Computational Geometry

Lecture 4:

Linear Programming
or

Profit Maximization

Part I
Introduction to Linear Programming

Philipp Kindermann Winter Semester 2020

Maximizing Profits

You're the boss of a small company that produces two
products P; and P;.

Maximizing Profits

You're the boss of a small company that produces two
products P; and P;.

Maximizing Profits

You're the boss of a small company that produces two
products P; and P,. For the production of x1 units of P,
and x; units of P, you're profit in € is:

G(x1,x2) = 30x1 4+ 50x>

Maximizing Profits

You're the boss of a small company that produces two
products P; and P,. For the production of x; units of P,
and x; units of P, you're profit in € is:

G(x1,x2) = 30x1 4+ 50x>

Three machines M4, Mp and M¢ produce the required
components A, B and C for the products.

Maximizing Profits

You're the boss of a small company that produces two
products P; and P,. For the production of x; units of P,
and x; units of P, you're profit in € is:

G(x1,x2) = 30x1 4+ 50x>

Three machines M4, Mp and M¢ produce the required
components A, B and C for the products. The components
are used in different quantities for the products

MAI 4x1 T 11x2
MB : X1 T X2
MC . X2

Maximizing Profits

You're the boss of a small company that produces two
products P; and P,. For the production of x; units of P,
and x; units of P, you're profit in € is:

G(x1,x2) = 30x1 4+ 50x>

Three machines M4, Mp and M¢ produce the required
components A, B and C for the products. The components
are used in different quantities for the products, and each
machine requires some time for the production.

MAI 4x1 T 11x2 < 880
MB . X1 T Xy < 150
MC: xo < 60

Maximizing Profits

You're the boss of a small company that produces two
products P; and P,. For the production of x; units of P,
and x; units of P, you're profit in € is:

G(x1,x2) = 30x1 4+ 50x>

Three machines M4, Mp and M¢ produce the required
components A, B and C for the products. The components
are used in different quantities for the products, and each
machine requires some time for the production.

MAI
MB:
MC:

4x1 N

- 11x2 < 880

X1

- xp < 150
x2§ 60

Which choice of (x1, x2) maximizes the profit?

Solution

Linear constraints:
- 11x2 < 880

MAZ
MBZ
MC:

4x1 n

X1

X9 < 150
X2 < 60

Solution Linear constraints:

A My: 4x; + 11xpy < 880
Mp: x1+ x <150

Mc: xy < 60

Solution

XD

150

100

50

A

Linear constraints:

MAI
MBZ
MC:

4X1 n

- 11x, < 880

X1

— X9 < 150
X2 < 60

Solution Linear constraints:
X My: 4xq + 11xp, < 880

$ Mg: x14+ x <150
150 M : Xy < 60
100
50

0+ —— —————+—+—>
0 50 100 150 200 X1

Solution Linear constraints:

X Mpa: 4x; + 11xy < 880

" 4 Mp: x1+ x <150
150 Mc: < 60]
100

0 50 100 150 200 X1

Solution Linear constraints:
My: 4x1 + 11x, < 880

le

150

0 50 100 150 200 X1

Solution

50

Linear constraints:
My: 4x1 + 11x, < 880

100 150 200

Solution

Linear constraints:

My: 4x; + 11x, < 880
Mp: x1+ x <150
MC: X9 < 60

Solution

Linear constraints:

4x1 4+ 11xy < 880
x1 + xp <150

ng 60
xlz 0
xQZ 0
——1 —1—>

Solution

50

Linear constraints:

- 11xp, < 880
B X2 S 15T

60

<
xlz 0
> 0

100

- 10

Solution

Set of valid
solutions

50

Linear constraints:

100

My: 4dx; + 11x, < 880
MB . X1 T X2 S 1%
MC : X9 < 60
X1 > 0
X2 > 0
—— ——>

-11

Solution Linear constraints:

X2 My: 4x + 11x; <880
i MB . X1 T X2 S 150
150 Mc: xy < 60
X1 Z 0
X2 > 0
100 Linear target function:
G(x1,x2) = 30x1 + 50x;
50
Set of valid
solutions
0 ———————

0 50 100 150 200 X1

Solution Linear constraints:

X2 My: 4x + 11x; <880
i MB . X1 T X2 S 150
150 Mc: xy < 60
X1 > 0
X9 Z 0
100 Linear target function:
G(x1,x2) = 30x1 + 50x;
= (30,50)(2)
50
Set of valid
solutions
0 ———————

0 50 100 150 200 X1

Solution Linear constraints:

% My: 4x; + 11x, < 880
i MB . X1 T X2 S 1%
X1 Z 0
X2 > 0
100 Linear target function:
G(x1,x2) = 30x1 + 50x;
= (30,50) ()
].5020
v Set of valid
... solutions
0 + e
50 100 150 200 X1

30)

,profit line”: orthogonal to (-

Solution Linear constraints:

X2 MA 4X1 T 11x2 S 88£
$ Mg: x1+ x, <150
150 M % < 60
x1 > 0

xp > 0

Linear target function:
G(x1,x2) = 30x1 + 50x;

"% — (30,50) (1)
N = , o
].50500
St/ Setof valid
... solutions
0 =
0 50 100 150 200 X1

30)

,profit line”: orthogonal to (-

Solution Linear constraints:

