Computational Geometry

Lecture 3:
Guarding Art Galleries

Triangulating Polygons

Part I: The Art Gallery Problem

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras!

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon P (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras! But minimizing them is NP-hard...

Theorem. 1. Every simple polygon can be triangulated.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

- Theorem. 1. Every simple polygon can be triangulated.
 - 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...

Observation. Camera *c* "sees" a star-shaped region

Definition.

A pt $q \in P$ is visible from $c \in P$ if $\overline{qc} \subseteq P$.

Aim:

Use few cameras! But minimizing them is NP-hard...

Theorem.

1. Every simple polygon can be triangulated.

How can we prove these?

2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

$$3, ..., n-1 \to n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

1 triangle

 $3, ..., n-1 \to n$:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

$$3,\ldots,n-1\rightarrow n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

$$3,\ldots,n-1\rightarrow n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

$$3, ..., n-1 \to n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle

$$3, ..., n-1 \to n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle ✓

$$3, ..., n-1 \to n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle ✓

$$3, ..., n-1 \to n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle ✓

$$3, ..., n-1 \to n$$
:

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

1 triangle ✓

$$3, ..., n-1 \to n$$
:

 $3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

1 triangle

$$3, ..., n-1 \to n$$
:

 $3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$ $n-1 \text{ vtcs} \Rightarrow n-3 \text{ triangles}$

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

1 triangle ✓

$$3, ..., n-1 \to n$$
:

x furthest from uw

 $3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$

$$n-1$$
 vtcs $\Rightarrow n-3$ triangles $\Rightarrow n-2$ triangles

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

1 triangle ✓

$$3, ..., n-1 \to n$$
:

$$3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$$

 $n-1 \text{ vtcs} \Rightarrow n-3 \text{ triangles}$
 $\Rightarrow n-2 \text{ triangles}$

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n=3$$
:

1 triangle

$$3, ..., n-1 \to n$$
:

 $3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$ $n-1 \text{ vtcs} \Rightarrow n-3 \text{ triangles}$ $\Rightarrow n-2 \text{ triangles}$

 $m \text{ vtcs} \Rightarrow m-2 \text{ triangles}$

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle ✓

$$3, ..., n-1 \to n$$
:

 $3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$ $\Rightarrow n-2$ triangles x furthest from uw

 $m \text{ vtcs} \Rightarrow m-2 \text{ triangles}$ $n-1 \text{ vtcs} \Rightarrow n-3 \text{ triangles}$ $n-m+2 \text{ vtcs} \Rightarrow n-m \text{ triangles}$

Theorem.

- 1. Every simple polygon can be triangulated.
- 2. Any triangulation of a simple polygon with n vertices consists of n-2 triangles.

$$n = 3$$
:

1 triangle ✓

 $3, ..., n-1 \to n$:

 $3 \text{ vtcs} \Rightarrow 1 \text{ triangle}$ $\Rightarrow n-2$ triangles x furthest from uw

 $m \text{ vtcs} \Rightarrow m-2 \text{ triangles}$ $n-1 \text{ vtcs} \Rightarrow n-3 \text{ triangles}$ $n-m+2 \text{ vtcs} \Rightarrow n-m \text{ triangles}$ $\Rightarrow n-2$ triangles

Computational Geometry

Lecture 3:
Guarding Art Galleries
or
Triangulating Polygons

Part II:
The Art Gallery Theorem

[Chvátal '75]

Theorem.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

Exercise.

Find, for arbitrarily large n, a polygon with n vertices, where $\approx n/3$ cameras are necessary. n/4

[dBCvKO'08]

[Chvátal '75]

Theorem.

[Chvátal '75]

Theorem.

[Chvátal '75]

Theorem.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

[Chvátal '75]

Theorem.

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do:

Find algo. for triangulating a simple polygon!

Brute force:

[Chvátal '75]

Theorem. For surveilling a simple polygon with n

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, |n/3| cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time:

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n*

vertices, $\lfloor n/3 \rfloor$ cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

[Chvátal '75]

Theorem. For surveilling a simple polygon with n

vertices, $\lfloor n/3 \rfloor$ cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon**—**→

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes

necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

Definition. A polygon *P* is *y-monotone* if, for any horizontal line ℓ , $\ell \cap P$ is connected.

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

Definition. A polygon *P* is *y-monotone*

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

Definition.

