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Maximizing Profits
You’re the boss of a small company that produces two
products P1 and P2. For the production of x1 units of P1
and x2 units of P2, you’re profit in e is:

G(x1, x2) = 30x1 + 50x2

Three machines MA, MB and MC produce the required
components A, B and C for the products. The components
are used in different quantities for the products, and each
machine requires some time for the production.

Which choice of (x1, x2) maximizes the profit?

MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60
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Solution
MA : 4x1 + 11x2 ≤ 880
MB : x1 + x2 ≤ 150
MC : x2 ≤ 60
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G(x1, x2) = 30x1 + 50x2
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”profit line“: orthogonal to (30
50)
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G(110, 40) =

Linear constraints:

Linear target function:

5.300

Ax ≤ b

maximize cTx

x ≥ 0

maximum value of target
fct. under constraints.

=

max{cTx | Ax ≤ b, x ≥ 0}=

c Set of valid
solutions
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Definition and Known Algorithms

We consider d = 2.
VERY important problem, e.g., in Operations Research.

Many algorithms known, e.g.:
– Simplex [Dantzig ’47]
– Ellipsoid method [Khatchiyan ’79]

– Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

⋂
H = ∅

⋂
H unbnd. in dir. c

⋂
H bounded.

set of optima: segment vs. point

[“Book” application: casting]

c
c c

Given a set H of n halfspaces in Rd and a direction c, find
a point x ∈ ⋂

H such that cx is maximum (or minimum).
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First Approach
� compute

⋂
H explicitly

� walk along ∂ (
⋂

H) to find a vertex x with cx maximum

IntersectHalfplanes(H)

if |H| = 1 then
C ← h, where {h} = H

else
split H into sets H1 and H2 with |H1|, |H2| ≈ |H|/2
C1 ← IntersectHalfplanes(H1)
C2 ← IntersectHalfplanes(H2)
C ← IntersectConvexRegions(C1, C2)

return C

Running time: TIH(n) = 2TIH(n/2) + TICR(n)

How??
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Intersecting Convex Regions
Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time TICR(n) = O((n + I) log n),
where I = # intersection points.

Running time TIH(n) = 2TIH(n/2) + TICR(n)

here: nI ≤

≤ 2TIH(n/2) + O(n log n)

∈ O(n log2 n)
Better ideas?

Better analysis of the sweep-line for convex
regions/polygons!
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Intersecting Convex Regions Faster

Lleft(C1)

C1
C2

`

Lright(C1)

Lleft(C2)

leftEdgeC1

rightEdgeC1

leftEdgeC2

Theorem. The intersection of two convex polygonal
regions can be computed in linear time.

Corollary. The intersection of n half planes can be
computed in O(n log n) time.

Is > 4 possible?

No!

Can we do better?

rightEdgeC2

Lright(C2)

How many segments
on the sweepline?
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A Small Trick: Make Solution Unique
⋂

H = ∅
⋂

H unbnd. in dir. c

c c

⋂
H bounded.

� Add two bounding halfplanes m1 and m2

m1 =

{
x ≤ M if cx > 0,
x ≥ M otherwise,

for some sufficiently large M

m1

m2

m2 =

{
y ≤ M if cy > 0,
y ≥ M otherwise.

� Take the lexicographically largest solution.

⇒ Set of solutions is either empty or a uniquely defined pt.

c
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Incremental Approach

2DBoundedLP(H, c, m1, m2)

H0 = {m1, m2}
v0 ← corner of m1 ∩m2
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1DBoundedLP(π∂hi

(Hi−1), π∂hi
(c))

if vi = nil then
return nil

Hi = Hi−1 ∪ {hi}
return vn

w-c running time:

O(1)

O(i)

T(n) = ∑n
i=1 O(i) =

= O(n2) :-(

Randomized

compute random permutation of H

Idea: Don’t compute
⋂

H, but just one (optimal) point!

∂hi

c

π∂hi
(c)

O(1)
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Result

:-)

Proof. Let Xi =

{
1 if vi−1 6∈ hi,
0 else.

}
(indicator random var.).

Theorem. The 2D bounded LP problem can be solved in
O(n) expected time.

= ∑ E[1− Xi] ·O(1) + ∑ E[Xi] ·O(i)
≤ O(n) + ∑ Pr[Xi = 1] ·O(i)

Then the expected running time is

E[T2d(n)] = E[∑n
i=1(1− Xi) ·O(1) + Xi ·O(i)]

Pr[Xi =1] =probability that the optimal solution
changes when hi is added to Hi−1.

= probability that the optimal solution
changes when hi is removed from Hi.

We fix the i random halfplanes in Hi.

≤ 2/i.This is independent of the choice of Hi.

= O(n).

Proof technique:
Backward analysis!
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