X2 My: 4x + 11x; <880
$ Mg: x1+ x, <150
150 MC: Y < 60
x1 2> 0

xp > 0

Linear target function:
G(x1,x2) = 30x1 + 50x;

" — (30,50) (")
N = , o
]'5020
- S&.Qf Valia*.,\
.._solutions ‘
0 N
0 50 100 150 200 X1

30)

,profit line”: orthogonal to (-

- 16

Solution Linear constraints:

X2 My: 4x + 11x; <880
$ Mg: x1+ x, <150
150 MC' % < 60
x1 2> 0

xp > 0

Linear target function:
G(x1,x2) = 30x1 + 50x;

‘o, = (30,50) (1)
N _ , i
v ~Sé‘thf Valfd’\,\
/ ~.~~~Soluti’0ns\ :
0 N e
0 50 100 150 200 X

30)

,profit line”: orthogonal to (-

Solution Linear constraints:

X2 My: 4x + 11x; <880
$ Mg: x1+ x, <150
150 MC' % < 60
x1 2> 0

xp > 0

Linear target function:
G(x1,x2) = 30x1 + 50x;

" — (30,50) (")
N = , o
L) —Q
© S&.Qf Valia\.,\ "
... solutions
0 N
0 50 100 150 200 X1

30)

,profit line”: orthogonal to (-

Solution Linear constraints:

X2 My: 4x + 11x; <880
$ Mg: x1+ x, <150
150 MC' % < 60
x1 2> 0

xp > 0

Linear target function:
G(x1,x2) = 30x1 + 50x;

3, - xl
N — (30,50) (M)
jﬁogo 5 \\\ 2\ aMA N aMB _
- Sé‘quf Valid’*.\
/ ~.\Soluti’0ns\
0 e
0 5 100 150 200 x

30)

,profit line”: orthogonal to (-

Solution

Linear constraints:

X AEA} 4x1-"-11xg §;8§9_
A MB . X1 T X2 S 150
150 Mc : X, < 60
X1;Z 0

x2§2 0

Linear target function:

G(x1,x2) = 30x1 + 50x;
= (30,50)(,)

Set.of valid ...

.. solutions

50 100

,profit line”: orthogonal to (

MMMy = { ()}

e
200 X1
30)
50

150

Solution Linear constraints:

X2 My: 4x + 11x; <880
$ Mg: x1+ x, <150
150 MC' % < 60
x1 2> 0

xp > 0

Linear target function:
G(x1,x2) = 30x1 + 50x;

3, - xl
N — (30,50) (M)
]SOgO . oo ’ 2\ G(llO, 40) _
N Sé‘thf Valid\.\
/ ~.~~~Soluti’0ns\ .
0 e
0 5 100 150 200 x

30)

,profit line”: orthogonal to (-

Solution Linear constraints:

X2 My: 4x + 11x; <880
$ Mg: x1+ x, <150
150 MC‘ Y < 60
x1 2> 0

xp > 0

Linear target function:

G(xlle) — 30361 -+ 50.?(?2
= (30,50)(3})

~ .~ _G(110,40) =5.300
5 S@t.gf Valid\\
.._solutions -

‘ " N
50 100 150 200 X1
,profit line”: orthogonal to @8)

-22

Solution Linear constraints:

Mpy: 4xq + 11x < 880
Mg: x1+ x, <150
Mc : xp < 60
x1 2> 0
xp > 0

Linear target function:

G(xlle) — 30361 -+ 50.?(?2
= (30,50)(3})

G(110,40) = 5.300

~ Set.of valid .. |\
... solutions “

&
&

‘ " N
50 100 150 200 X1
,profit line”: orthogonal to @8)

-23

- 24

Solution Linear constraints:

Mpy: 4xq + 11x < 880
Mg: x1+ x, <150
Mc : xp < 60
x1 2> 0
xp > 0

Linear target function:

G(xlle) — 30361 -+ 50.?(?2
= (30,50)(3})

G(110,40) = 5.300

: Set.of valid .. |\
... solutions “

&
&

‘ " N
50 100 150 200 X1
,profit line”: orthogonal to @8)

Solution Linear constraints:
X2 My: 4x + 11x; <880
! Mp: x1+ x <150 [Ax <D
150 M - Y < 60
x1 2 0
5300 x2 > 0
€5, © . |
00@ Linear target function:
30 G(x1,x2) = 30x1 + 50x;
D = (30,50) (1)

- - G(110,40) =5.300
- Set.of valid™.. |\
.._solutions E

‘ " N
50 100 150 200 X1
,profit line”: orthogonal to @8)

Solution Linear constraints:
X My: 4x; + 11x; < 880
! Mp: x1+ x <150] |Ax <D
150 M : Yy < 60
x1 2> 0 <

613)00 xp > 0 =
€5, © . |

00@ Linear target function:
30 G(x1,x2) = 30x1 + 50x;

D = (30,50) (1)

- - G(110,40) =5.300
- Set.of valid™.. |\
.._solutions E

‘ " N
50 100 150 200 X1
,profit line”: orthogonal to @8)

