Computational Geometry

Lecture 4:
Linear Programming
Profit Maximization

Part I:
Introduction to Linear Programming

Maximizing Profits

You're the boss of a small company that produces two products P_{1} and P_{2}. For the production of x_{1} units of P_{1} and x_{2} units of P_{2}, you're profit in $€$ is:

$$
G\left(x_{1}, x_{2}\right)=30 x_{1}+50 x_{2}
$$

Three machines M_{A}, M_{B} and M_{C} produce the required components A, B and C for the products. The components are used in different quantities for the products, and each machine requires some time for the production.

$$
\begin{array}{rlrl}
M_{A}: & 4 x_{1}+11 x_{2} & \leq 880 \\
M_{B}: & x_{1}+ & x_{2} & \leq 150 \\
M_{C}: & & x_{2} & \leq 60
\end{array}
$$

Which choice of $\left(x_{1}, x_{2}\right)$ maximizes the profit?

Solution

50
"profit line": orthogonal to $\binom{30}{50}$
Set of valid . $\quad=$ maximum value of target solutions
$\begin{array}{cc}100 & 150 \\ \mathrm{e}^{\prime \prime}: \text { orthogonal to } & \left.\begin{array}{c}30 \\ 50\end{array}\right)\end{array}$ fct. under constraints.
$=\max \left\{c^{\mathrm{T}} x \mid A x \leq b, x \geq 0\right\}$

Computational Geometry

Lecture 4:
Linear Programming Profit Maximization

Part II:
A First Approach

Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^{d} and a direction c, find a point $x \in \cap H$ such that $c x$ is maximum (or minimum).
Many algorithms known, e.g.:

- Simplex
[Dantzig '47]
- Ellipsoid method
- Inner-point method
[Khatchiyan '79]
[Karmakar' 84]
Good for instances where n and d are large.
We consider $d=2$.
VERY important problem, e.g., in Operations Research. ["Book" application: casting]
$\cap H$ bounded.

$\cap H=\varnothing$

$\cap H$ unbnd. in dir. c

set of optima: segment vs. point

First Approach
■ compute $\cap H$ explicitly
■ walk along $\partial(\cap H)$ to find a vertex x with $c x$ maximum
IntersectHalfplanes (H)
if $|H|=1$ then
$C \leftarrow h$, where $\{h\}=H$
else
split H into sets H_{1} and H_{2} with $\left|H_{1}\right|,\left|H_{2}\right| \approx|H| / 2$
$\mathrm{C}_{1} \leftarrow$ IntersectHalfplanes $\left(H_{1}\right)$
$\mathrm{C}_{2} \leftarrow$ IntersectHalfplanes $\left(\mathrm{H}_{2}\right)$
$C \leftarrow$ IntersectConvexRegions $\left(C_{1}, C_{2}\right)$
return C
How??
Running time: $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$

Computational Geometry

Lecture 4: Linear Programming Profit Maximization

Part III:
Intersecting Convex Regions

Intersecting Convex Regions

Any ideas?

Use sweep-line alg. for map overlay (line-segment intersections)!
Running time $T_{\mathrm{ICR}}(n)=O((n+I) \log n)$,

where $I=$ \# intersection points.
$\#+$ here: $I \leq n$
Running time $T_{\mathrm{IH}}(n)=2 T_{\mathrm{IH}}(n / 2)+T_{\mathrm{ICR}}(n)$

$$
\begin{aligned}
& \leq 2 T_{\mathrm{IH}}(n / 2)+O(n \log n) \\
& \in O\left(n \log ^{2} n\right)
\end{aligned}
$$

Better ideas?

Better analysis of the sweep-line for convex regions/polygons!

Intersecting Convex Regions Faster

Theorem. The intersection of two convex polygonal regions can be computed in linear time.
Corollary. The intersection of n half planes can be computed in $O(n \log n)$ time.

Can we do better?

Computational Geometry

Lecture 4:
Linear Programming
Profit Maximization

Part IV:
Incremental Approach

A Small Trick: Make Solution Unique

■ Add two bounding halfplanes m_{1} and m_{2}

$$
\begin{aligned}
& m_{1}=\left\{\begin{array}{ll}
x \leq M & \text { if } c_{x}>0, \\
x \geq M & \text { otherwise },
\end{array} \text { for some sufficiently large } M\right. \\
& m_{2}= \begin{cases}y \leq M & \text { if } c_{y}>0 \\
y \geq M & \text { otherwise }\end{cases}
\end{aligned}
$$

■ Take the lexicographically largest solution.
\Rightarrow Set of solutions is either empty or a uniquely defined pt.

Incremental Approach

Idea: Don't compute $\cap H$, but just one (optimal) point! Randomized
2DBoundedLP $\left(H, c, m_{1}, m_{2}\right)$
compute random permutation of H
$H_{0}=\left\{m_{1}, m_{2}\right\}$
$v_{0} \leftarrow$ corner of $m_{1} \cap m_{2}$ for $i \leftarrow 1$ to n do if $v_{i-1} \in h_{i}$ then $v_{i} \leftarrow v_{i-1}$ else
 $v_{i} \leftarrow 1$ DBoundedLP $\left(\pi_{\partial h_{i}}\left(H_{i-1}\right), \pi_{\partial h_{i}}(c)\right) O(i)$ if $v_{i}=$ nil then
L return nil

$$
H_{i}=H_{i-1} \cup\left\{h_{i}\right\} O(1)
$$

return v_{n}
$\mathrm{w}-\mathrm{c}$ running time:

$$
\begin{aligned}
T(n) & =\sum_{i=1}^{n} O(i)= \\
& =O\left(n^{2}\right) \quad:-(
\end{aligned}
$$

Computational Geometry

Lecture 4:
Linear Programming Profit Maximization

Part V:
The Randomized-Incremental Approach

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Proof. Let $X_{i}=\left\{\begin{array}{ll}1 & \text { if } v_{i-1} \notin h_{i} \\ 0 & \text { else. }\end{array}\right\}$ (indicator random var.).
Then the expected running time is

$$
\begin{aligned}
\mathbf{E}\left[T_{2 d}(n)\right] & =\mathbf{E}\left[\sum_{i=1}^{n}\left(1-X_{i}\right) \cdot O(1)+X_{i} \cdot O(i)\right] \\
& =\sum \mathbf{E}\left[1-X_{i}\right] \cdot O(1)+\sum \mathbf{E}\left[X_{i}\right] \cdot O(i) \\
& \leq O(n)+\sum \operatorname{Pr}\left[X_{i}=1\right] \cdot O(i)=O(n) .
\end{aligned}
$$

We fix the i random halfplanes in H_{i}.
$\operatorname{Pr}\left[X_{i}=1\right]=$ probability that the optimal solution changes when h_{i} is added to H_{i-1}.
Proof technique: $\quad=$ probability that the optimal solution
Backward analysis! changes when h_{i} is removed from H_{i}.
$\leq 2 / i$. This is independent of the choice of H_{i}.

