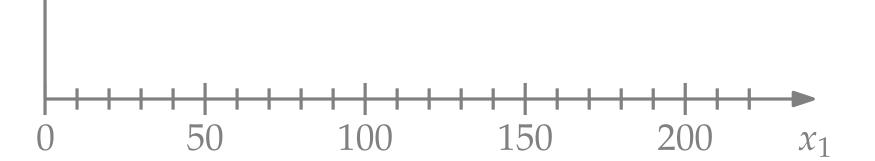
Three machines M_A , M_B and M_C produce the required components A, B and C for the products. The components are used in different quantities for the products, and each machine requires some time for the production.

$$M_A: 4x_1 + 11x_2 \le 880 M_B: x_1 + x_2 \le 150 M_C: x_2 \le 60$$

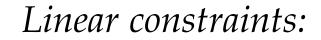
Which choice of (x_1, x_2) maximizes the profit?

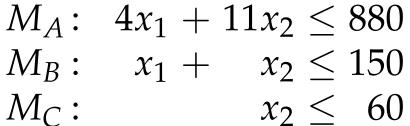
$$M_A: 4x_1 + 11x_2 \le 880 M_B: x_1 + x_2 \le 150 M_C: x_2 \le 60$$

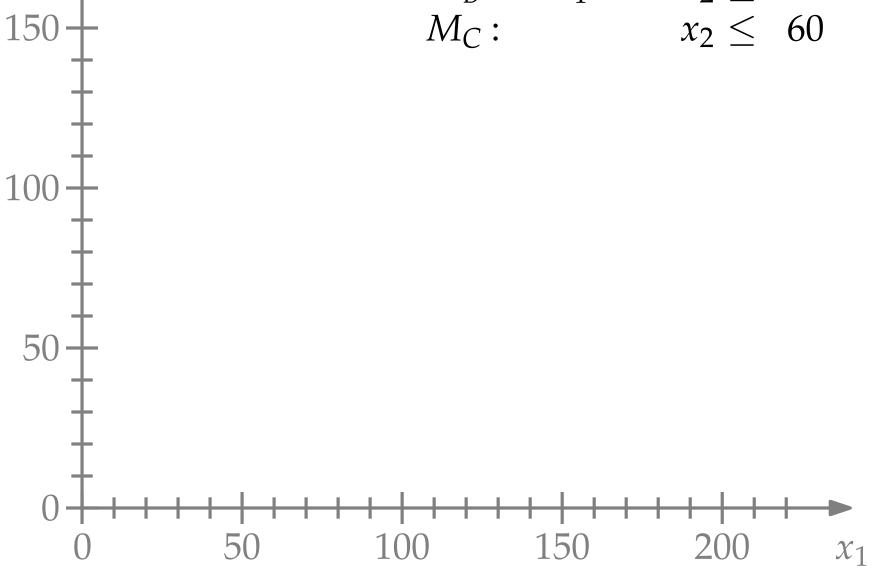
$$M_A: 4x_1 + 11x_2 \le 880 M_B: x_1 + x_2 \le 150 M_C: x_2 \le 60$$



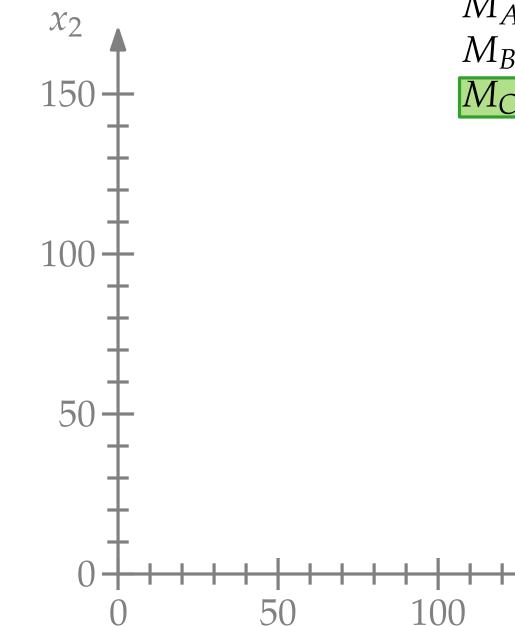
 x_2







()



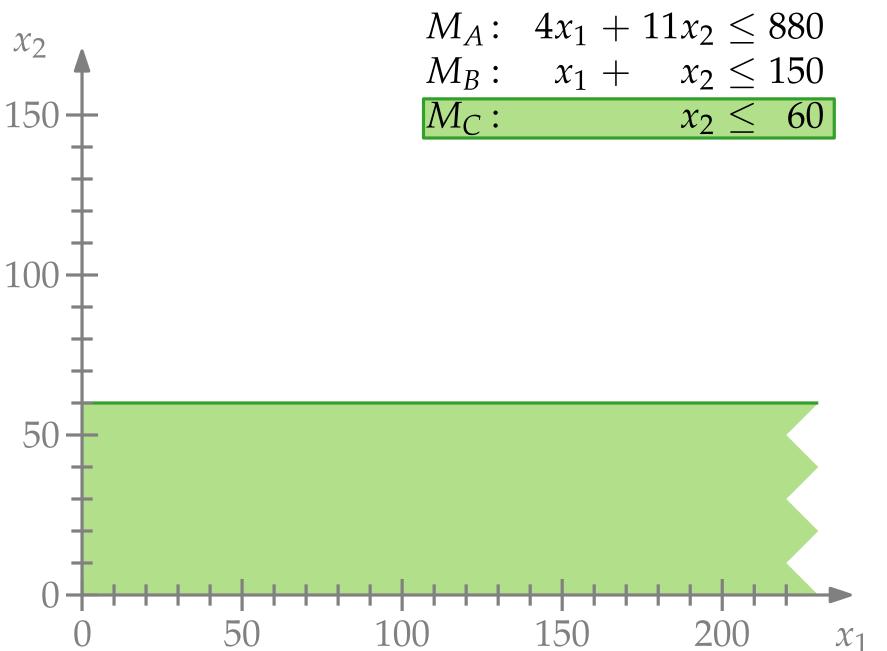
Linear constraints:

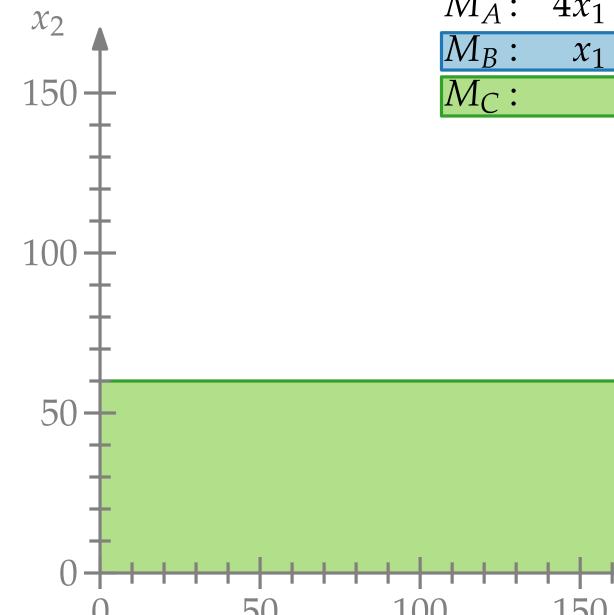
150

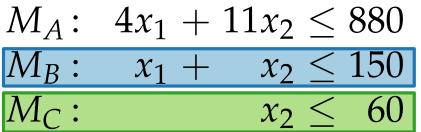
200

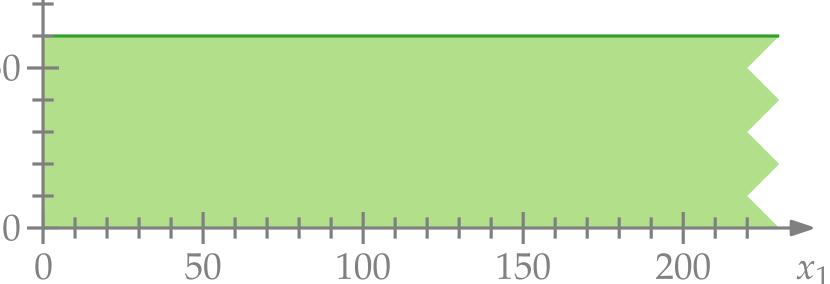
 χ_1

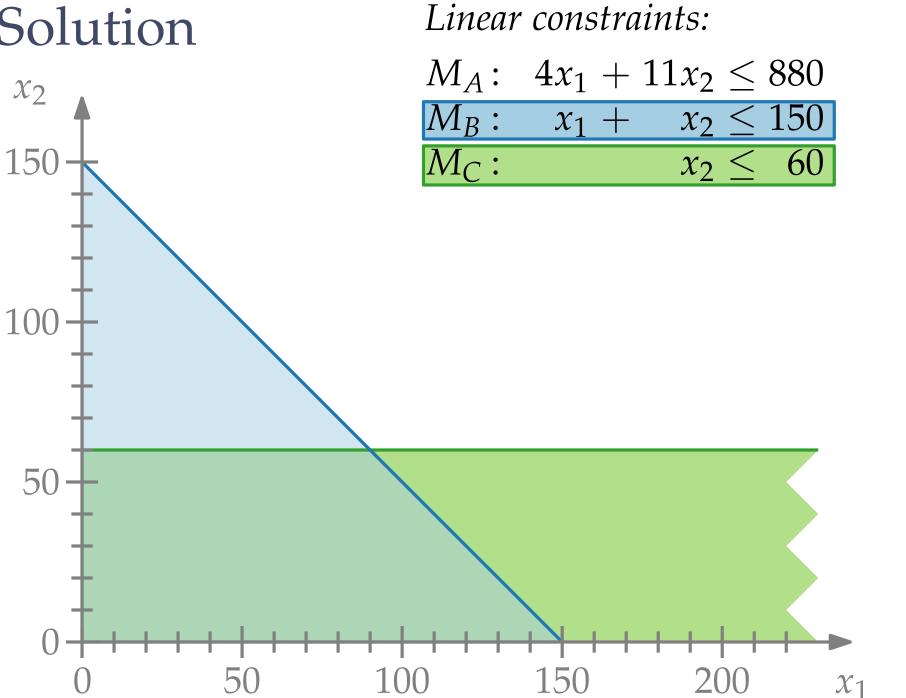
 $M_A: 4x_1 + 11x_2 \le 880$ $M_B: \quad x_1 + \quad x_2 \le 150$ M_C : $x_2 \le 60$