Solution Linear constraints:
X2 Ma: 4x1 + 11xr < 880
! Mg: x + x <150 |Ax<b
150 Mc : Y < 60
x1 2 0 <
5300 > 0 x>0
25,5 . ,
00@ Linear target function:
30 G(x1,x2) = 30x1 + 50x;
D = (30,50) (1)
3) T\ _G(110,40) =5.300
- ./ Setof valid-.. |\
“ ~~\soluti’0ns\ -
0 N
0 50 100 150 200 X1

30)

,profit line”: orthogonal to (-

Solution Linear constraints:
X2 Ma: 4x1 + 11xr < 880
! Mp: x1+ x<150| [Ax <D
150 M c: % < 60
x1 > 0 <
5300 > 0 x>0
25,5 . , .
00@ Linear target function:maximize c* x
30 G(x1,x2) = 30x1 + 50x;
D = (30,50) (1)

- - G(110,40) =5.300
_ f Setof valid. |\
.._solutions E

‘ " N
50 100 150 200 X1
,profit line”: orthogonal to (gg)

Solution Linear constraints:
X2 My: 4x + 11x; <880
! Mp: x1+ x<150| [Ax <D
150 M c: % < 60
x1 > 0 > 0
5300§ x > 0 =
1500§ Linear target function:maximize c'x
30 G(x1,x2) = 30x1 + 50x;
D = (30,50) (1)

G(110,40) = 5.300

/ Sé‘t e alili~~. — maximum value of target
= fct. under constraints.

.. solutions

‘) N
50 100 150 200 X1
,profit line”: orthogonal to @8)

Solution Linear constraints:
X2 My: 4x + 11x; <880
! Mp: x1+ x<150| [Ax <D
150 M c: % < 60
x1 > 0 > 0
5300§ x > 0 =
1500§ Linear target function:maximize c'x
30 G(x1,x2) = 30x1 + 50x;
D = (30,50) (1)

G(110,40) = 5.300

/ Sé‘t e alili~~. — maximum value of target
= fct. under constraints.

/. solution
S\\ . max{ch | Ax < b,x > 0}
s ~ N+
50 100 150 200 X1

,profit line”: orthogonal to @8)

Computational Geometry

Lecture 4:

Linear Programming
or

Profit Maximization

Part 11I:
A First Approach

Philipp Kindermann Winter Semester 2020

Definition and Known Algorithms

Detinition and Known Algorithms

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € | H such that cx is maximum (or minimum).

~\

v,

Many algorithms known, e.g.:

Detinition and Known Algorithms

7

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

N\

Many algorithms known, e.g.:
— Simplex |Dantzig "47]

Detinition and Known Algorithms

()

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex |Dantzig "47]

— Ellipsoid method [Khatchiyan "79]

Detinition and Known Algorithms

7

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

N\

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar’ 84]

Detinition and Known Algorithms

7

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

N\

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.

Detinition and Known Algorithms

7

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

N\

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.

Detinition and Known Algorithms

(

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

N\

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

Detinition and Known Algorithms

7

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

N\

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

7L

Detinition and Known Algorithms

- 10

7

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

N\

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

7L

NH=0

Detinition and Known Algorithms

-11

7

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

N\

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

C*

Vs
vy <
\\\\ ~

~

~

~

~

~

~

<

NH=0

Detinition and Known Algorithms

-12

7

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

N\

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

C*
Vs
vy <
\\\\ ~
~
~
~
~
~
~

NH=0 (H unbnd. in dir. ¢

Detinition and Known Algorithms

- 13

7

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

N\

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.
VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

C* \\\\/
\\\\\\\\ \\\““ ""llu
v = - * tiy,

3 z C

F -

4 -

F -

4 -

F -

NH=0 (H unbnd. in dir. ¢

Detinition and Known Algorithms

-14

7

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

N\

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.

VERY important problem, e.g., in Operations Research.
[“Book” application: casting] N H bounded

C* “\\/
\\\\\\\\ \\\““ ""llu
vy 4 3 *C Py
F d -
F -
4 -
F -
4 -
F -

NH=0 (H unbnd. in dir. ¢

Detinition and Known Algorithms

- 15

7

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

N\

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.

VERY important problem, e.g., in Operations Research.
[“Book” application: casting] N H bounded

C*
Vs
vy <
\\\\ ~
~
~
~
~
~
~

NH=0 (H unbnd. in dir. ¢

Detinition and Known Algorithms

()

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.

VERY important problem, e.g., in Operations Research.
[“Book” application: casting] N H bounded

C*
Vs
vy <
\\\\ ~
~
~
~
~
~
~

NH=© (N H unbnd. in dir. ¢ set of optima: segment

Detinition and Known Algorithms

()

Given a set H of n halfspaces in R¥ and a direction c, find
a point x € (| H such that cx is maximum (or minimum).

Many algorithms known, e.g.:
— Simplex Dantzig "47]

— Ellipsoid method Khatchiyan "79]

— Inner-point method [Karmakar” 84]

Good for instances where n and d are large.
We consider d = 2.