A polygon *P* is *y-monotone*

[Chvátal '75]

Theorem. For surveilling a simple polygon with *n* vertices, |n/3| cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

Definition. A polygon *P* is *y-monotone*

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon——"nice" pieces, n' vtc——n'' triangles $O(n \log n)$

Definition. A polygon *P* is *y-monotone*

Computational Geometry

Lecture 3:

Guarding Art Galleries

Triangulating Polygons

Part III:

Partitioning a Polygon into y-monotone Pieces

Idea: Classify vertices of given simple polygon *P*

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

vertical component of walking direction changes

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

vertical component of walking direction changes

start vertex

if $\alpha < 180^{\circ}$

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

vertical component of walking direction changes

start vertex

split vertex

if $\alpha < 180^{\circ}$

if $\beta > 180^{\circ}$

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

vertical component of walking direction changes

- start vertex
- split vertex
- end vertex

if $\alpha < 180^{\circ}$

if $\beta > 180^{\circ}$

if $\gamma < 180^\circ$

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

vertical component of walking direction changes

- start vertex
- split vertex
- end vertex
- merge vertex
- regular vertices

if $\alpha < 180^{\circ}$

if
$$\beta > 180^{\circ}$$

if
$$\gamma < 180^{\circ}$$

if
$$\delta > 180^{\circ}$$

Idea: Classify vertices of given simple polygon *P*

- turn vertices:

vertical component of walking direction changes

- start vertex
- split vertex
- end vertex
- merge vertex
- regular vertices

if $\alpha < 180^{\circ}$

if $\beta > 180^{\circ}$

if $\gamma < 180^{\circ}$

if $\delta > 180^{\circ}$

Lemma. Let P be a simple polygon. Then P is y-monotone $\Leftrightarrow P$ has neither split vertices nor merge vertices.

Idea: Add diagonals to "destroy" split and merge vtcs.

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

– edges of P

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

– edges of P

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

– edges of P

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

– edges of P

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

edges of P

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

edges of P

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

– edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm:

Connect v to helper(left(v)).

P

Idea: Add diagonals to "destroy" split and merge vtcs.

Problem: Diagonals must not cross – each other

edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with left(w) = left(v).

Think of a sweep-line algorithm:

Connect v to helper(left(v)).

2) Treating merge vertices

makeMonotone(polygon P)

 $\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$

 $Q \leftarrow \text{priority queue on } V(P)$

 $\mathcal{T} \leftarrow$ empty bin. search tree

2) Treating merge vertices

makeMonotone(polygon *P*)

$$\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$$

 $Q \leftarrow \text{priority queue on } V(P)$

 $\mathcal{T} \leftarrow$ empty bin. search tree

doubly-connected edge list: data structure for planar subdivisions

2) Treating merge vertices

makeMonotone(polygon *P*)

$$\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$$

$$Q \leftarrow \text{priority queue on } V(P)$$

 $\mathcal{T} \leftarrow$ empty bin. search tree

doubly-connected edge list: data structure for planar subdivisions $(x,y) \prec (x',y') :\Leftrightarrow$ $y > y' \lor (y = y' \land x < x')$

2) Treating merge vertices

makeMonotone(polygon *P*)

$$\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$$

$$Q \leftarrow \text{priority queue on } V(P)$$

$$\mathcal{T} \leftarrow$$
 empty bin. search tree **while** $\mathcal{Q} \neq \emptyset$ **do**

$$v \leftarrow Q$$
.extractMax()
type \leftarrow type of vertex $v \in$
handleTypeVertex(v)

return DCEL $\mathcal D$

doubly-connected edge list: data structure for planar subdivisions $(x,y) \prec (x',y') :\Leftrightarrow$ $y > y' \lor (y = y' \land x < x')$

start, split, end, merge, regular

2) Treating merge vertices

makeMonotone(polygon *P*)

$$\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$$

 $Q \leftarrow \text{priority queue on } V(P)$

 $\mathcal{T} \leftarrow$ empty bin. search tree

while $Q \neq \emptyset$ do

 $v \leftarrow Q.\text{extractMax}()$

type \leftarrow type of vertex v

handleTypeVertex(v)

return DCEL \mathcal{D}

handleMergeVertex(vertex v)

2) Treating merge vertices

makeMonotone(polygon *P*)

 $\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$

 $Q \leftarrow \text{priority queue on } V(P)$

 $\mathcal{T} \leftarrow$ empty bin. search tree

while $Q \neq \emptyset$ do

 $v \leftarrow Q.\text{extractMax}()$

type \leftarrow type of vertex v

handleTypeVertex(v)

return DCEL \mathcal{D}

handleMergeVertex(vertex *v***)**

 $e \leftarrow \text{edge following } v \text{ cw}$

2) Treating merge vertices

makeMonotone(polygon P)

 $\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$

 $\mathcal{T} \leftarrow$ empty bin. search tree

while $Q \neq \emptyset$ do

 $v \leftarrow Q$.extractMax()

type \leftarrow type of vertex v

handleTypeVertex(v)

return DCEL $\mathcal D$

handleMergeVertex(vertex v)