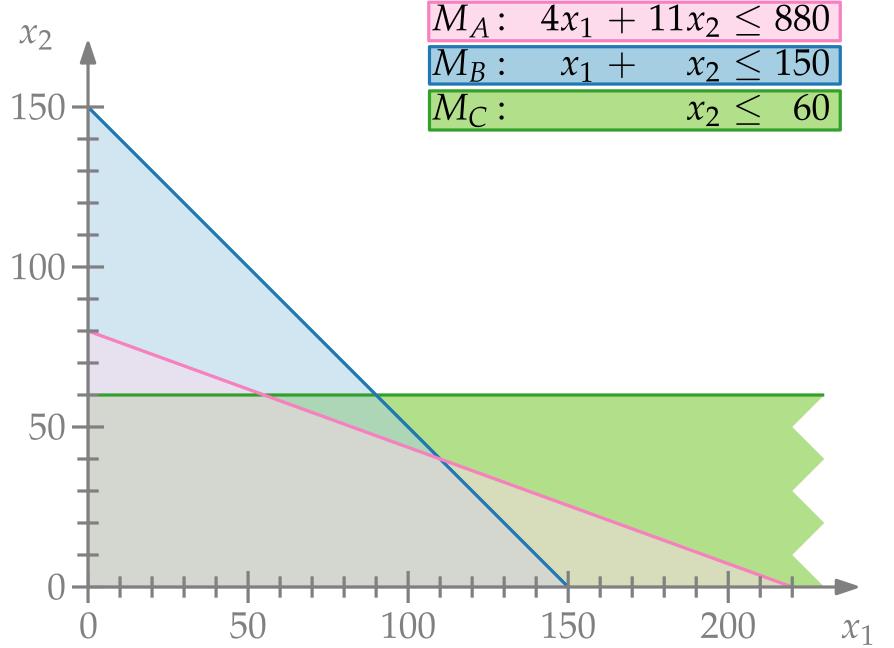


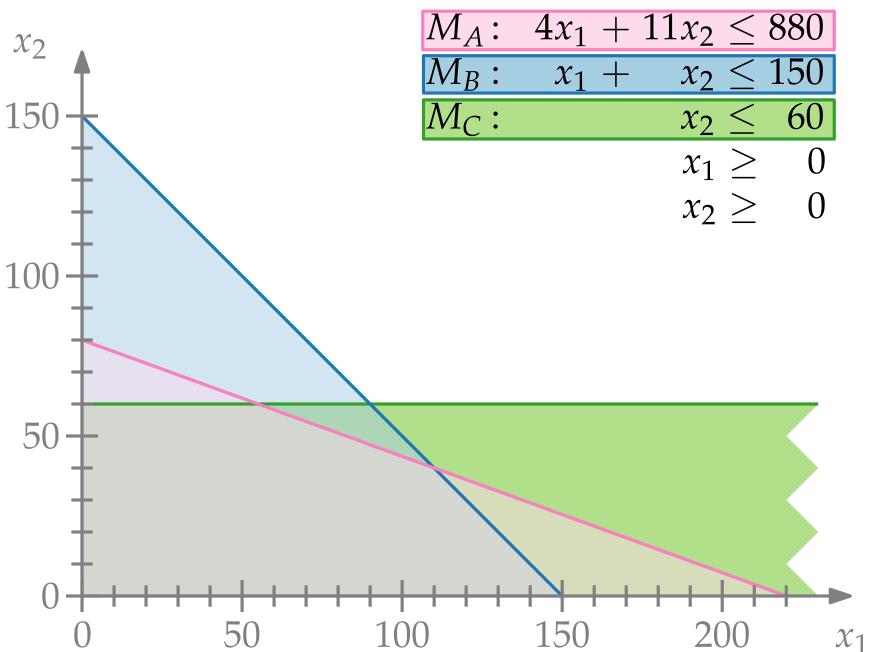


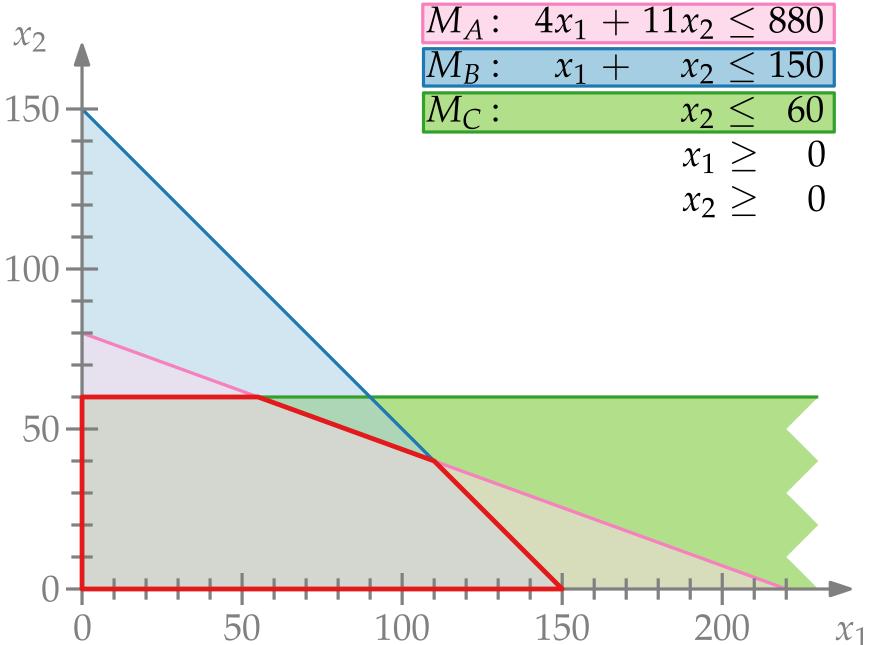


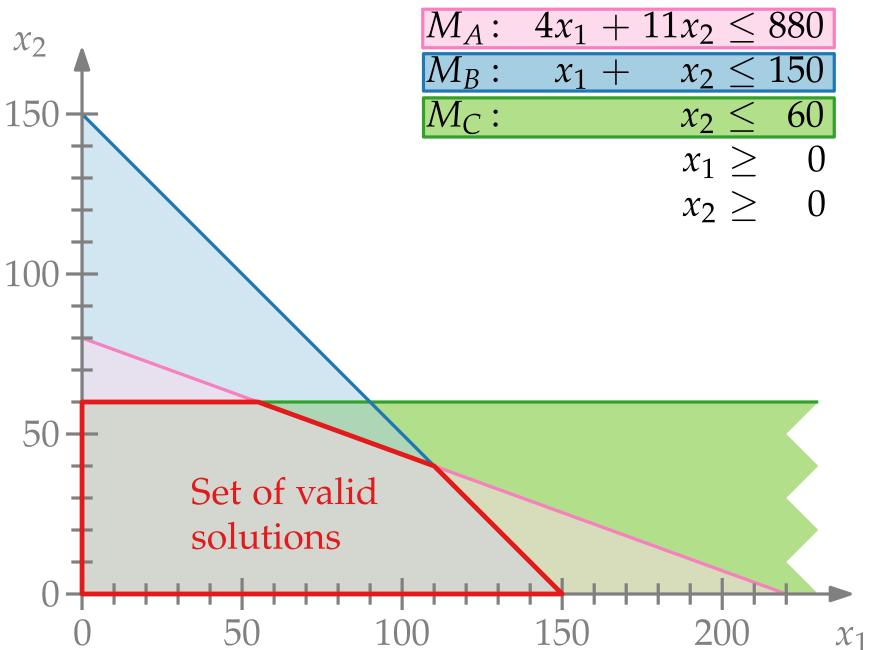


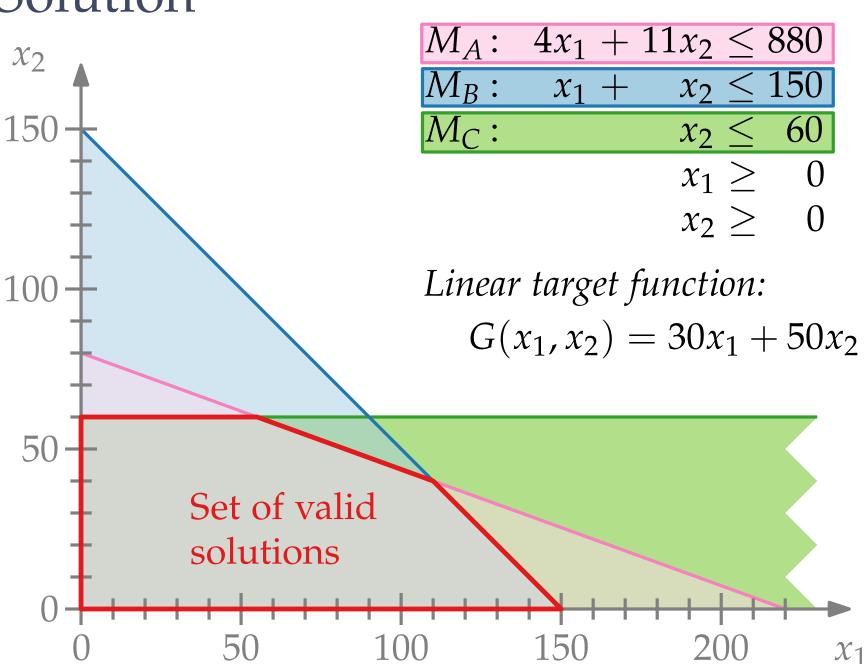


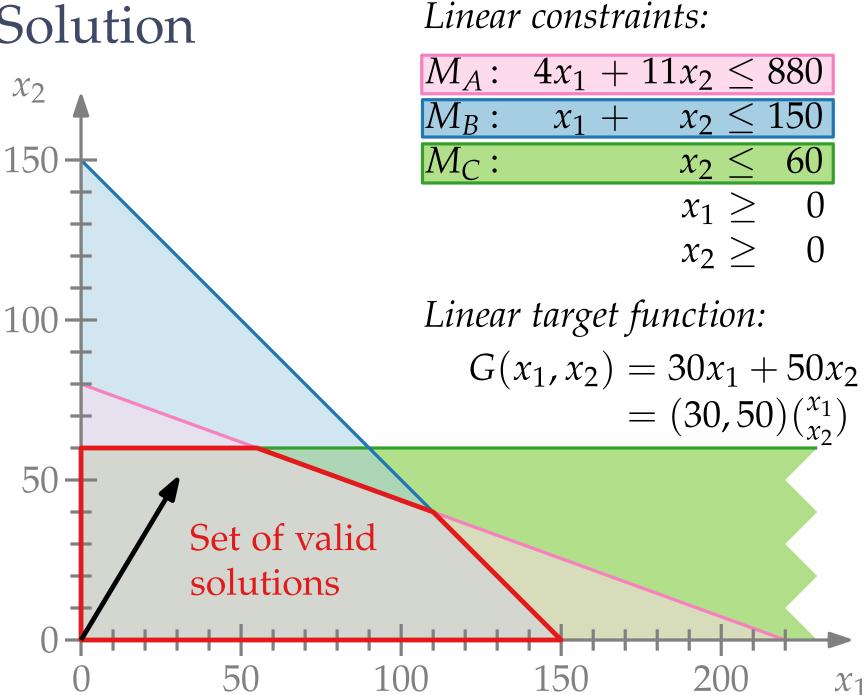


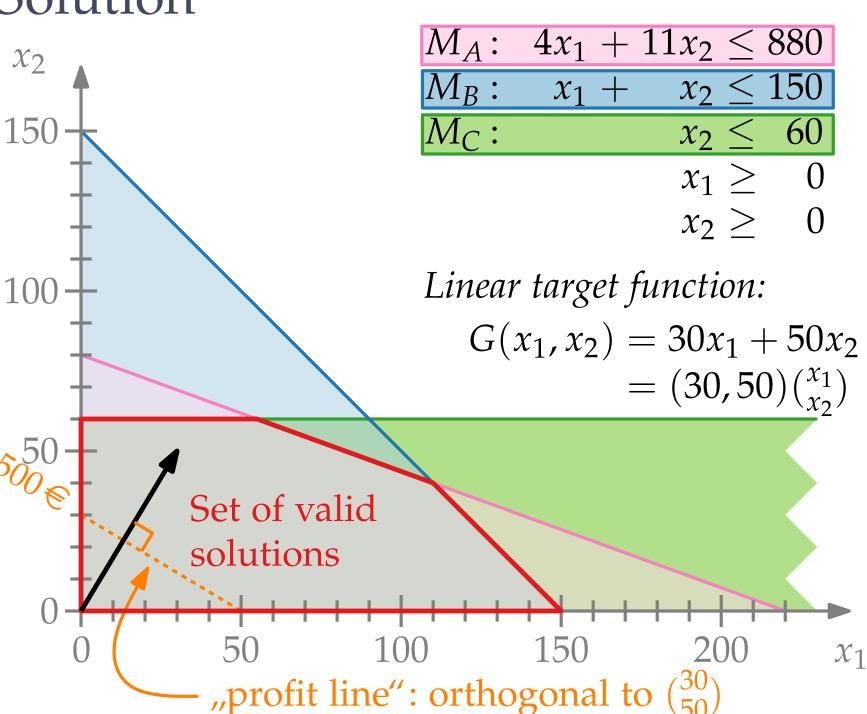










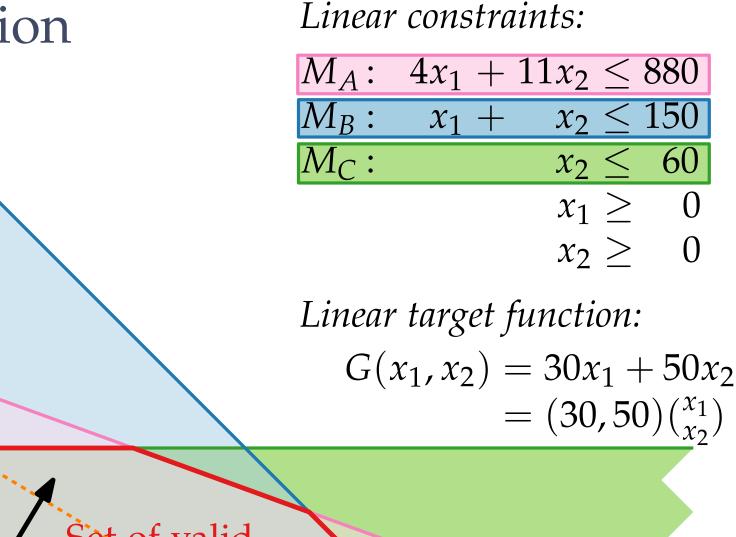


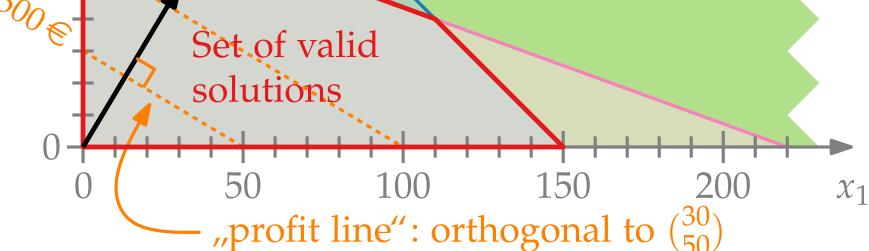
 χ_2

150

100

3.000 E

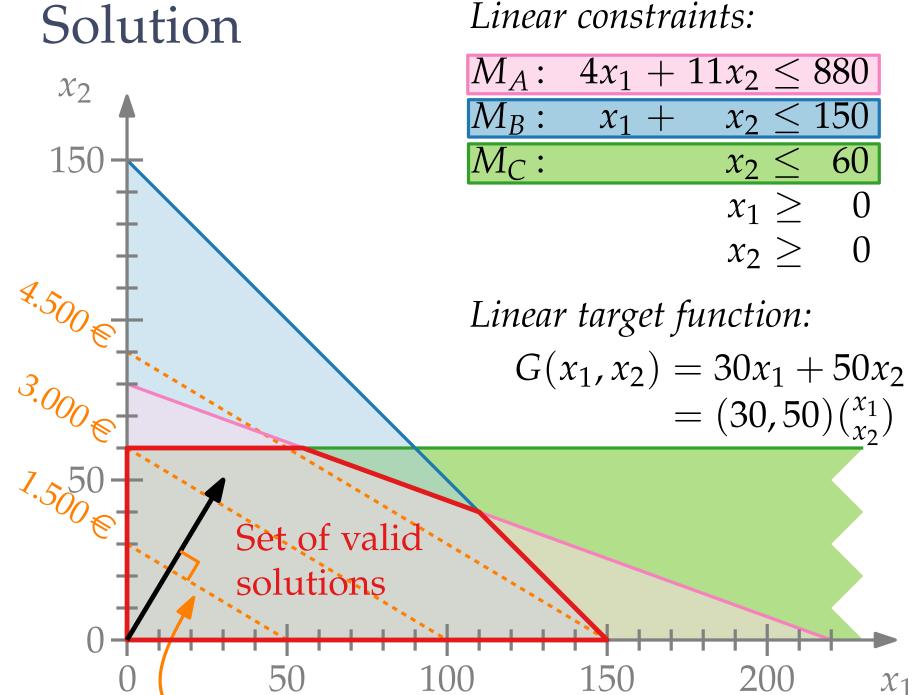




 χ_2

150

U



"profit line": orthogonal to $\binom{30}{50}$

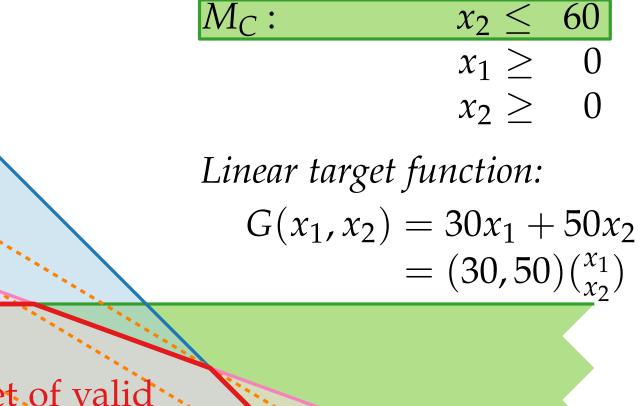
 x_2

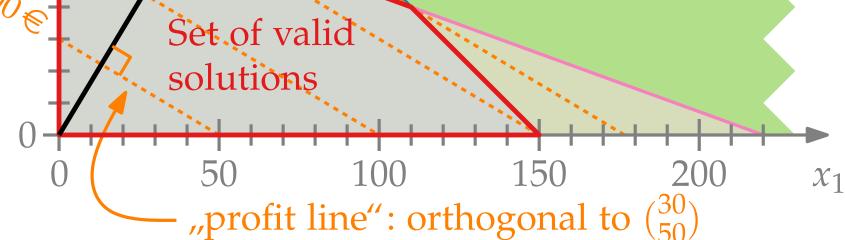
150

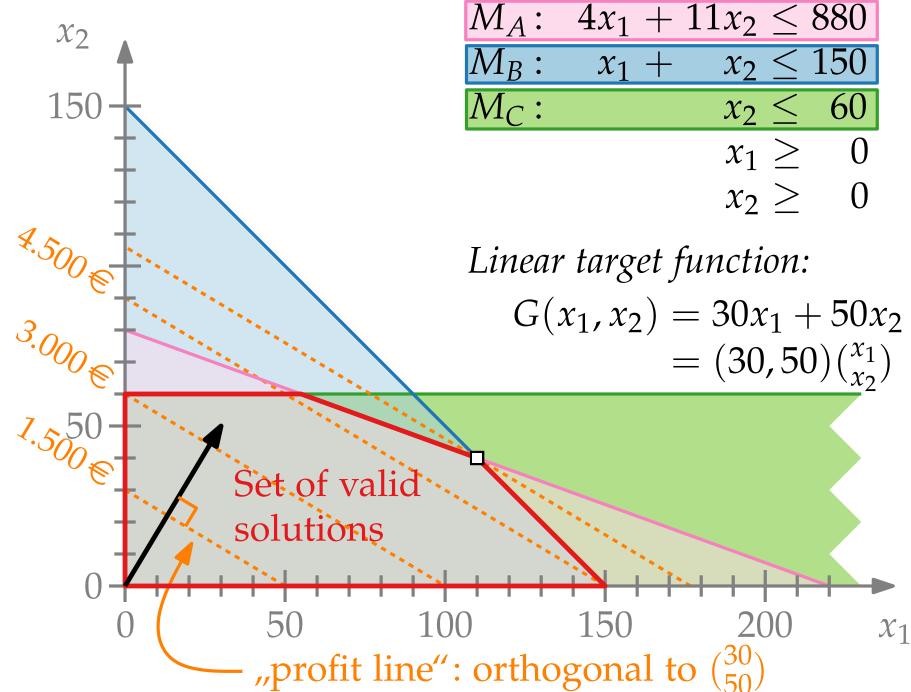
4.500

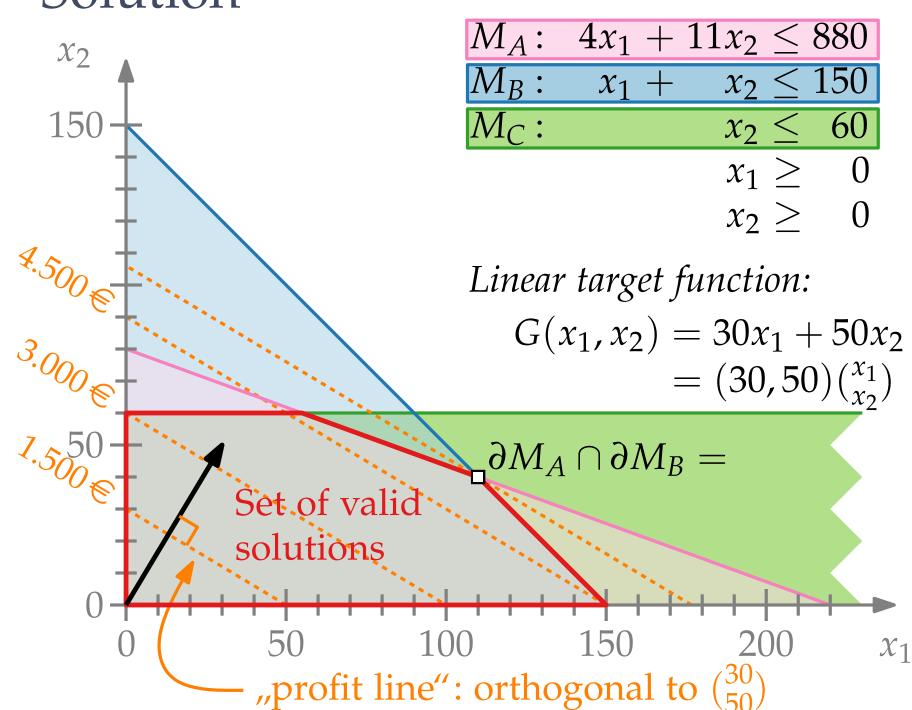
3.000 E

Linear constraints: $M_A: 4x_1 + 11x_2 \le 880$ $M_B: x_1 + x_2 \le 150$ $M_C: x_2 \le 60$