VERY important problem, e.g., in Operations Research.
[“Book” application: casting] N H bounded

C*
Vs
vy <
\\\\ ~
~
~
~
~
~
~

NH=® (1Hunbnd. indir. ¢ set of optima: segment vs. point

First Approach

First Approach

B compute (| H explicitly

First Approach

B compute (| H explicitly

B walk along d (" H) to find a vertex x with cx maximum

First Approach

B compute (| H explicitly

B walk along d (" H) to find a vertex x with cx maximum

First Approach

B compute (| H explicitly

B walk along d (" H) to find a vertex x with cx maximum

First Approach

B compute () H explicitly

B walk along d (| H) to find a vertex x with cx maximum

IntersectHalfplanes(H)

if |[H| =1 then
| C <« h, where {h} = H
else

split H into sets Hy and H, with |Hy|, |Hz| ~ |H|/2

rgturn C

First Approach

B compute () H explicitly

B walk along d (| H) to find a vertex x with cx maximum

IntersectHalfplanes(H)

if |[H| =1 then
| C <« h, where {h} = H
else

split H into sets Hy; and H, with |Hq|, |Hp| ~ |H|/2
Cy < IntersectHalfplanes(Hy)

rgturn C

First Approach

B compute () H explicitly

B walk along d (| H) to find a vertex x with cx maximum

IntersectHalfplanes(H)

if |[H| =1 then
| C <« h, where {h} = H
else

split H into sets Hy; and H, with |Hq|, |Hp| ~ |H|/2
Cy < IntersectHalfplanes(Hy)
C, < IntersectHalfplanes(H;)

rgturn C

First Approach

B compute () H explicitly

B walk along d (| H) to find a vertex x with cx maximum

IntersectHalfplanes(H)

if |[H| =1 then
| C <« h, where {h} = H
else

split H into sets Hy; and H, with |Hq|, |Hp| ~ |H|/2
Cy < IntersectHalfplanes(Hy)

C, < IntersectHalfplanes(H)

C < IntersectConvexRegions(Cy, C;)

return C

First Approach

B compute () H explicitly

B walk along d (| H) to find a vertex x with cx maximum

IntersectHalfplanes(H)

if |[H| =1 then
| C <« h, where {h} = H
else

split H into sets Hy; and H, with |Hq|, |Hp| ~ |H|/2
Cy < IntersectHalfplanes(Hy)

C, < IntersectHalfplanes(H)

C < IntersectConvexRegions(Cq, C;)

return C

Running time:

First Approach

B compute () H explicitly

B walk along d (| H) to find a vertex x with cx maximum

IntersectHalfplanes(H)

if |[H| =1 then
| C <« h, where {h} = H
else

split H into sets Hy; and H, with |Hq|, |Hp| ~ |H|/2
Cy < IntersectHalfplanes(Hy)

C, < IntersectHalfplanes(H)

C < IntersectConvexRegions(Cy, C;)

return C

Running time: Tyg(n) = 2T (n/2) 4+ Ticr(n)

First Approach

B compute () H explicitly

B walk along d (| H) to find a vertex x with cx maximum

IntersectHalfplanes(H)

if |[H| =1 then
| C <« h, where {h} = H
else

split H into sets Hy; and H, with |Hq|, |Hp| ~ |H|/2
Cy < IntersectHalfplanes(Hy)

C, < IntersectHalfplanes(H)

C < IntersectConvexRegions(Cy, C;)

return C How??

Ve

Running time: Tyg(n) = 2T (n/2) 4+ Ticr(n)

Computational Geometry

Lecture 4:

Linear Programming
or

Profit Maximization

Part I1I:
Intersecting Convex Regions

Philipp Kindermann Winter Semester 2020

Intersecting Convex Regions

Any ideas?

Intersecting Convex Regions
Any ideas?

Use sweep—line alg for map overlay (line-segment intersections)!

Intersecting Convex Regions
Any ideas?
Use sweep—line alg for map overlay (line-segment intersections)!

Running time Ticr(n) =

Intersecting Convex Regions
Any ideas?
Use sweep—line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
where [= # intersection points.

Intersecting Convex Regions
Any ideas?
Use sweep—line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
where | = # intersection points.
here: [<

Intersecting Convex Regions
Any ideas?
Use sweep—line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
where | = # intersection points.
here: [<

Intersecting Convex Regions
Any ideas?
Use sweep-line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
where [= # intersection points.
here: [<

Intersecting Convex Regions
Any ideas?
Use sweep-line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
where I — # intersection points.
here:

A\
AN

Intersecting Convex Regions
Any ideas?
Use sweep-line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
where [= # intersection points.
here: [<

Intersecting Convex Regions
Any ideas?
Use sweep-line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
where [= # intersection points.
here: [<

- 10

Intersecting Convex Regions
Any ideas?
Use sweep-line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
where [= # intersection points.
here: [<

[\

Intersecting Convex Regions
Any ideas?
Use sweep-line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
where [= # intersection points.
here: [<

[\]

Intersecting Convex Regions
Any ideas?
Use sweep-line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
where [= # intersection points.
here: 1 < n

[\]

Intersecting Convex Regions
Any ideas?
Use sweep—line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
YN where [= # intersection points.

<\ /> =t here: 1< n
N

Intersecting Convex Regions
Any ideas?

Use sweep—line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
YN where [= # intersection points.
<\\/ /> =t here: 1< n

Running time Ty(n) =

Intersecting Convex Regions
Any ideas?

Use sweep—line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
YN where [= # intersection points.
<\\/ /> =t here: 1< n

Running time Tyy(n) = 2Tig(n/2) + Ticr(n)
<

Intersecting Convex Regions
Any ideas?

