Lecture 4: Linear Programming or Profit Maximization

Part I: Introduction to Linear Programming

Philipp Kindermann

Maximizing Profits

You're the boss of a small company that produces two products P_1 and P_2 . For the production of x_1 units of P_1 and x_2 units of P_2 , you're profit in \in is:

$$G(x_1, x_2) = 30x_1 + 50x_2$$

Three machines M_A , M_B and M_C produce the required components A, B and C for the products. The components are used in different quantities for the products, and each machine requires some time for the production.

$$M_A: 4x_1 + 11x_2 \le 880 M_B: x_1 + x_2 \le 150 M_C: x_2 \le 60$$

Which choice of (x_1, x_2) maximizes the profit?

Lecture 4: Linear Programming or Profit Maximization

Part II: A First Approach

Philipp Kindermann

Definition and Known Algorithms

Given a set *H* of *n* halfspaces in \mathbb{R}^d and a direction *c*, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

- Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where *n* and *d* are large.

We consider d = 2.

VERY important problem, e.g., in Operations Research. ["Book" application: casting] $\cap H$ bounded.

 $\bigcap H = \emptyset$

 \cap *H* unbnd. in dir. *c*

set of optima: segment vs. point

First Approach

• compute $\bigcap H$ explicitly

■ walk along ∂ (\cap *H*) to find a vertex *x* with *cx* maximum

```
IntersectHalfplanes(H)
  if |H| = 1 then
     C \leftarrow h, where \{h\} = H
  else
       split H into sets H_1 and H_2 with |H_1|, |H_2| \approx |H|/2
       C_1 \leftarrow \text{IntersectHalfplanes}(H_1)
       C_2 \leftarrow \text{IntersectHalfplanes}(H_2)
       C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)
  return C
                                                            How??
Running time: T_{\rm IH}(n) = 2T_{\rm IH}(n/2) + T_{\rm ICR}(n)
```

Lecture 4: Linear Programming or Profit Maximization

Part III: Intersecting Convex Regions

Philipp Kindermann

Intersecting Convex Regions

Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{ICR}(n) = O((n + I) \log n)$, where I = # intersection points. *here:* $I \le n$ Running time $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$ $\le 2T_{IH}(n/2) + O(n \log n)$ $\in O(n \log^2 n)$

Better ideas?

Better analysis of the sweep-line for *convex* regions/polygons!

Intersecting Convex Regions Faster

Theorem. The intersection of two convex polygonal regions can be computed in linear time.

Corollary. The intersection of *n* half planes can be computed in $O(n \log n)$ time.

Can we do better?

Lecture 4: Linear Programming or Profit Maximization

Part IV: Incremental Approach

Philipp Kindermann

A Small Trick: Make Solution Unique

Add two bounding halfplanes m_1 and m_2

$$m_{1} = \begin{cases} x \leq M & \text{if } c_{x} > 0, \\ x \geq M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M$$
$$m_{2} = \begin{cases} y \leq M & \text{if } c_{y} > 0, \\ y \geq M & \text{otherwise.} \end{cases}$$

Take the lexicographically largest solution.

 \Rightarrow Set of solutions is either empty or a uniquely defined pt.

Incremental Approach

Lecture 4: Linear Programming or Profit Maximization

Part V: The Randomized-Incremental Approach

Philipp Kindermann

Result

Theorem. The 2D bounded LP problem can be solved in O(n) expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random var.). Then the expected running time is $\mathbf{E}[T_{2d}(n)] = \mathbf{E}[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$ $= \sum \mathbf{E}[1 - X_i] \cdot O(1) + \sum \mathbf{E}[X_i] \cdot O(i)$ $\langle O(n) + \sum \mathbf{Pr}[X_i = 1] \cdot O(i) = O(n).$ We fix the *i* random halfplanes in H_i . $Pr[X_i = 1]$ = probability that the optimal solution changes when h_i is added to H_{i-1} . = probability that the optimal solution Proof technique: Backward analysis! changes when h_i is removed from H_i . $\leq 2/i$. This is independent of the choice of H_i .