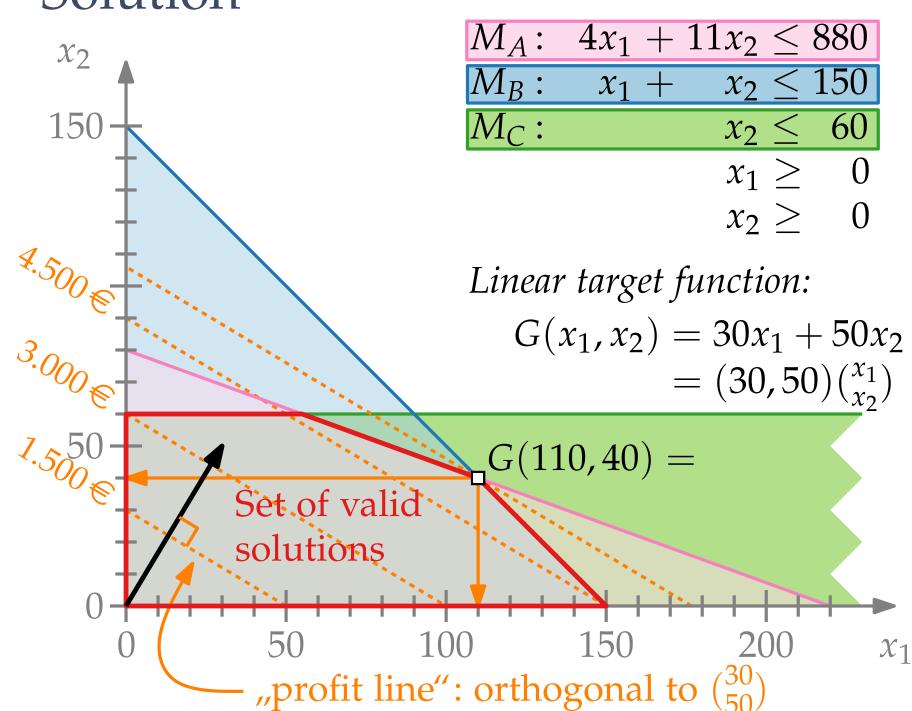


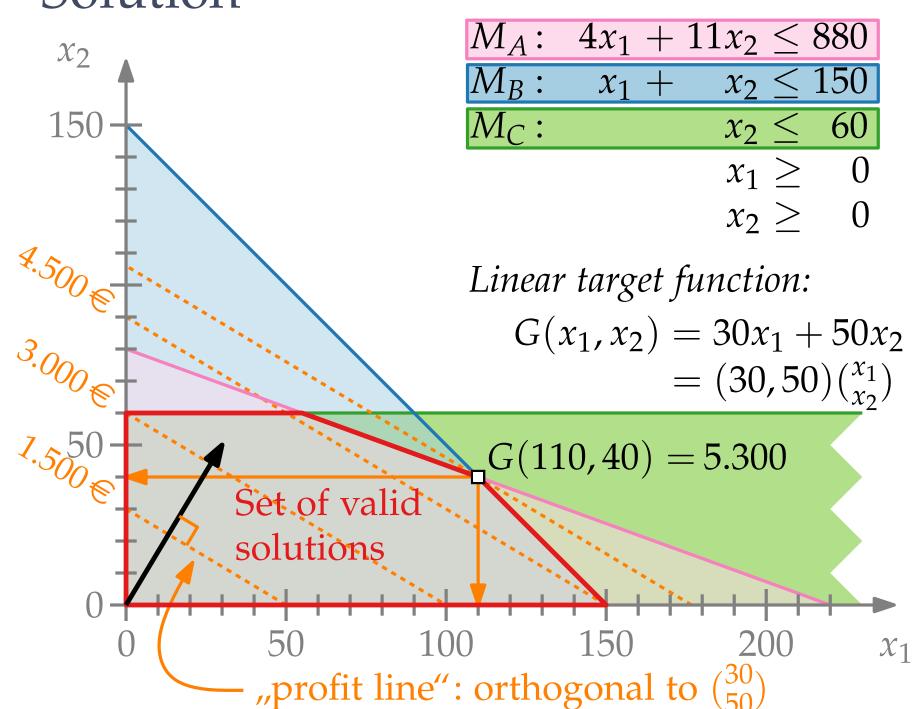


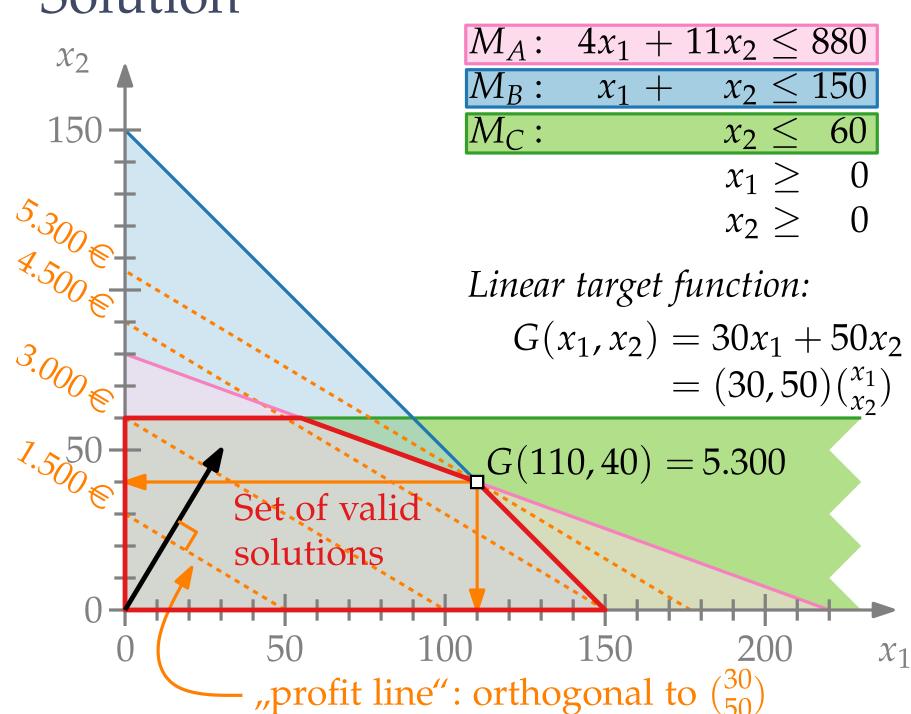


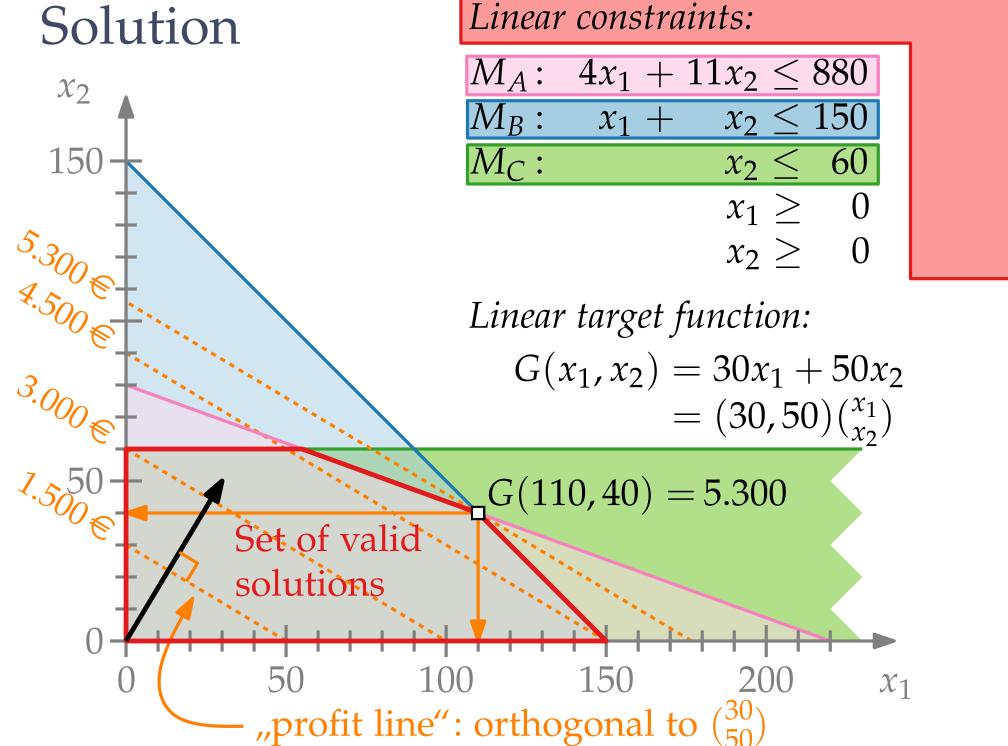


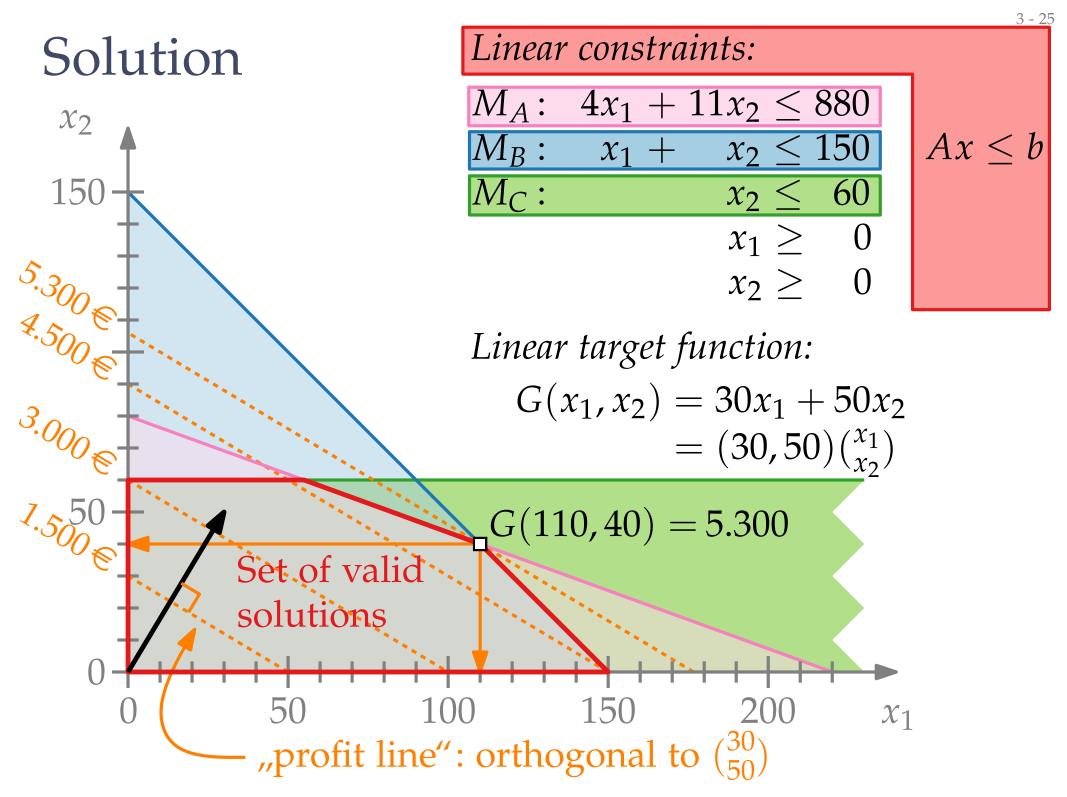
 $M_A: 4x_1 + 11x_2 < 880$ χ_2 M_B : $x_2 < 150$ $x_1 +$ 150 M_C : $x_2 \leq 60$ $x_1 \geq 0$ $x_2 > 0$ 4.500 *Linear target function:* $G(x_1, x_2) = 30x_1 + 50x_2$ 3.000 E $= (30, 50) \binom{x_1}{x_2}$ $\partial M_A \cap \partial M_B = \left\{ \begin{pmatrix} 110\\40 \end{pmatrix} \right\}$ Set of valid solutions 150 50 100 200 χ_1 ", profit line": orthogonal to $\binom{30}{50}$