Use sweep—line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
YN where [= # intersection points.
<\\/ /> =t here: 1< n

Running time Tyy(n) = 2Tig(n/2) + Ticr(n)
<2Ti(n/2) +O(nlogn)
~

Intersecting Convex Regions
Any ideas?

Use sweep—line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
YN where [= # intersection points.
<\\/ /> =t here: 1< n

Running time Tyy(n) = 2Tig(n/2) + Ticr(n)
<2Ti(n/2) +O(nlogn)
c O(nlog” n)

Intersecting Convex Regions
Any ideas?

Use sweep—line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
YN where [= # intersection points.
<\\/ /> =t here: 1< n

Running time Tyy(n) = 2Tig(n/2) + Ticr(n)
<2Ti(n/2) +O(nlogn)
c O(nlog” n)

Better ideas?

Intersecting Convex Regions
Any ideas?

Use sweep—line alg for map overlay (line-segment intersections)!

Running time Ticr(n) = O((n + I)logn),
YN where [= # intersection points.
<\\/ /> =t here: 1< n

Running time Tyy(n) = 2Tig(n/2) + Ticr(n)
<2Ti(n/2) +O(nlogn)
c O(nlog” n)

Better ideas?

Better analysis of the sweep-line for convex
regions/polygons!

- 20

Intersecting Convex Regions Faster

C

Intersecting Convex Regions Faster

Intersecting Convex Regions Faster

G C:
/ How many segments

on the sweepline?

Intersecting Convex Regions Faster

Cy G
/ How many segments

on the sweepline?

Intersecting Convex Regions Faster

E Lright (Co)
Cq 2
/ How many segments

on the sweepline?

Eright (Cl)

Lieft(C2) T+

Intersecting Convex Regions Faster

leftEdgeC>

Lioht (C
C, ght(2)

How many segments

on the sweepline?
rightEdgeC;

Eright (Cl)

leftEdgeC,
4

Liet(C1)

rightEdgeC,

Lieft(C2) T+

Intersecting Convex Regions Faster

leftEdgeC>

Lioht (C
C, ght(2)

How many segments

on the sweepline?
rightEdgeC;

Eright (Cl)

leftEdgeC,
4

Is > 4 possible?
Liet(C1)

rightEdgeC,

Lieft(C2) T+

Intersecting Convex Regions Faster

leftEdgeC>

J(e
C, ght(2)

How many segments

on the sweepline?
rightEdgeC;

leftEdgeC,
4

Is > 4 possible?

Liert(C1) Lright (C1) No!

rightEdgeC,

Lieft(C2) T+

Intersecting Convex Regions Faster

leftEdgeC, C, Lright (Co)

How many segments

on the sweepline?
rightEdgeC;

leftEdgeCq

Is > 4 possible?
Lright(C1) No!

rightEdgeC,

Liet(C2)
[Theorem. The intersection of two convex polygonal

regions can be computed in linear time.

—

Intersecting Convex Regions Faster

leftEdgeC>

['right (Co)

Co

leftEdgeC
S How many segments

14

on the sweepline?

(Bhhaset Is > 4 possible?

Liert(C1) Lright (C1) No!

rightEdgeC,

Liet(C2)

‘Theorem. The intersection of two convex polygonal
regions can be computed in linear time.

\

.

‘Corollary. The intersection of # half planes can be
computed in O(nlogn) time.

\

Intersecting Convex Regions Faster

leftEdgeC>

['right (Co)

Co

leftEdgeC
S How many segments

14

on the sweepline?

(Bhhaset Is > 4 possible?

Liert(C1) Lyignt(C1) No!

rightEdgeC,

Liet(C2)

‘Theorem. The intersection of two convex polygonal
regions can be computed in linear time.

\

.

‘Corollary. The intersection of # half planes can be
computed in O(nlogn) time.

\

Can we do better?

10

Computational Geometry

Lecture 4:

Linear Programming
or

Profit Maximization

Part 1V:
Incremental Approach

Philipp Kindermann Winter Semester 2020

A Small Trick: Make Solution Unique

NH=0Q

(| H unbnd. in dir. ¢

(H bounded.

11 -

o

%/

~
~
~
~
~
~
~

-
-
-
-
-
-
-

N

C

-
-
-
-
-
-
-

e

C

A Small Trick: Make Solution Unique

NH=O (H unbnd. in dir. ¢ (H bounded.
Ve 5 Re 5 §e
B Add two bounding halfplanes m and m>

A Small Trick: Make Solution Unique

NH=O (H unbnd. in dir. ¢ (H bounded.
Ve 5 Tk
B Add two bounding halfplanes m and m>

A Small Trick: Make Solution Unique

NH=O (H unbnd. in dir. ¢ (H bounded.
% ml “Cyv
3 -
B Add two bounding halfplanes m and m>

A Small Trick: Make Solution Unique

NH=O (H unbnd. in dir. ¢ (H bounded.
% mq ‘gv
F 4 .
B Add two bounding halfplanes m and m>

A Small Trick: Make Solution Unique

NH=0Q

(| H unbnd. in dir. ¢

(H bounded.

7L

B Add two

mq = <

(ng if ¢, > 0,

X > M otherwise,

pounding halfplanes m and m>

for some sufficiently large M

A Small Trick: Make Solution Unique

NH=0Q

(| H unbnd. in dir. ¢

(H bounded.

