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You're the boss of a small company that produces two
products P; and P,. For the production of x; units of P,
and x; units of P, you're profit in € is:

G(x1,x2) = 30x1 4+ 50x>

Three machines M4, Mp and M¢ produce the required
components A, B and C for the products. The components
are used in different quantities for the products, and each
machine requires some time for the production.
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Which choice of (x1, x2) maximizes the profit?
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Any ideas?

Use sweep—line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
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Better ideas?

Better analysis of the sweep-line for convex
regions/polygons!
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Can we do better?
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A Small Trick: Make Solution Unique

NH=0 ( H unbnd. in dir. ¢ ( H bounded.
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B Add two bounding halfplanes m and m>

(x <M ifcy >0,

my =4 = e = .’ for some sufficiently large M
X > M otherwise,

B (y < M if cy > 0,

¥ > M otherwise.

B Take the lexicographically largest solution.

= Set of solutions is either empty or a uniquely defined pt.
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Idea: Don’t compute () H, but just one (optimal) point!
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1 if v; :
Proof. Let X; = o & I (indicator random var.).
0 else.

Then the expected running time is
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We fix the i random halfplanes in H;.

Pr[X; =1] =probability that the optimal solution

changes when h; is added to H; 1.
— probability that the optimal solution

changes when F; is removed from H;.
< 2/i.This is independent of the choice of H;.
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Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

1 if v; :
Proof. Let X; = o & I (indicator random var.).
0 else.

Then the expected running time is

E[Tpq(n)] = E[Liz; (1 = X;) - O(1) 4 X; - O(i)]
=Y E[1-X;]-O(1) + LE[X;] - O(i)

—— LN
<O(n)+YPrX;=1]-0(i) = O(n).

We fix the i random halfplanes in H;.

Pr[X; =1] =probability that the optimal solution

changes when h; is added to H; 1.
Proof technique: — probability that the optimal solution

Backward analysis! changes when F; is removed from H;.
———— < 2/i.This is independent of the choice of H;.
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