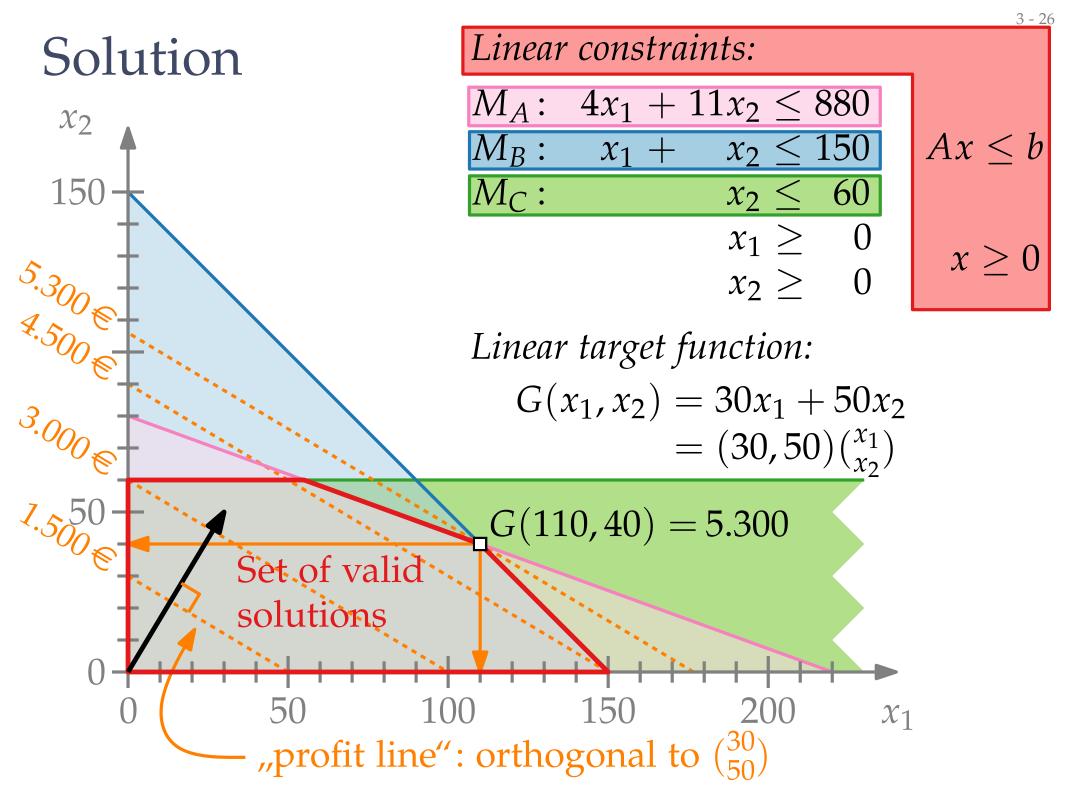


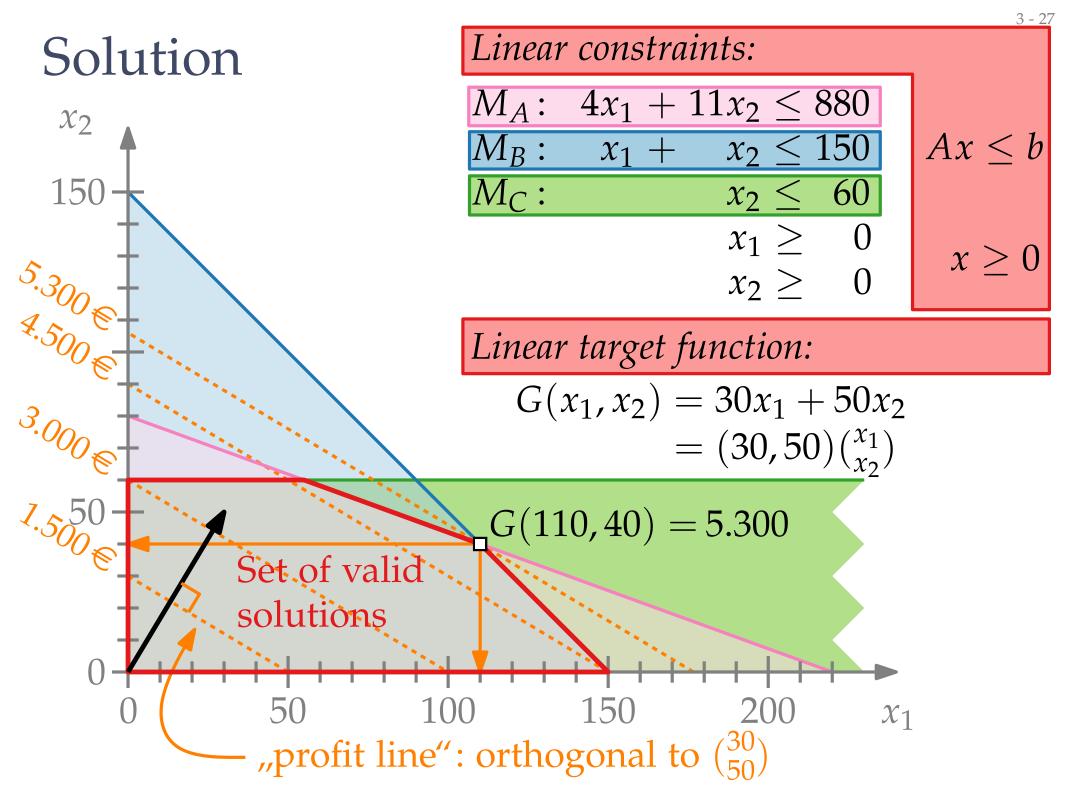


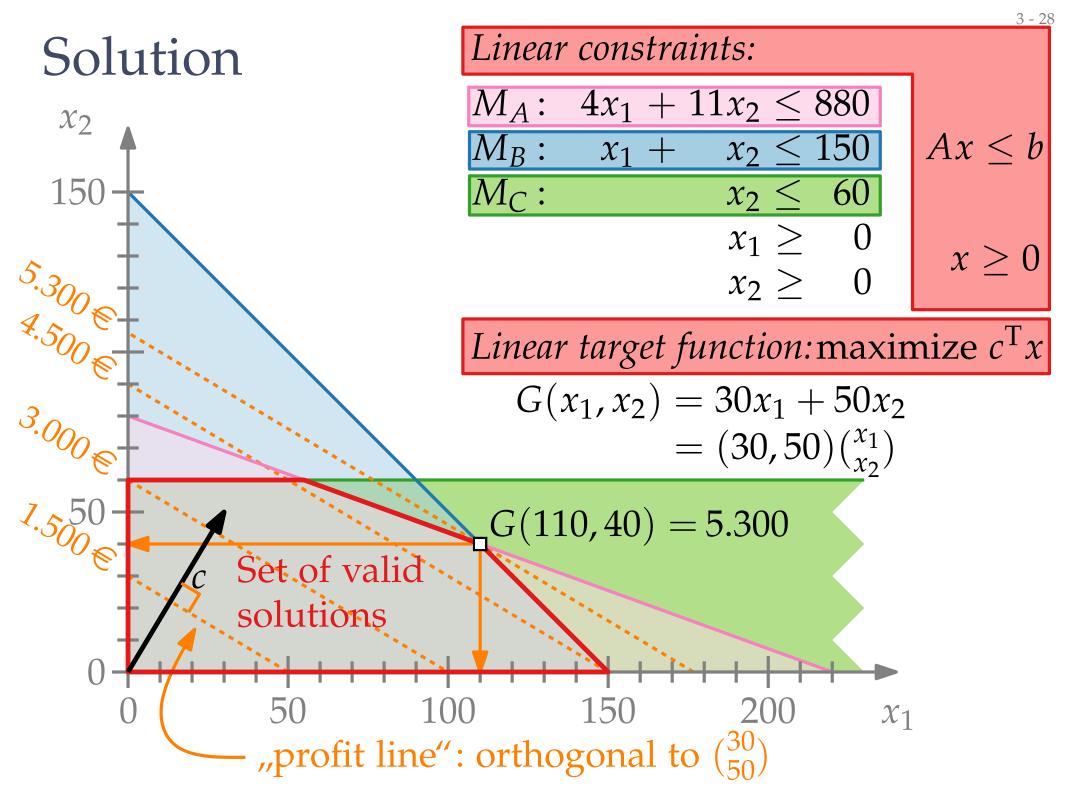


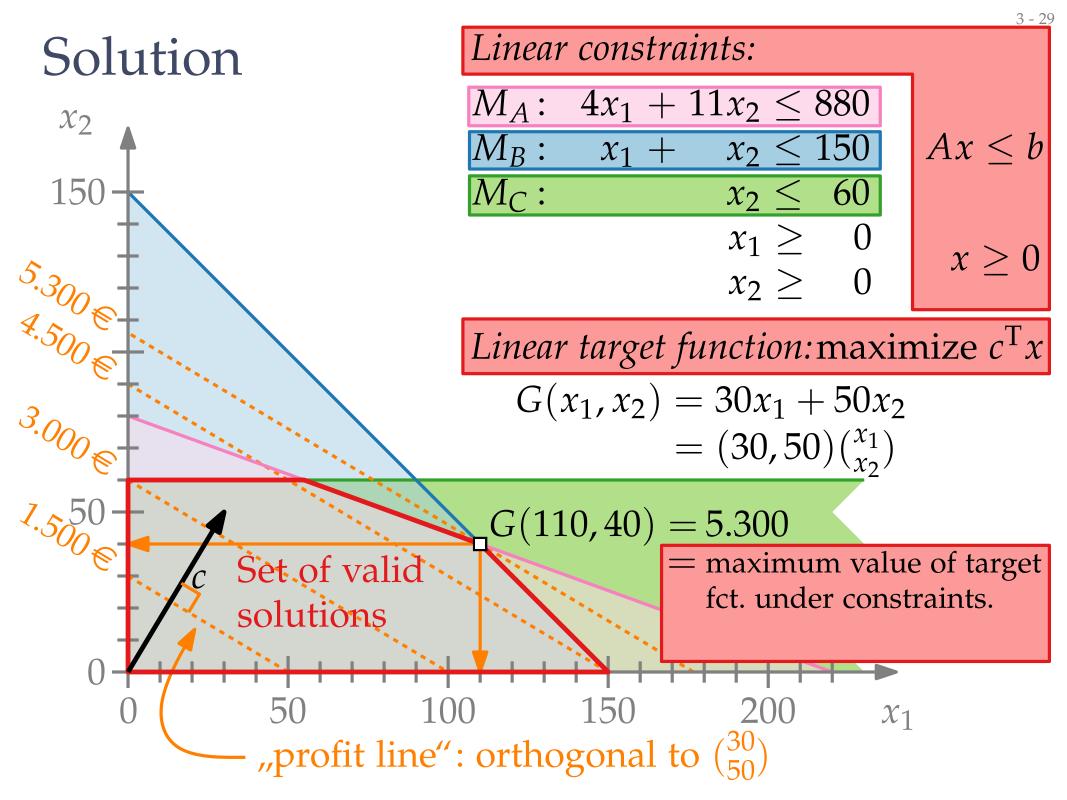


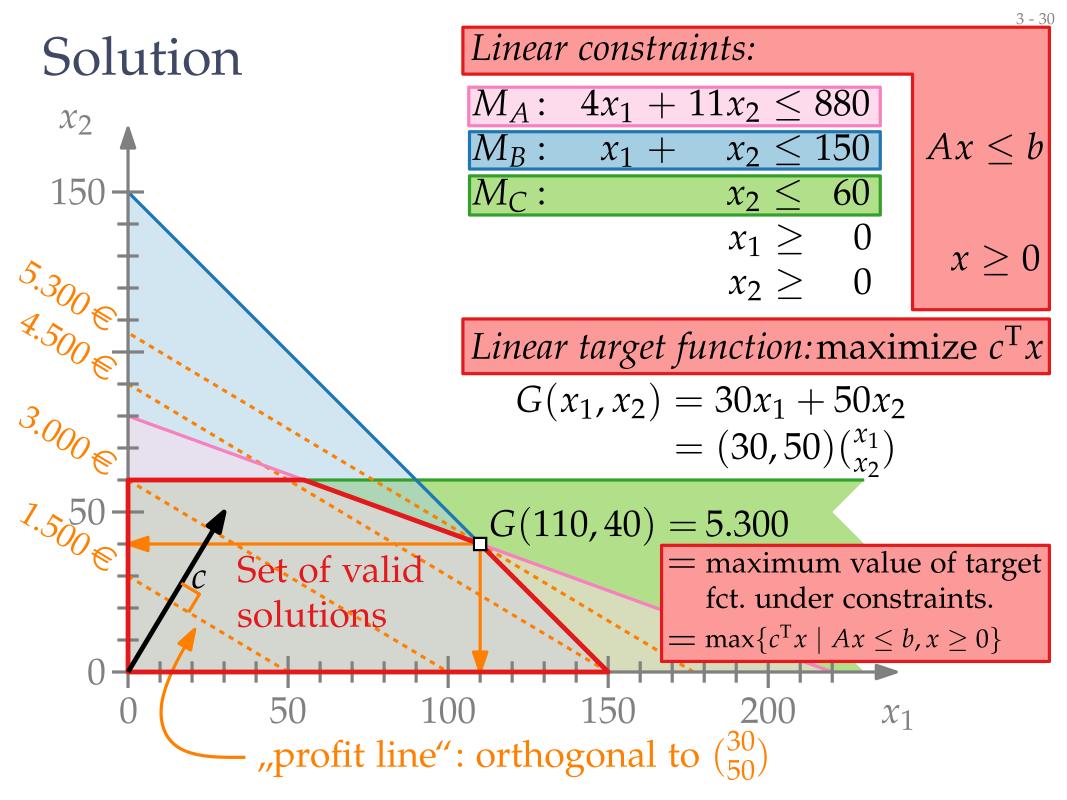












Computational Geometry

Lecture 4: Linear Programming or Profit Maximization

Part II: A First Approach

Philipp Kindermann

Winter Semester 2020

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.: – Simplex [Dantzig '47]

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:

- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large. We consider d = 2.

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]

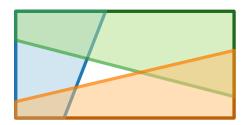
Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]



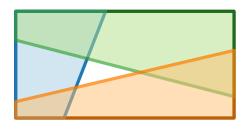
Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]



 $H = \emptyset$

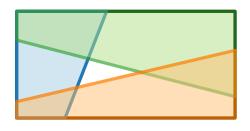
Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

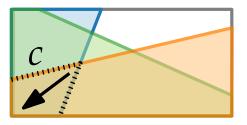
Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]



 $H = \emptyset$



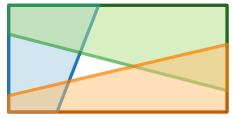
Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

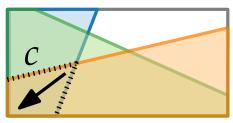
- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]





 $\bigcap H = \emptyset$ $\bigcap H$ unbnd. in dir. *c*

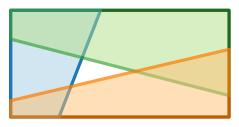
Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

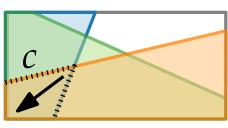
- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

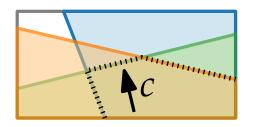
Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]







 $\bigcap H = \emptyset$ $\bigcap H$ unbnd. in dir. *c*

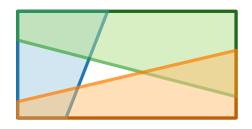
Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

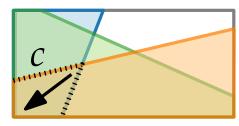
Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting] $\cap H$ bounded.



 $\bigcap H = \emptyset$



 \cap *H* unbnd. in dir. *c*

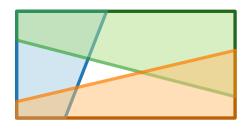
Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

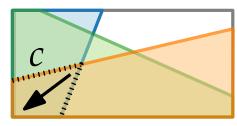
Good for instances where *n* and *d* are large.

We consider d = 2.

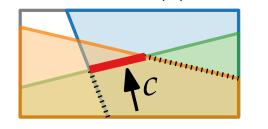
VERY important problem, e.g., in Operations Research. ["Book" application: casting] $\cap H$ bounded.



 $\bigcap H = \emptyset$



 \cap *H* unbnd. in dir. *c*



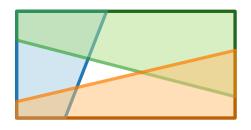
Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

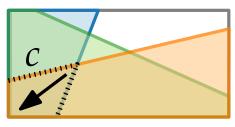
Good for instances where *n* and *d* are large.

We consider d = 2.

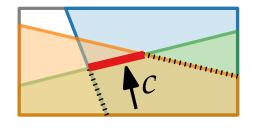
VERY important problem, e.g., in Operations Research. ["Book" application: casting] $\cap H$ bounded.



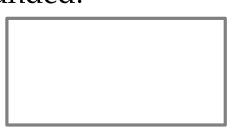
 $\cap H = \emptyset$



 \cap *H* unbnd. in dir. *c*



set of optima: segment



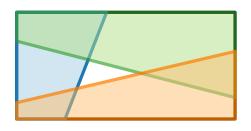
Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

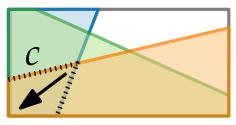
Good for instances where *n* and *d* are large.

We consider d = 2.

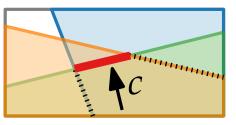
VERY important problem, e.g., in Operations Research. ["Book" application: casting] $\cap H$ bounded.

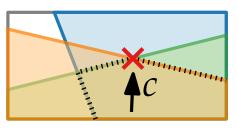


 $\cap H = \emptyset$



 \cap *H* unbnd. in dir. *c*





set of optima: segment vs. point

• compute $\cap H$ explicitly

• compute $\cap H$ explicitly

■ walk along ∂ (\cap *H*) to find a vertex *x* with *cx* maximum

• compute $\cap H$ explicitly

■ walk along ∂ (\cap *H*) to find a vertex *x* with *cx* maximum

IntersectHalfplanes(*H*)

• compute $\cap H$ explicitly

■ walk along ∂ (\cap *H*) to find a vertex *x* with *cx* maximum

```
IntersectHalfplanes(H)
  if |H| = 1 then
    C \leftarrow h, where \{h\} = H
  else
  return C
```

• compute $\cap H$ explicitly

■ walk along ∂ (\cap *H*) to find a vertex *x* with *cx* maximum

```
IntersectHalfplanes(H)
  if |H| = 1 then
     C \leftarrow h, where \{h\} = H
  else
      split H into sets H_1 and H_2 with |H_1|, |H_2| \approx |H|/2
  return C
```

• compute $\cap H$ explicitly

■ walk along ∂ (\bigcap *H*) to find a vertex *x* with *cx* maximum

```
IntersectHalfplanes(H)
  if |H| = 1 then
     C \leftarrow h, where \{h\} = H
  else
      split H into sets H_1 and H_2 with |H_1|, |H_2| \approx |H|/2
      C_1 \leftarrow \text{IntersectHalfplanes}(H_1)
  return C
```

• compute $\bigcap H$ explicitly

■ walk along ∂ (\bigcap *H*) to find a vertex *x* with *cx* maximum

```
IntersectHalfplanes(H)
  if |H| = 1 then
     C \leftarrow h, where \{h\} = H
  else
      split H into sets H_1 and H_2 with |H_1|, |H_2| \approx |H|/2
      C_1 \leftarrow \text{IntersectHalfplanes}(H_1)
      C_2 \leftarrow \text{IntersectHalfplanes}(H_2)
  return C
```

• compute $\bigcap H$ explicitly

■ walk along ∂ (\bigcap *H*) to find a vertex *x* with *cx* maximum

```
IntersectHalfplanes(H)
  if |H| = 1 then
     C \leftarrow h, where \{h\} = H
  else
       split H into sets H_1 and H_2 with |H_1|, |H_2| \approx |H|/2
       C_1 \leftarrow \text{IntersectHalfplanes}(H_1)
       C_2 \leftarrow \text{IntersectHalfplanes}(H_2)
       C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)
  return C
```

• compute $\bigcap H$ explicitly

• walk along $\partial (\bigcap H)$ to find a vertex *x* with *cx* maximum

```
IntersectHalfplanes(H)
  if |H| = 1 then
     C \leftarrow h, where \{h\} = H
  else
       split H into sets H_1 and H_2 with |H_1|, |H_2| \approx |H|/2
       C_1 \leftarrow \text{IntersectHalfplanes}(H_1)
       C_2 \leftarrow \text{IntersectHalfplanes}(H_2)
       C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)
  return C
```

Running time:

• compute $\bigcap H$ explicitly

• walk along $\partial (\bigcap H)$ to find a vertex *x* with *cx* maximum

```
IntersectHalfplanes(H)
  if |H| = 1 then
    C \leftarrow h, where \{h\} = H
  else
       split H into sets H_1 and H_2 with |H_1|, |H_2| \approx |H|/2
       C_1 \leftarrow \text{IntersectHalfplanes}(H_1)
       C_2 \leftarrow \text{IntersectHalfplanes}(H_2)
       C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)
  return C
```

```
Running time: T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)
```

• compute $\bigcap H$ explicitly

■ walk along ∂ (\cap *H*) to find a vertex *x* with *cx* maximum

```
IntersectHalfplanes(H)
  if |H| = 1 then
     C \leftarrow h, where \{h\} = H
  else
       split H into sets H_1 and H_2 with |H_1|, |H_2| \approx |H|/2
       C_1 \leftarrow \text{IntersectHalfplanes}(H_1)
       C_2 \leftarrow \text{IntersectHalfplanes}(H_2)
       C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)
  return C
                                                            How??
Running time: T_{\rm IH}(n) = 2T_{\rm IH}(n/2) + T_{\rm ICR}(n)
```

Computational Geometry

Lecture 4: Linear Programming or Profit Maximization

Part III: Intersecting Convex Regions

Philipp Kindermann

Winter Semester 2020

Intersecting Convex Regions

Any ideas?