7L

B Add two |
(ng
mq = <
\xZM
4 <M
1712:<y_
vy =M

if ¢, > 0,
otherwise,

if ¢, >0,
otherwise.

pounding halfplanes m and m>

for some sufficiently large M

A Small Trick: Make Solution Unique

NH=0 (H unbnd. in dir. ¢ (H bounded.

“’/ g .
lllll
ml “‘\\\k‘ / """""""""""""
<
\\\\\ & - 1y -
< - -
-~ - -
-~ - -
F, - -
< - -
P
<
P

B Add two bounding halfplanes m and m>

(x <M ifcy >0,

my =4 = e = .’ for some sufficiently large M
X > M otherwise,

B (y < M if cy > 0,

¥ > M otherwise.

B Take the lexicographically largest solution.

A Small Trick: Make Solution Unique

NH=0 (H unbnd. in dir. ¢ (H bounded.

B Add two bounding halfplanes m and m>

)
<M ifcy >0, ..

my =4 = HE Y for some sufficiently large M

X > M otherwise,

B (ng ifcy>0,
¥ > M otherwise.

B Take the lexicographically largest solution.

11 - 10

A Small Trick: Make Solution Unique

NH=0 (H unbnd. in dir. ¢ (H bounded.

llllll
miq C“mk\ d(,,,,,,,,,,,,,,,,,,,,,,
7
\\\\\ & - Ty -
-~ - -
~ - -
-~ - -
3 A 4
3 A
3 4

B Add two bounding halfplanes m and m>

(x <M ifcy >0,

my =4 = e = .’ for some sufficiently large M
X > M otherwise,

B (y < M if cy > 0,

¥ > M otherwise.

B Take the lexicographically largest solution.

= Set of solutions is either empty or a uniquely defined pt.

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

12 -

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, ¢, mq, m>)

Hy = {my,my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| U+
else
0; <

. H; = H;_1U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, ¢, mq, m>)

Hy = {my,my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| v i
else
0; <

. H; = H;_1U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, ¢, mq, m>)

Hy = {mq,my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < v
else
U < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C))

. H; = H;_1U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, ¢, mq, m>)

Hy = {mq,my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < v
else
U < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C))

. H; = H;_1U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, ¢, mq, m>)

Hy = {mq,my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < v
else
U < 1DBoundedLP(7tahi(Hi_1), ﬂahi(C))

o,

. H; = H;_1U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, c, mq,m>)

Hy = {my, my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < v
else
U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C))

Al —\

- H; = H; 1 U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, c, mq,m>)

Hy = {my, my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < v
else
U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C))

Al —\

- H; = H; 1 U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, c, mq,m>)

Hy = {my, my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < v
else
U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C))

Al —\ =

- H; = H; 1 U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, c, mq,m>)

Hy = {my, my}
Vo < corner of mq N my
fori <+ 1tondo
if v;_1 € h; then
| 0 < v
else
U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C))

Al —\ <

- H; = H; 1 U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!
2DBoundedLP(H, c, mq,m>)

Hy = {my, my}

Vo < corner of mq N my

fori <+ 1tondo C\

if v;_1 € h; then
| 0 < v

else

U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C))

Al —\ <

- H; = H; 1 U{h}
return v,

12 -14

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, ¢, m1,m;)

Hy = {my,my}
Vo < corner of mq N my
fori <+ 1tondo C\
if Ui—.l <]’ll then V. —\ s
| 0; 04 1 —
else ﬂahi(c)

v; < 1DBoundedLP(7y, (H;_1), ﬂahi(C))é

- H; = H; 1 U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, c, mq,m>)

Hy = {my,my}
Vo < corner of mq N my
fori <+ 1tondo C\
if Ui—.l <]’ll then V. —\ s
| 0; 04 1 —
else ﬂahi(c)

U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C))
if v; = nil then
| return nil

- H; = H; 1 U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, c, mq,m>)

H() {ml,mz}
Vo < corner of mq N my
fori <+ 1tondo C\
if Ui—.l <]’ll then V. —\ s
| 0; 04 l —>
else ﬂahi(c)

U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C))
if v; = nil then
[return nil w-C running time:

- H; = H; 1 U{h}
return v,

Incremental Approach
Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, c, mq,m>)

H() {ml,mz}
Vo < corner of mq N my
fori <+ 1tondo C\
if Ui—.l <]’ll then V. —\ s
| 0; 04 l —>
else ﬂahi(c)

U; < 1DBoundedLP(7Tahi(Hi_1), ﬂahi(C))
if v; = nil then
[return nil w-C running time:

- H; = H; 1 U{h}
return v,

12 - 18

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, ¢, m1,m;)

HO — {ml/mZ}
Vo < corner of mq N my)
fori <+ 1tondo AW
if v;_1 € h; then .
| v Ui oy K= O(1)
else ﬂahi(c)

v; < 1DBoundedLP(7y, (H;_1), ﬂahi(C))i

if 0; — nil then

L return nil w-C running time:
| Hi= Hy Ui} O(1)

return vy,

12-19

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, ¢, m1,m;)

HO — {ml/mZ}
Vo < corner of mq N my)
fori <+ 1tondo AW
if v;_1 € h; then .
| v Ui oy K= O(1)
else ﬂahi(c)

v; + 1DBoundedLP(7y;, (H; 1), 7tap. (c)) O(i)

if v; = nil then

L return nil w-C running time:
 Hi=H; 1 U{h} O(1)

return v,

12 - 20

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

2DBoundedLP(H, ¢, m1,m;)

HO — {ml/mZ}
Vo < corner of mq N my)
fori <+ 1tondo AW
if v;_1 € h; then .
| v Ui oy K= O(1)
else nahi(c)

v; + 1DBoundedLP(7y;, (H; 1), 7tap. (c)) O(i)

if v; = nil then

L return nil w-C running time:
. H;=H;_1U{h} O(1) I'(n) =Y, 0(i) =
return v,

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!

iZDBoundedLP(H ,C, M1, M>)

HO — {ml/mZ}
Vo < corner of mq N my)
fori < 1ton do AW
if v;_1 € h; then .
else nahi(c)

v; + 1DBoundedLP(7y;, (H; 1), 7tap. (c)) O(i)
if v; = nil then

L return nil w-C running time:
. H;=H;_1U{h} O(1) I'(n) =Y, 0(i) =
return v, = O0(n?)

12 -21

12 - 22

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!
Randomized

iZDBoundedLP(H ,C, M1, M>)

Hy = {mq,my}

Vo < corner of mq N my

fori < 1ton do AW
if v;_1 € h; then
e|lsevl S 7o, (€) |
v; + 1DBoundedLP(7y;, (H; 1), 7tap. (c)) O(i)

if v; = nil then

L return nil w-C running time:
. H;=H;_1U{h} O(1) I'(n) =Y, 0(i) =
return v, = O0(n?)

12 - 23

Incremental Approach

Idea: Don’t compute () H, but just one (optimal) point!
Randomized

§2DBoundedLP(H ,C, M1, M)

compute random permutation of H

Ho = {my,my}
Vo < corner of mq N my)
fori < 1ton do AW
if v;_1 € h; then .
| v Ui oy K= O(1)
else ﬂahi(c)

v; + 1DBoundedLP(7y;, (H; 1), 7tap. (c)) O(i)

if v; = nil then

L return nil w-C running time:
. H;=H;_1U{h} O(1) I'(n) =Y, 0(i) =
return v, = O0(n?)

13

Computational Geometry

Lecture 4:

Linear Programming
or

Profit Maximization

Part V:
The Randomized-Incremental Approach

Philipp Kindermann Winter Semester 2020

14 -

Result

14 -

Result

[Theorem. The 2D bounded LP problem can be solved in]

O(n) expected time.

if v; 1 & hy,

1
Proof. Let X; =
0 else.

} (indicator random var.).

14 -

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

1 if v; :
Proof. Let X; = o & I (indicator random var.).
0 else.

Then the expected running time is
E[Ty4(n)] =

14 -

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

1 if v; :
Proof. Let X; = o & I (indicator random var.).
0 else.

Then the expected running time is
E[Tpq(n)] = E[Liz; (1 = X;) - O(1) 4 X; - O(i)]

14 -5

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

if v;_1 &€ h;,

1
Proof. Let X; =
0 else.

} (indicator random var.).

Then the expected running time is
E[Tpq(n)] = E[Liz; (1 = X;) - O(1) 4 X; - O(i)]
= LE[1-X;]-0(1) + LE[X;] - O(i)

14 -6

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

if v; 1 & hy,

1
Proof. Let X; =
0 else.

} (indicator random var.).

Then the expected running time is

E[Tpq(n)] = E[Liz; (1 = X;) - O(1) 4 X; - O(i)]
= LE[1-X;]-0(1) + LE[X;] - O(i)
<O(n)+YPrX; =1]-0(i)

Result

14 -7

[Theorem. The 2D bounded LP problem can be solved in

O(n) expected time. J

Proof.

1 ifv;_1 &h,,
Let X; = {0 11721 1 &0 } (indicator random var.).
else.

Then the expected running time is

E[Tpq(n)] = E[Liz; (1 = X;) - O(1) 4 X; - O(i)]
= LE[1-X;]-0(1) + LE[X;] - O(i)
<O(n)+YPrX; =1]-0(i)

We fix the i random halfplanes in H;.

Result

14 -8

[Theorem. The 2D bounded LP problem can be solved in

O(n) expected time.]

Proof.

1 ifv;_1 &h,,
Let X; = {0 1101 1 &0 } (indicator random var.).
else.

Then the expected running time is

E[Tpq(n)] = E[Liz; (1 = X;) - O(1) 4 X; - O(i)]
= LE[1-X;]-0(1) + LE[X;] - O(i)
<O(n)+YPrX; =1]-0(i)

We fix the i random halfplanes in H;.

Pr[X; =1] =probability that the optimal solution
changes when h; is added to H; 1.

Result

14 -9

[Theorem. The 2D bounded LP problem can be solved in

O(n) expected time.]

Proof.

1 ifv;_1 &h,,
Let X; = {0 1101 1 &0 } (indicator random var.).
else.

Then the expected running time is

E[Tpq(n)] = E[Liz; (1 = X;) - O(1) 4 X; - O(i)]
= LE[1-X;]-0(1) + LE[X;] - O(i)
<O(n)+YPrX; =1]-0(i)

We fix the i random halfplanes in H;.