Intersecting Convex Regions

Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!

Intersecting Convex Regions

Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{ICR}(n) =$

Any ideas?

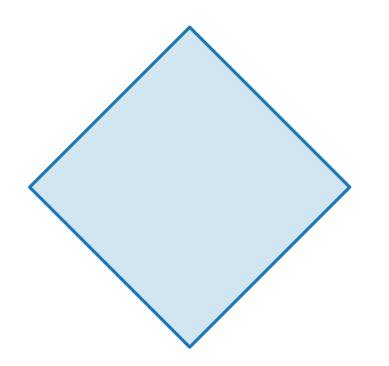
Use sweep-line alg. for map overlay (line-segment intersections)!

Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!

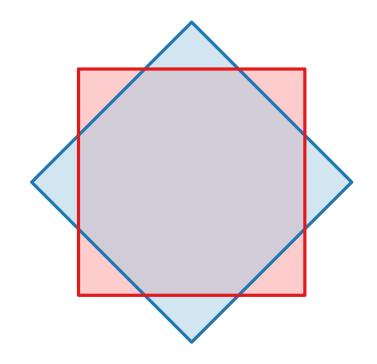
Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!



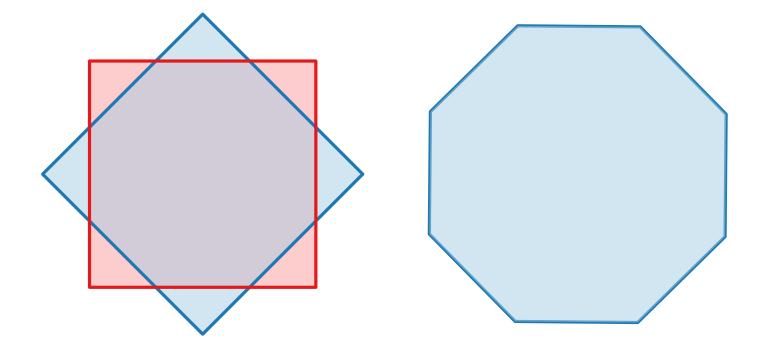
Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!



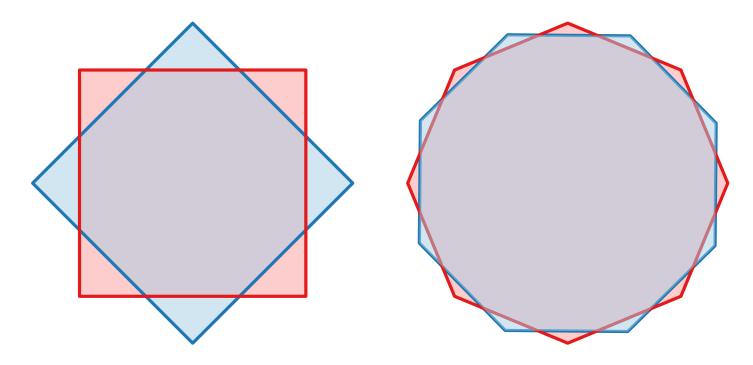
Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!



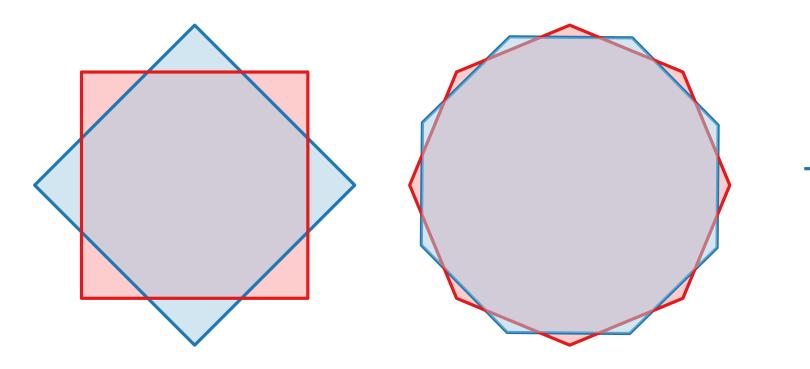
Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!



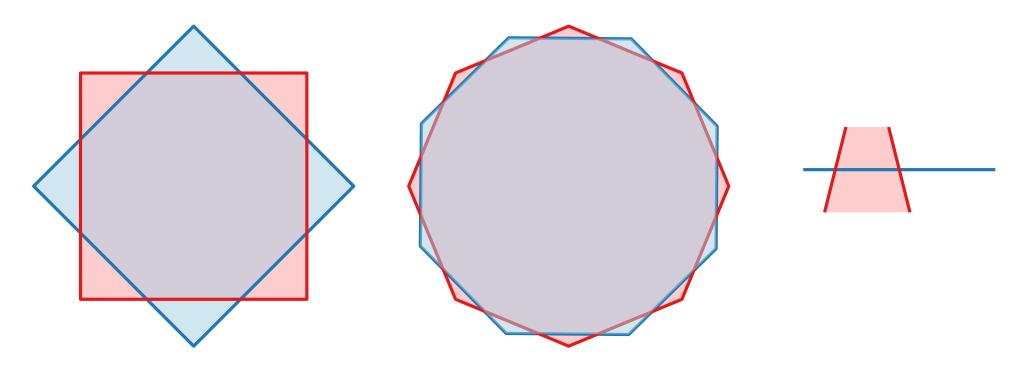
Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!



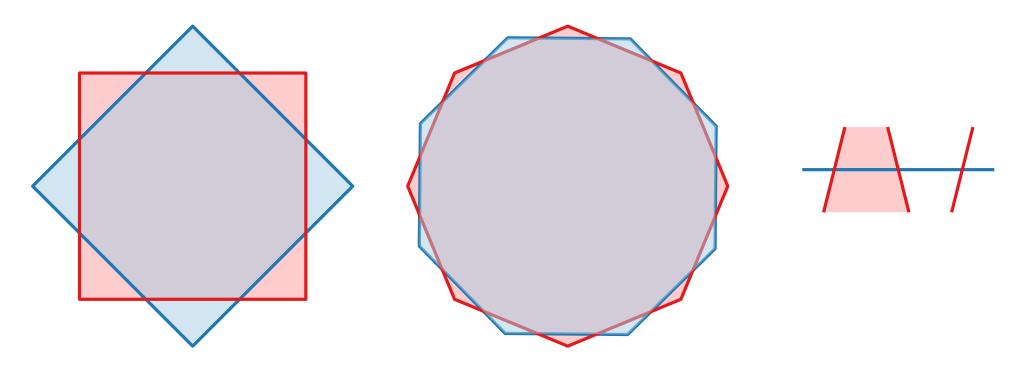
Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!



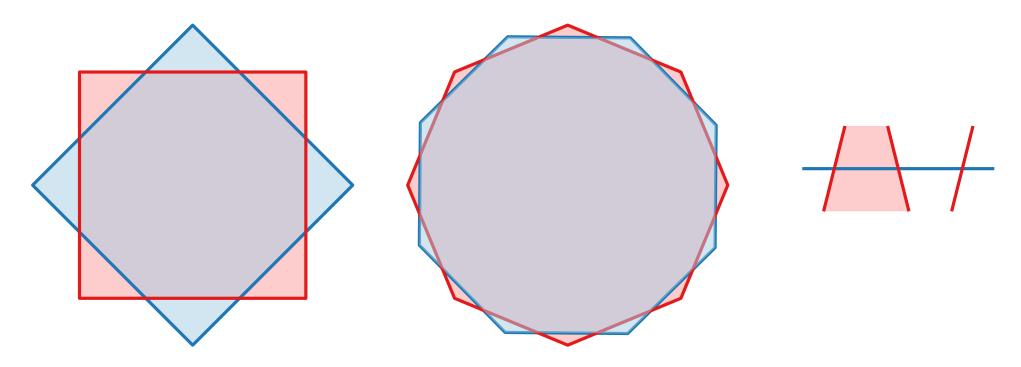
Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!



Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!



Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!

Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{ICR}(n) = O((n + I) \log n)$, where I = # intersection points. *here:* $I \le n$ Running time $T_{IH}(n) =$

Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{ICR}(n) = O((n + I) \log n)$, where I = # intersection points. *here:* $I \le n$ Running time $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$ \le

Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{ICR}(n) = O((n + I) \log n)$, where I = # intersection points. *here:* $I \le n$ Running time $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$ $\le 2T_{IH}(n/2) + O(n \log n)$ \in

Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{ICR}(n) = O((n + I) \log n)$, where I = # intersection points. *here:* $I \le n$ Running time $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$ $\le 2T_{IH}(n/2) + O(n \log n)$ $\in O(n \log^2 n)$

Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{ICR}(n) = O((n + I) \log n)$, where I = # intersection points. *here:* $I \le n$ Running time $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$ $\le 2T_{IH}(n/2) + O(n \log n)$ $\in O(n \log^2 n)$

Better ideas?

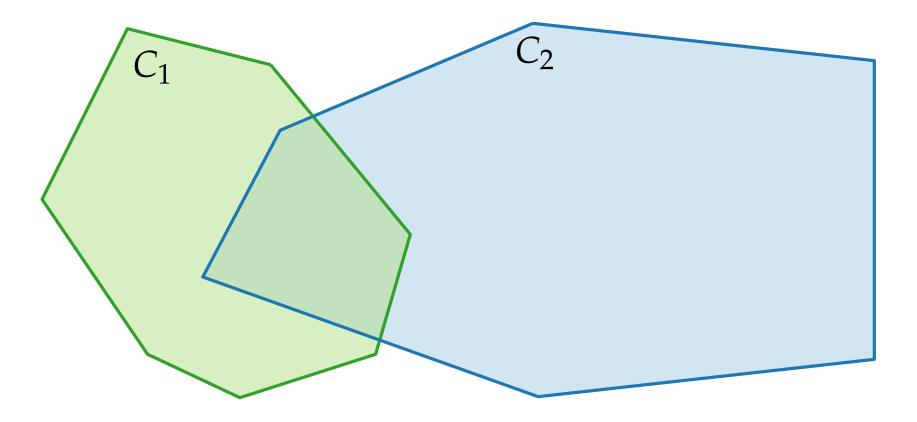
Any ideas?

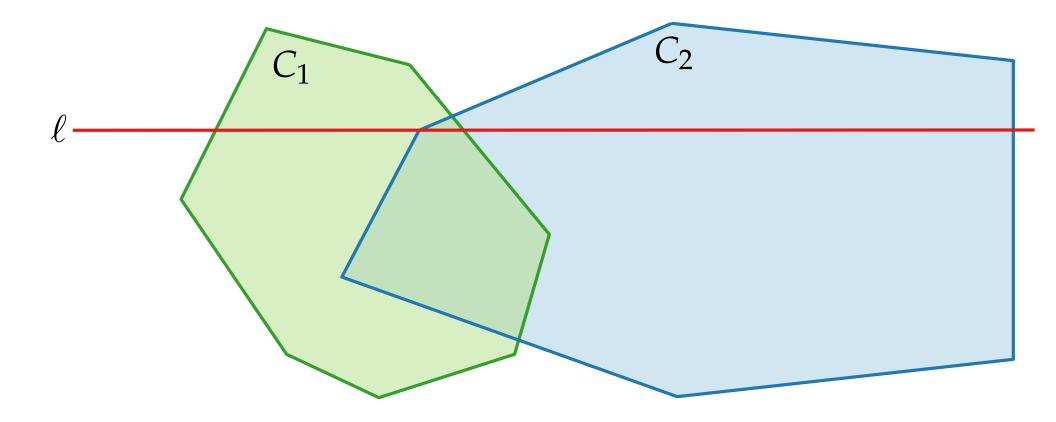
Use sweep-line alg. for map overlay (line-segment intersections)!

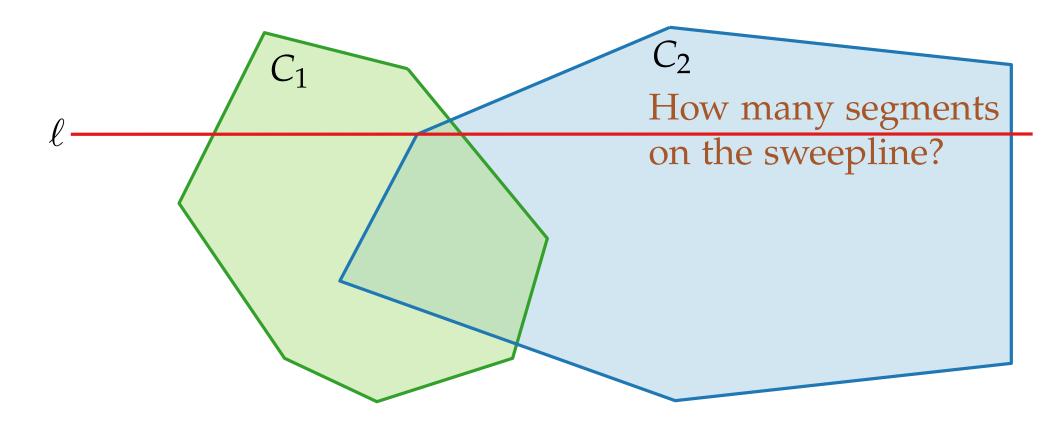
Running time $T_{ICR}(n) = O((n + I) \log n)$, where I = # intersection points. *here:* $I \le n$ Running time $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$ $\le 2T_{IH}(n/2) + O(n \log n)$ $\in O(n \log^2 n)$

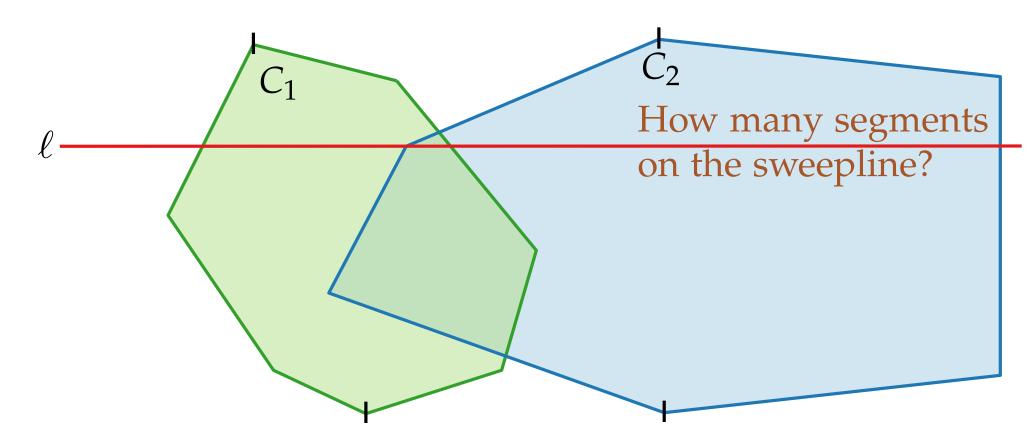
Better ideas?

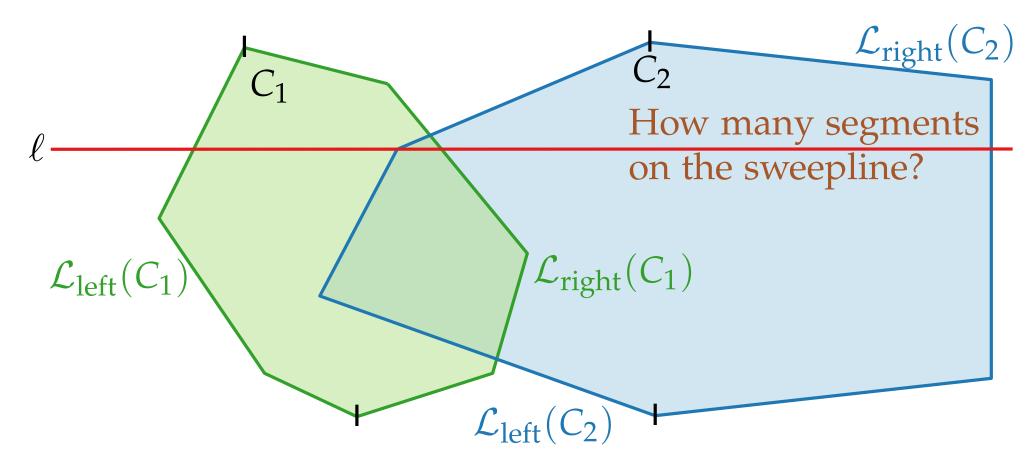
Better analysis of the sweep-line for *convex* regions/polygons!

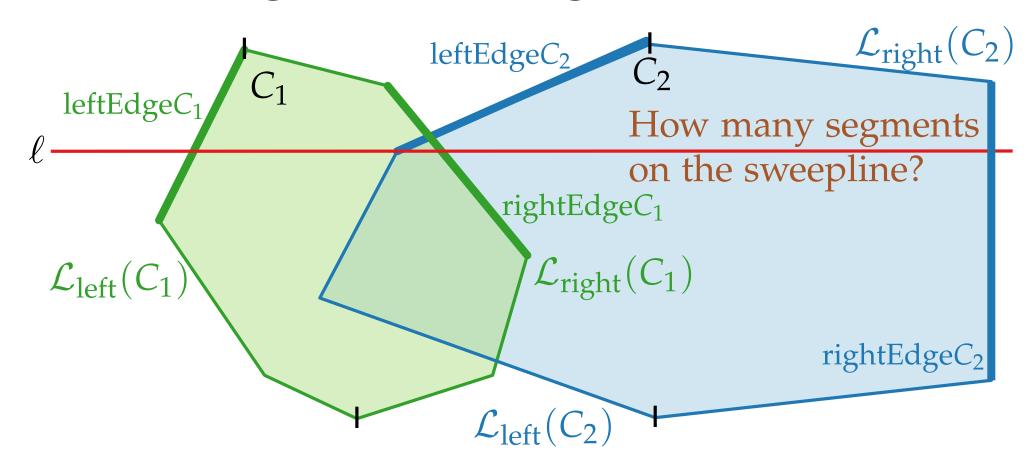


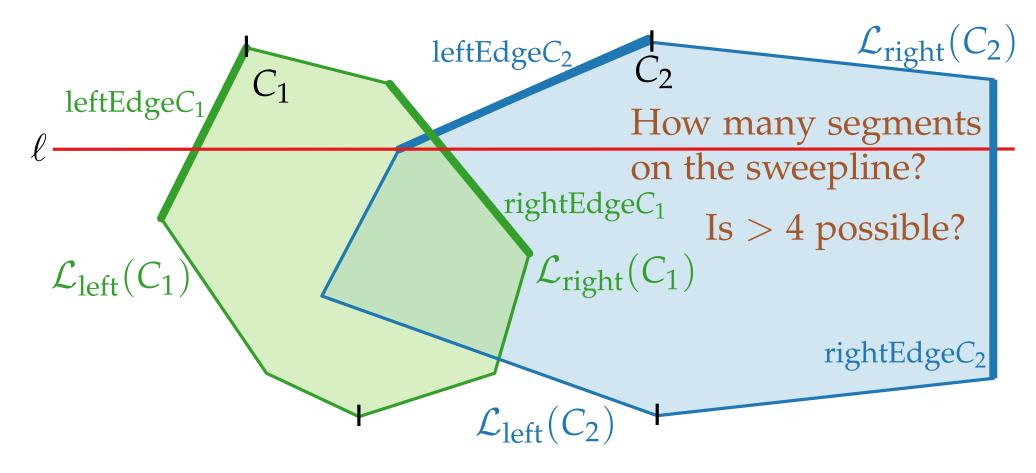


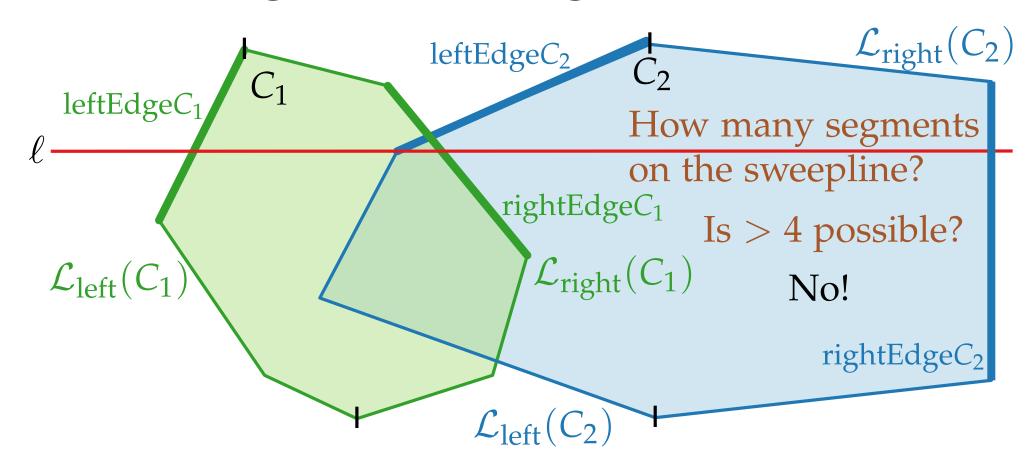


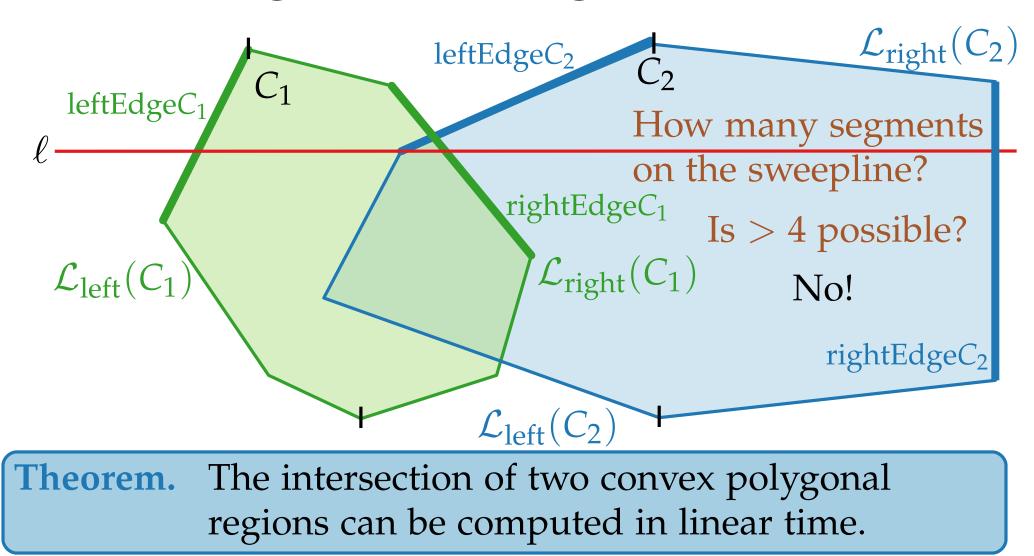


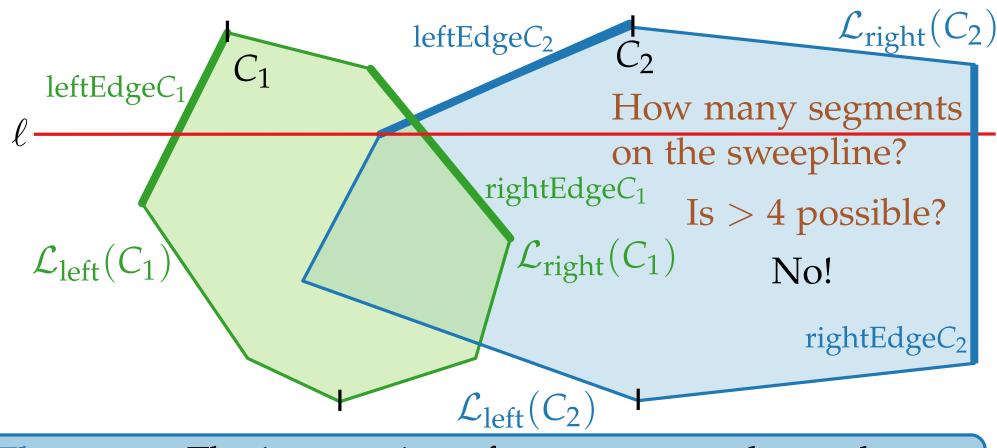






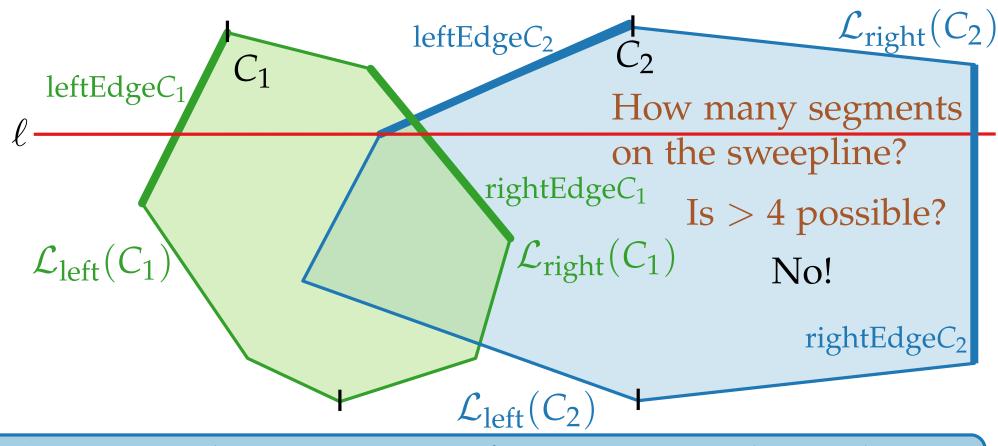






Theorem. The intersection of two convex polygonal regions can be computed in linear time.

Corollary. The intersection of *n* half planes can be computed in $O(n \log n)$ time.



Theorem. The intersection of two convex polygonal regions can be computed in linear time.

Corollary. The intersection of *n* half planes can be computed in $O(n \log n)$ time.

Can we do better?

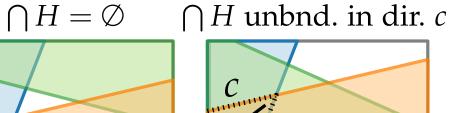
Computational Geometry

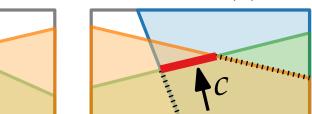
Lecture 4: Linear Programming or Profit Maximization

Part IV: Incremental Approach

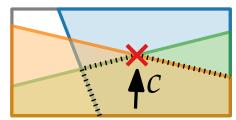
Philipp Kindermann

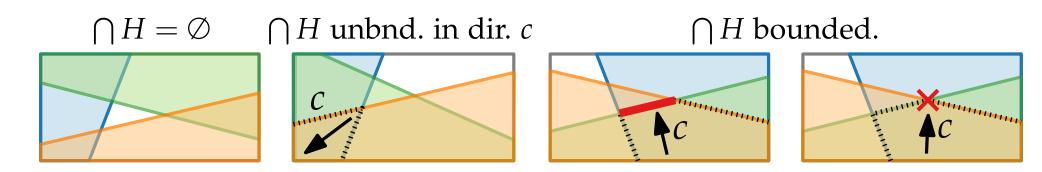
Winter Semester 2020

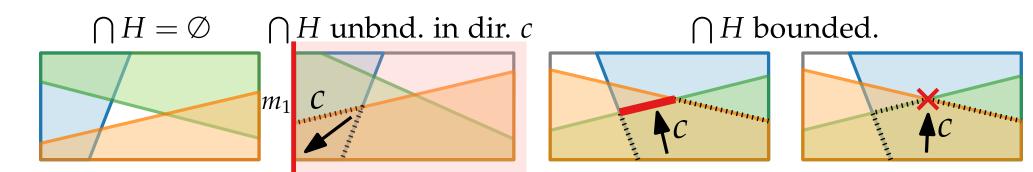


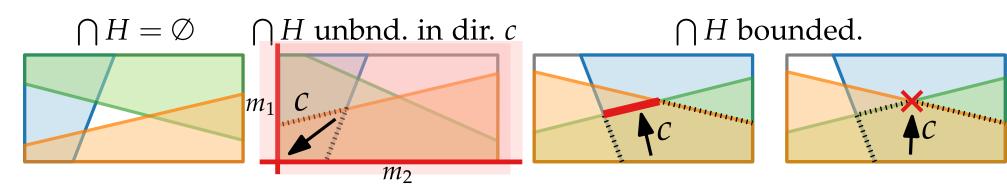


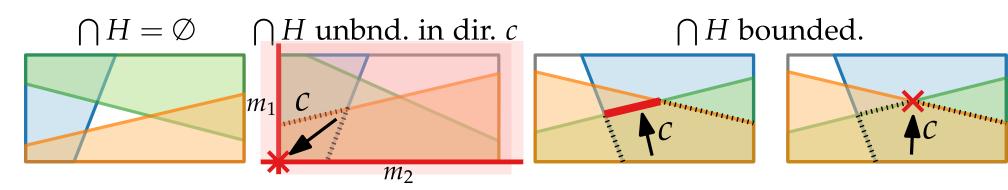
\cap *H* bounded.

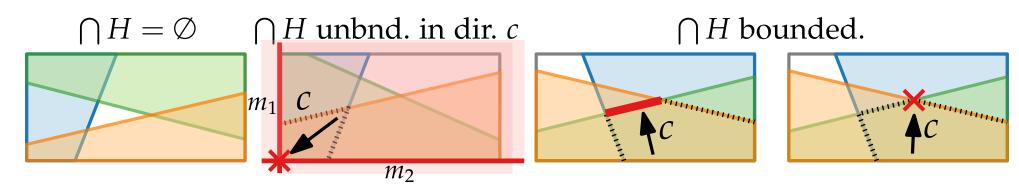




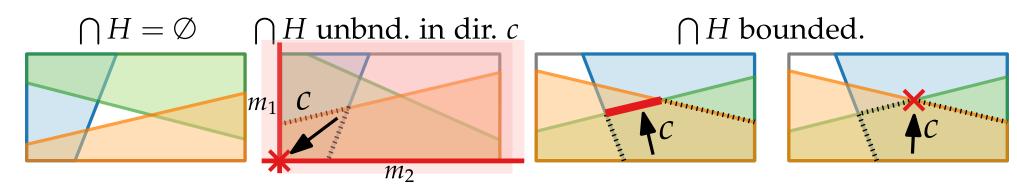






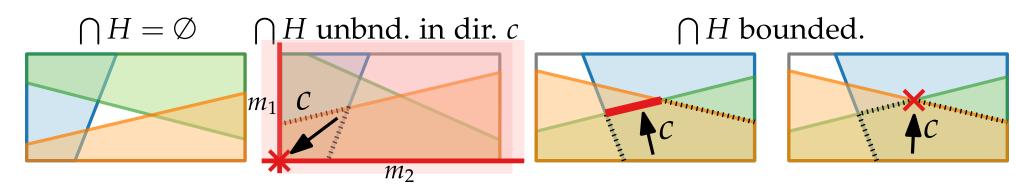


$$m_1 = \begin{cases} x \le M & \text{if } c_x > 0, \\ x \ge M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M$$



$$m_{1} = \begin{cases} x \leq M & \text{if } c_{x} > 0, \\ x \geq M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M$$
$$m_{2} = \begin{cases} y \leq M & \text{if } c_{y} > 0, \\ y \geq M & \text{otherwise.} \end{cases}$$

A Small Trick: Make Solution Unique

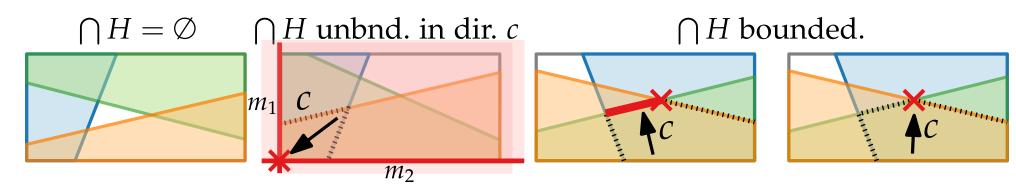


Add two bounding halfplanes m_1 and m_2

$$m_{1} = \begin{cases} x \leq M & \text{if } c_{x} > 0, \\ x \geq M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M$$
$$m_{2} = \begin{cases} y \leq M & \text{if } c_{y} > 0, \\ y \geq M & \text{otherwise.} \end{cases}$$

Take the lexicographically largest solution.