Pr[X; =1] =probability that the optimal solution
changes when h; is added to H; 1.

14 - 10

Result

[Theorem. The 2D bounded LP problem can be solved in]

O(n) expected time.

1 if v; :
Proof. Let X; = o & I (indicator random var.).
0 else.

Then the expected running time is

E[Tpq(n)] = E[Liz; (1 = X;) - O(1) 4 X; - O(i)]
= LE[1-X;]-0(1) + LE[X;] - O(i)
<O(n)+YPrX; =1]-0(i)

We fix the i random halfplanes in H;.

Pr[X; =1] =probability that the optimal solution

changes when h; is added to H; 1.
— probability that the optimal solution

changes when F; is removed from H;.

Result

14 - 11

[Theorem. The 2D bounded LP problem can be solved in

O(n) expected time.]

Proof.

1 ifv;_1 &h,,
Let X; = {0 1101 1 &0 } (indicator random var.).
else.

Then the expected running time is

E[Tpq(n)] = E[LiZ (1~ Xi) - O(1) + X; - O()]
= LE[1-X;]-0(1) + LE[X;] - O(i)
<O(n)+YPrX; =1]-0(i)

We fix the i random halfplanes in H;.

Pr[X; =1] =probability that the optimal solution

i.e., when v; € dh;
and v; € dh; for
exactly one j < 1.

changes when h; is added to H; 1.
— probability that the optimal solution

changes when F; is removed from H;.

Result

14 - 12

[Theorem. The 2D bounded LP problem can be solved in

O(n) expected time.]

Proof.

1 ifv;_1 &h,,
Let X; = {0 1101 1 &0 } (indicator random var.).
else.

Then the expected running time is

E[Tpq(n)] = E[LiZ (1~ Xi) - O(1) + X; - O()]
= LE[1-X;]-0(1) + LE[X;] - O(i)
<O(n)+YPrX; =1]-0(i)

We fix the i random halfplanes in H;.

Pr[X; =1] =probability that the optimal solution

i.e., when v; € dh;
and v; € dh; for
exactly one j < 1. <2/

changes when h; is added to H; 1.
— probability that the optimal solution

changes when F; is removed from H;.

Result

14 - 13

[Theorem. The 2D bounded LP problem can be solved in

O(n) expected time.]

Proof.

1 ifv;_1 &h,,
Let X; = {0 11721 1 &0 } (indicator random var.).
else.

Then the expected running time is

E[Tpq(n)] = E[LiZ (1~ Xi) - O(1) + X; - O()]
= LE[1-X;]-0(1) + LE[X;] - O(i)
<O(n)+YPrX; =1]-0(i)

We fix the i random halfplanes in H;.

Pr[X; =1] =probability that the optimal solution

i.e., when v; € dh;
and v; € dh; for
exactly one j < 1.

changes when h; is added to H; 1.
— probability that the optimal solution

changes when F; is removed from H;.
< 2/i.This is independent of the choice of H;.

14 - 14

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

1 if v; :
Proof. Let X; = o & I (indicator random var.).
0 else.

Then the expected running time is
E[Tpq(n)] = E[Liz; (1 = X;) - O(1) 4 X; - O(i)]
=Y E[1-X;]-O(1) + LE[X;] - O(i)
—— LN
<O(n)+Y Pr[X; =1]-0(i)
We fix the i random halfplanes in H;.

Pr[X; =1] =probability that the optimal solution

changes when h; is added to H; 1.
— probability that the optimal solution

changes when F; is removed from H;.
< 2/i.This is independent of the choice of H;.

14 - 15

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

1 if v; :
Proof. Let X; = o & I (indicator random var.).
0 else.

Then the expected running time is

E[Tpq(n)] = E[Liz; (1 = X;) - O(1) 4 X; - O(i)]
=Y E[1-X;]-O(1) + LE[X;] - O(i)

—— LN
<O(n)+YPrX;=1]-0(i) = O(n).

We fix the i random halfplanes in H;.

Pr[X; =1] =probability that the optimal solution

changes when h; is added to H; 1.
— probability that the optimal solution

changes when F; is removed from H;.
< 2/i.This is independent of the choice of H;.

14 - 16

Result

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

1 if v; :
Proof. Let X; = o & I (indicator random var.).
0 else.

Then the expected running time is

E[Tpq(n)] = E[Liz; (1 = X;) - O(1) 4 X; - O(i)]
=Y E[1-X;]-O(1) + LE[X;] - O(i)

—— LN
<O(n)+YPrX;=1]-0(i) = O(n).

We fix the i random halfplanes in H;.

Pr[X; =1] =probability that the optimal solution

changes when h; is added to H; 1.
Proof technique: — probability that the optimal solution

Backward analysis! changes when F; is removed from H;.
———— < 2/i.This is independent of the choice of H;.

	Introduction to Linear Programming
	Maximizing Profits
	Solution

	A First Approach
	Definition and Known Algorithms
	First Approach

	Intersecting Convex Regions
	Intersecting Convex Regions Faster

	Incremental Approach
	A Small Trick: Make Solution Unique
	Incremental Approach

	The Randomized-Incremental Approach