A Small Trick: Make Solution Unique

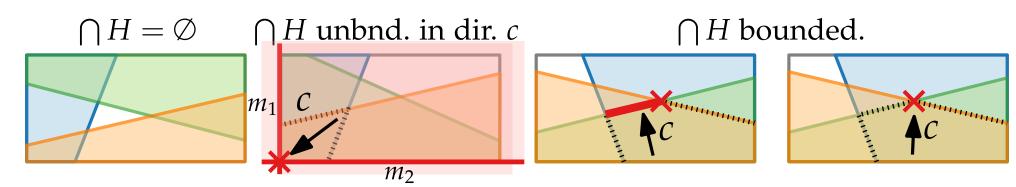


Add two bounding halfplanes m_1 and m_2

$$m_{1} = \begin{cases} x \leq M & \text{if } c_{x} > 0, \\ x \geq M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M$$
$$m_{2} = \begin{cases} y \leq M & \text{if } c_{y} > 0, \\ y \geq M & \text{otherwise.} \end{cases}$$

Take the lexicographically largest solution.

A Small Trick: Make Solution Unique



Add two bounding halfplanes m_1 and m_2

$$m_{1} = \begin{cases} x \leq M & \text{if } c_{x} > 0, \\ x \geq M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M$$
$$m_{2} = \begin{cases} y \leq M & \text{if } c_{y} > 0, \\ y \geq M & \text{otherwise.} \end{cases}$$

Take the lexicographically largest solution.

 \Rightarrow Set of solutions is either empty or a uniquely defined pt.

Idea: Don't compute $\cap H$, but just *one* (optimal) point!

2DBoundedLP(H, c, m_1, m_2)

 $H_0 = \{m_1, m_2\}$ $v_0 \leftarrow \text{corner of } m_1 \cap m_2$

return v_n

Idea: Don't compute $\cap H$, but just *one* (optimal) point!

2DBoundedLP(H, c, m_1, m_2)

```
H_0 = \{m_1, m_2\}

v_0 \leftarrow \text{corner of } m_1 \cap m_2

for i \leftarrow 1 to n do
```

 $L H_i = H_{i-1} \cup \{h_i\}$ return v_n

```
2DBoundedLP(H, c, m_1, m_2)
   H_0 = \{m_1, m_2\}
   v_0 \leftarrow \text{corner of } m_1 \cap m_2
   for i \leftarrow 1 to n do
        if v_{i-1} \in h_i then
             v_i \leftarrow
        else
             v_i \leftarrow
        H_i = H_{i-1} \cup \{h_i\}
   return v_n
```

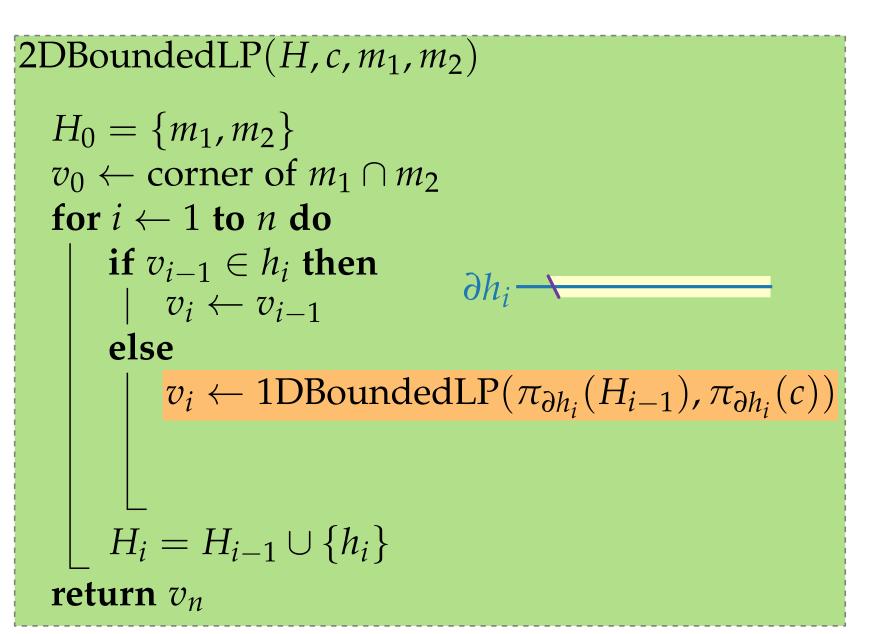
Idea: Don't compute $\cap H$, but just *one* (optimal) point!

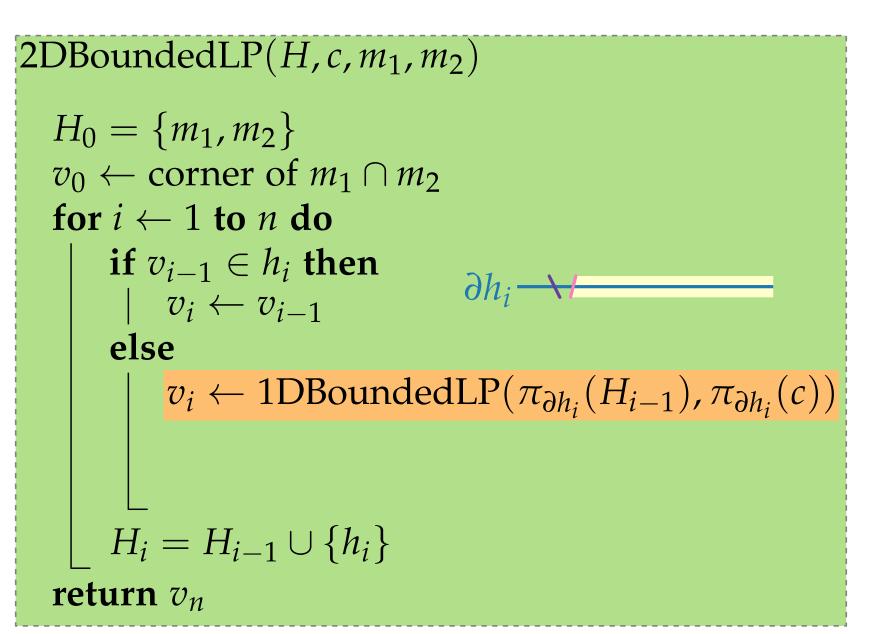
2DBoundedLP(H, c, m_1, m_2) $H_0 = \{m_1, m_2\}$ $v_0 \leftarrow \text{corner of } m_1 \cap m_2$ for $i \leftarrow 1$ to n do if $v_{i-1} \in h_i$ then $v_i \leftarrow v_{i-1}$ else $v_i \leftarrow$ $H_i = H_{i-1} \cup \{h_i\}$ return v_n

```
2DBoundedLP(H, c, m_1, m_2)
   H_0 = \{m_1, m_2\}
   v_0 \leftarrow \text{corner of } m_1 \cap m_2
   for i \leftarrow 1 to n do
        if v_{i-1} \in h_i then
             v_i \leftarrow v_{i-1}
        else
              v_i \leftarrow 1\text{DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))
        H_i = H_{i-1} \cup \{h_i\}
   return v_n
```

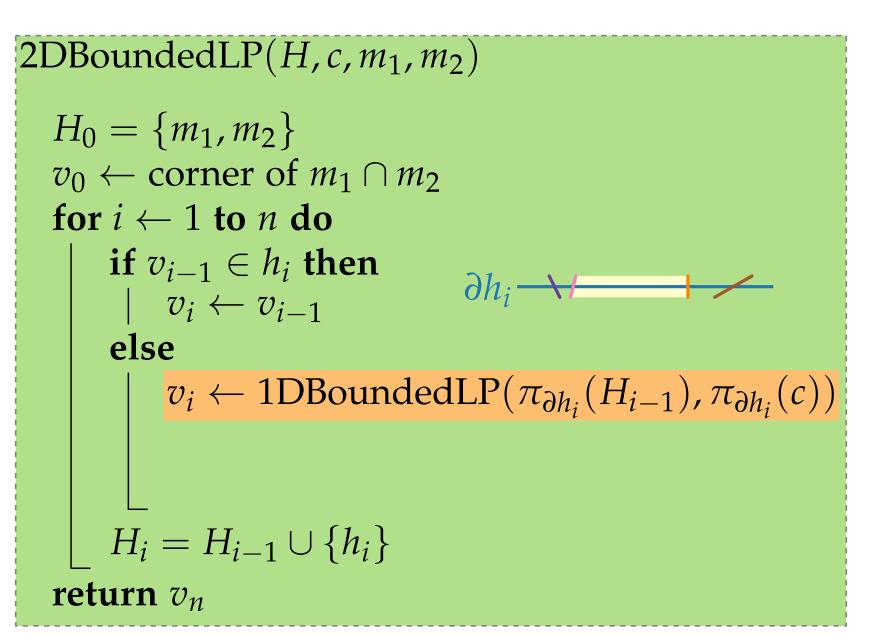
```
2DBoundedLP(H, c, m_1, m_2)
   H_0 = \{m_1, m_2\}
   v_0 \leftarrow \text{corner of } m_1 \cap m_2
   for i \leftarrow 1 to n do
        if v_{i-1} \in h_i then
             v_i \leftarrow v_{i-1}
        else
              v_i \leftarrow 1 \text{DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))
        H_i = H_{i-1} \cup \{h_i\}
   return v_n
```

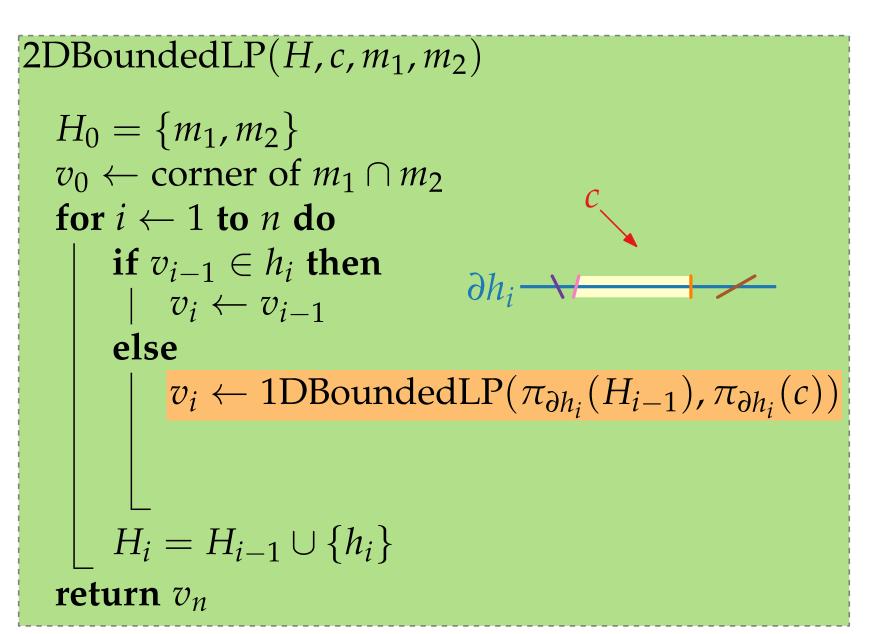
```
2DBoundedLP(H, c, m_1, m_2)
   H_0 = \{m_1, m_2\}
   v_0 \leftarrow \text{corner of } m_1 \cap m_2
   for i \leftarrow 1 to n do
        if v_{i-1} \in h_i then
                                            \partial h_i-
              v_i \leftarrow v_{i-1}
         else
              v_i \leftarrow 1 \text{DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))
        H_i = H_{i-1} \cup \{h_i\}
   return v_n
```

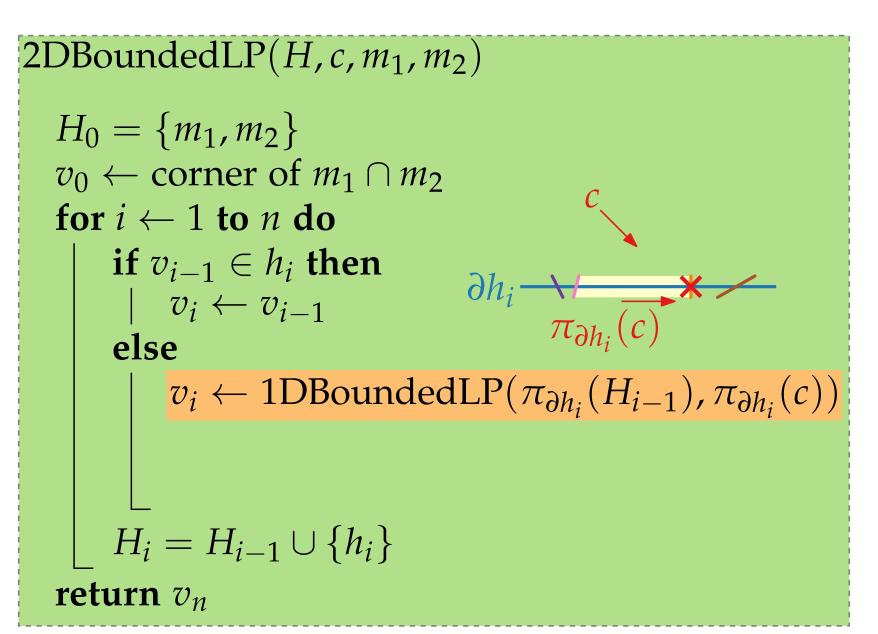


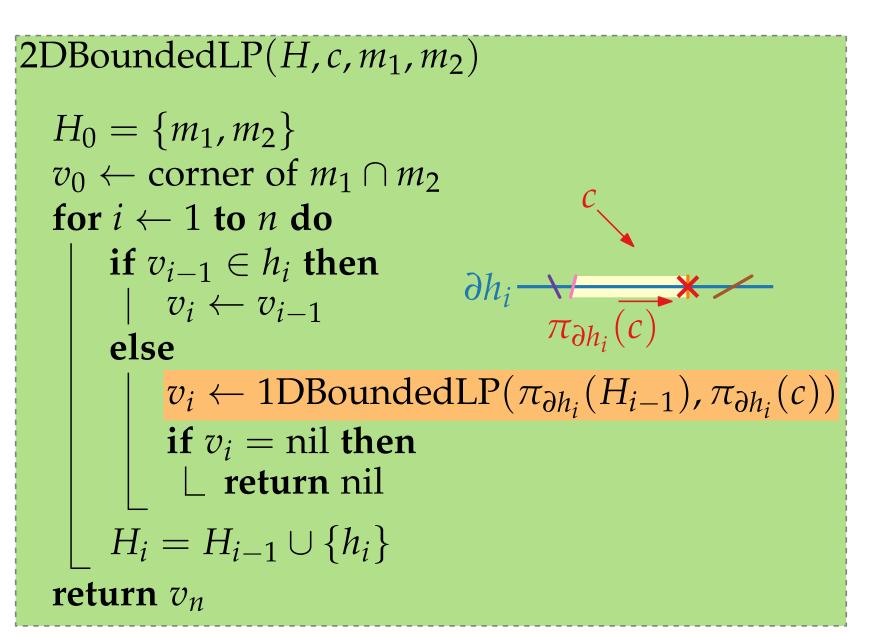


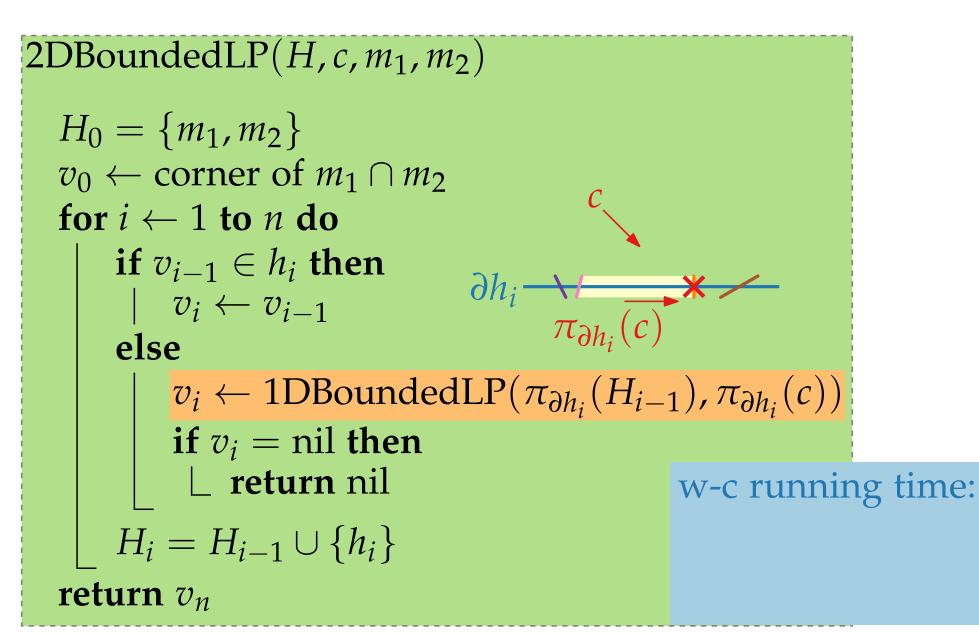


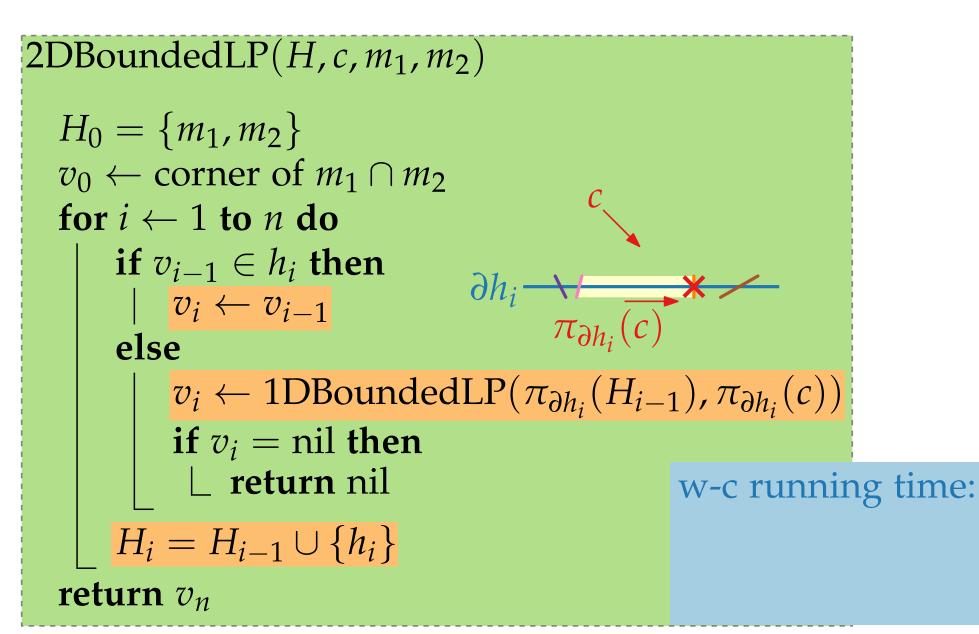


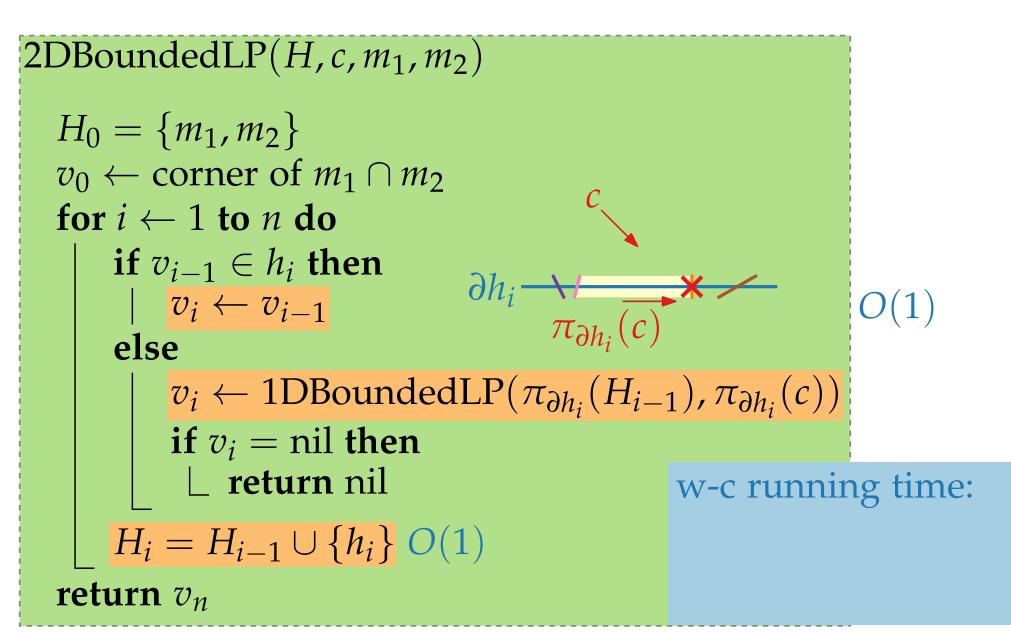


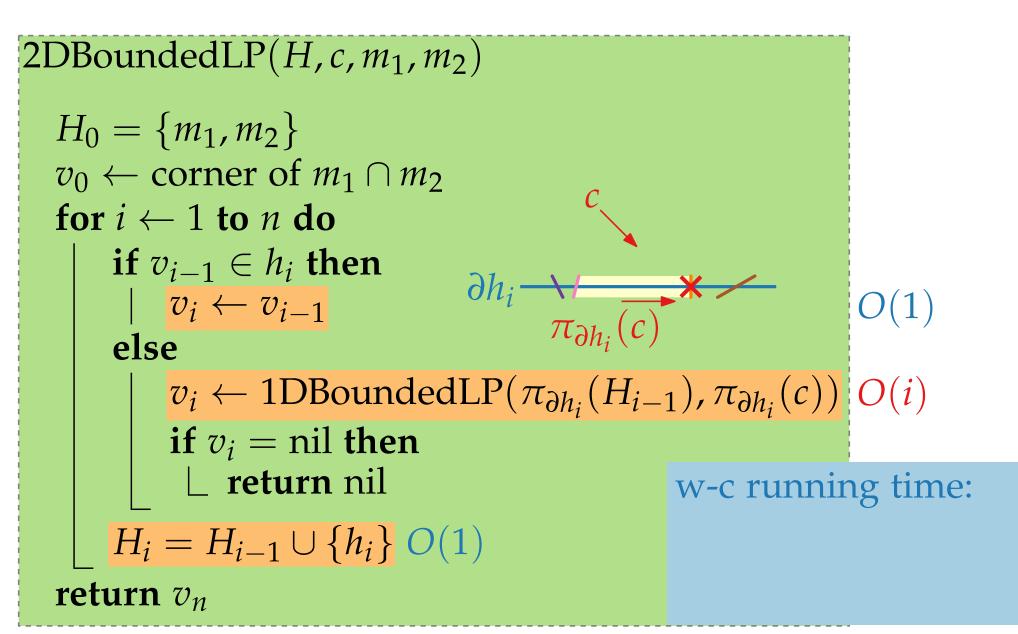


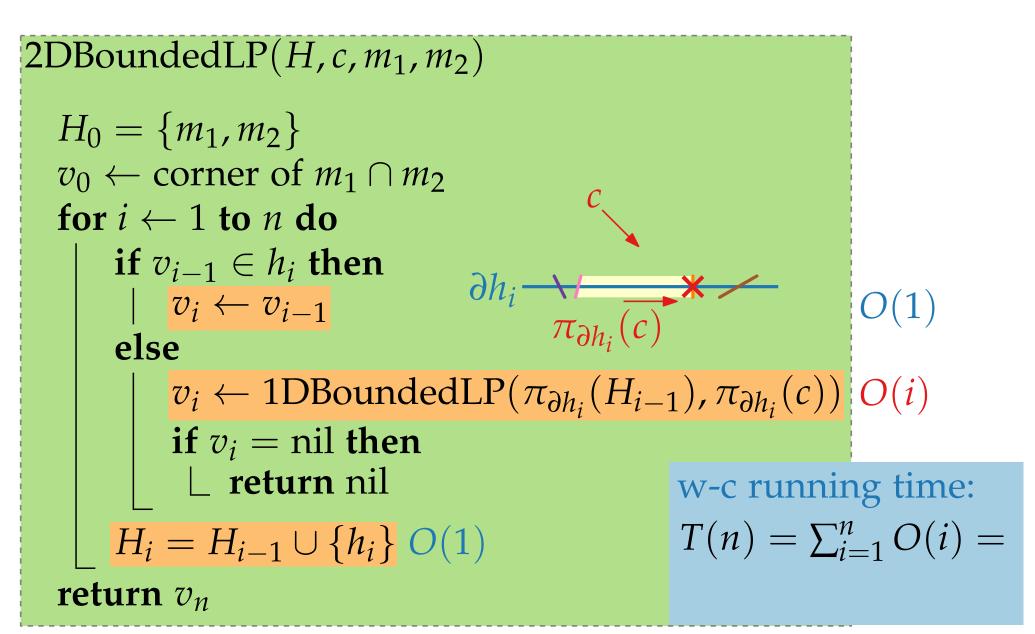


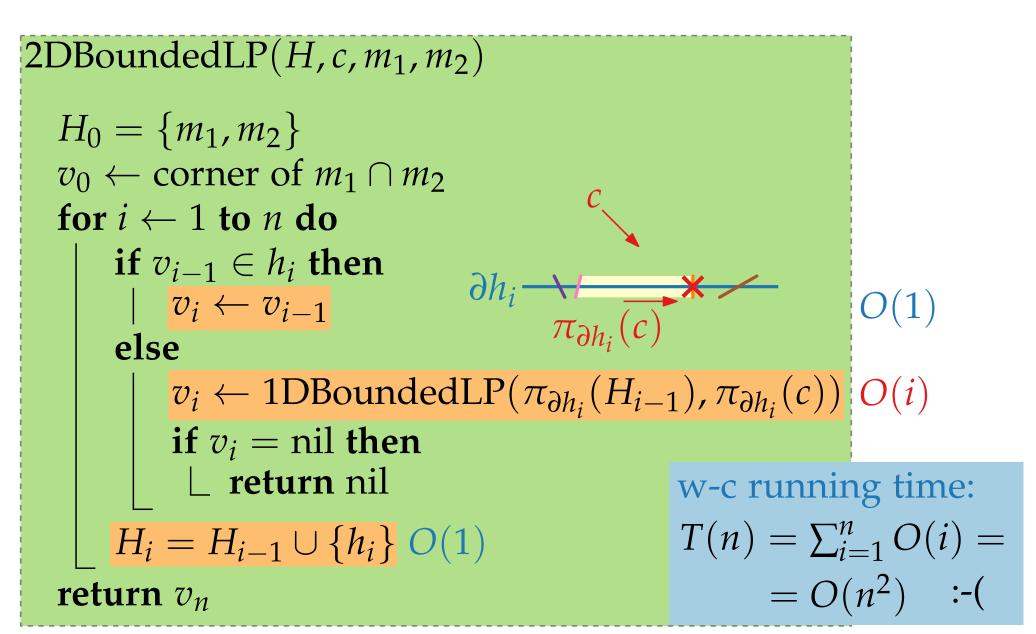




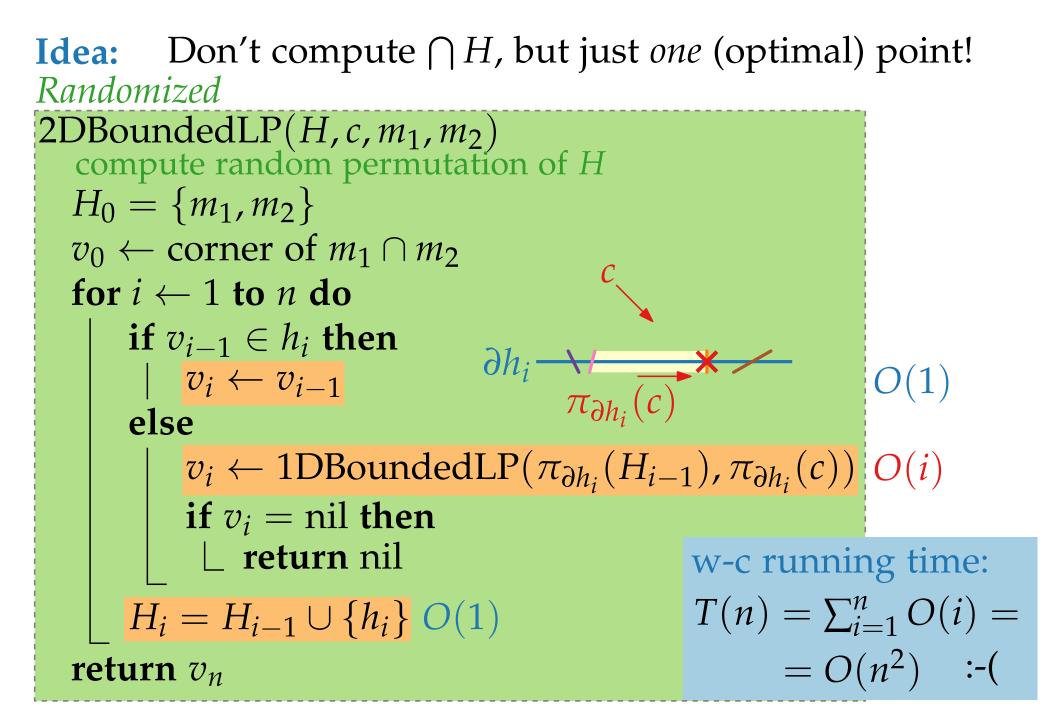








Don't compute $\bigcap H$, but just *one* (optimal) point! Idea: Randomized 2DBoundedLP(H, c, m_1, m_2) $H_0 = \{m_1, m_2\}$ $v_0 \leftarrow \text{corner of } m_1 \cap m_2$ for $i \leftarrow 1$ to n do if $v_{i-1} \in h_i$ then $\partial h_i \longrightarrow \mathbf{X}$ $v_i \leftarrow v_{i-1}$ O(1) $\pi_{\partial h_i}(c)$ else $v_i \leftarrow 1 \text{DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c)) | O(i)$ if $v_i = \text{nil then}$ L return nil w-c running time: $T(n) = \sum_{i=1}^{n} O(i) =$ $H_i = H_{i-1} \cup \{h_i\} O(1)$ $= O(n^2)$:-(return v_n



Computational Geometry

Lecture 4: Linear Programming or Profit Maximization

Part V: The Randomized-Incremental Approach

Philipp Kindermann

Winter Semester 2020

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Let
$$X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$$
 (indicator random var.).

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is

 $\mathbf{E}[T_{2d}(n)] =$

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.).

Then the expected running time is

$$\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$$

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is

$$\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$$
$$= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$$

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^n (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$ $< O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^n (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$ $\leq O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$ $\langle O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $Pr[X_i = 1]$ = probability that the optimal solution changes when h_i is added to H_{i-1} .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$ $\langle O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $Pr[X_i = 1]$ = probability that the optimal solution changes when h_i is added to H_{i-1} .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$ $\langle O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $Pr[X_i = 1]$ = probability that the optimal solution changes when h_i is added to H_{i-1} . = probability that the optimal solution changes when h_i is removed from H_i .

The 2D bounded LP problem can be solved in Theorem. O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$ $\langle O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $Pr[X_i = 1]$ = probability that the optimal solution changes when h_i is added to H_{i-1} . i.e., when $v_i \in \partial h_i$ = probability that the optimal solution and $v_i \in \partial h_j$ for changes when h_i is removed from H_i . exactly one j < i.

The 2D bounded LP problem can be solved in Theorem. O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$ $\langle O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $Pr[X_i = 1]$ = probability that the optimal solution changes when h_i is added to H_{i-1} . i.e., when $v_i \in \partial h_i$ = probability that the optimal solution and $v_i \in \partial h_j$ for changes when h_i is removed from H_i . exactly one j < i. < 2/i.

The 2D bounded LP problem can be solved in Theorem. O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$ $\langle O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $Pr[X_i = 1]$ = probability that the optimal solution changes when h_i is added to H_{i-1} . i.e., when $v_i \in \partial h_i$ = probability that the optimal solution and $v_i \in \partial h_j$ for changes when h_i is removed from H_i . exactly one j < i. $\leq 2/i$. This is independent of the choice of H_i .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$ $\langle O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i)$ We fix the *i* random halfplanes in H_i . $Pr[X_i = 1]$ = probability that the optimal solution changes when h_i is added to H_{i-1} . = probability that the optimal solution changes when h_i is removed from H_i . $\leq 2/i$. This is independent of the choice of H_i .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$ $\langle O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i) = O(n).$ We fix the *i* random halfplanes in H_i . $Pr[X_i = 1]$ = probability that the optimal solution changes when h_i is added to H_{i-1} . = probability that the optimal solution changes when h_i is removed from H_i . $\leq 2/i$. This is independent of the choice of H_i .

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$ $\langle O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i) = O(n).$ We fix the *i* random halfplanes in H_i . $Pr[X_i = 1]$ = probability that the optimal solution changes when h_i is added to H_{i-1} . = probability that the optimal solution Proof technique: Backward analysis! changes when h_i is removed from H_i . $\leq 2/i$. This is independent of the choice of H_i .