 $e \leftarrow \text{edge following } v \text{ cw}$

 $Q \leftarrow \text{priority queue on } V(P) \text{ if } \text{helper}(e) \text{ merge vtx then}$

2) Treating merge vertices

makeMonotone(polygon P)

 $\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$

 $Q \leftarrow \text{priority queue on } V(P) \text{ if } \text{helper}(e) \text{ merge vtx then}$

 $\mathcal{T} \leftarrow$ empty bin. search tree

while $Q \neq \emptyset$ do

 $v \leftarrow Q$.extractMax()

type \leftarrow type of vertex v

handleTypeVertex(v)

return DCEL \mathcal{D}

handleMergeVertex(vertex v)

 $e \leftarrow \text{edge following } v \text{ cw}$

 \mathcal{D} .insert(diag(v, helper(e)))

2) Treating merge vertices

makeMonotone(polygon P)

 $\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$

 $Q \leftarrow \text{priority queue on } V(P) \text{ if } \text{helper}(e) \text{ merge vtx then}$

 $\mathcal{T} \leftarrow$ empty bin. search tree

while $Q \neq \emptyset$ do

 $v \leftarrow Q$.extractMax()

type \leftarrow type of vertex v

handleTypeVertex(v)

return DCEL \mathcal{D}

handleMergeVertex(vertex v)

 $e \leftarrow \text{edge following } v \text{ cw}$

 \mathcal{D} .insert(diag(v, helper(e)))

2) Treating merge vertices

makeMonotone(polygon P)

 $\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$

 $Q \leftarrow \text{priority queue on } V(P) \text{ if } \text{helper}(e) \text{ merge vtx then}$

 $\mathcal{T} \leftarrow$ empty bin. search tree

while $Q \neq \emptyset$ do

 $v \leftarrow Q$.extractMax()

type \leftarrow type of vertex v

handleTypeVertex(v)

return DCEL \mathcal{D}

handleMergeVertex(vertex v)

 $e \leftarrow \text{edge following } v \text{ cw}$

 \mathcal{D} .insert(diag(v, helper(e)))

 \mathcal{T} .delete(e)

2) Treating merge vertices

makeMonotone(polygon P)

$$\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$$

 $\mathcal{T} \leftarrow$ empty bin. search tree

while $Q \neq \emptyset$ do

 $v \leftarrow Q$.extractMax() type \leftarrow type of vertex vhandleTypeVertex(v)

return DCEL D

handleMergeVertex(vertex *v***)**

 $e \leftarrow \text{edge following } v \text{ cw}$

 $Q \leftarrow \text{priority queue on } V(P) \text{ if } \text{helper}(e) \text{ merge vtx then}$

 \mathcal{D} .insert(diag(v, helper(e)))

 \mathcal{T} .delete(e)

 $e' \leftarrow \mathcal{T}.edgeLeftOf(v)$

2) Treating merge vertices

makeMonotone(polygon P)

$$\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$$

 $\mathcal{T} \leftarrow$ empty bin. search tree

while $Q \neq \emptyset$ do

 $v \leftarrow Q$.extractMax() type \leftarrow type of vertex vhandleTypeVertex(v)

return DCEL D

handleMergeVertex(vertex *v***)**

 $e \leftarrow \text{edge following } v \text{ cw}$

 $Q \leftarrow \text{priority queue on } V(P) \text{ if } \text{helper}(e) \text{ merge vtx then}$

 \mathcal{D} .insert(diag(v, helper(e)))

 \mathcal{T} .delete(e)

 $e' \leftarrow \mathcal{T}.edgeLeftOf(v)$

if helper(e') merge vtx then

2) Treating merge vertices

makeMonotone(polygon P)

 $\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$

 $Q \leftarrow \text{priority queue on } V(P) \text{ if } \text{helper}(e) \text{ merge vtx then}$

 $\mathcal{T} \leftarrow$ empty bin. search tree

while $Q \neq \emptyset$ do

 $v \leftarrow Q$.extractMax() type \leftarrow type of vertex vhandleTypeVertex(v)

return DCEL ${\cal D}$

handleMergeVertex(vertex *v***)**

 $e \leftarrow \text{edge following } v \text{ cw}$

 \mathcal{D} .insert(diag(v, helper(e)))

 \mathcal{T} .delete(e)

 $e' \leftarrow \mathcal{T}.edgeLeftOf(v)$

if helper(e') merge vtx then

 \mathcal{D} .insert(diag(v, helper(e')))

2) Treating merge vertices

makeMonotone(polygon P)

 $\mathcal{D} \leftarrow \mathrm{DCEL}(V(P), E(P))$

 $Q \leftarrow \text{priority queue on } V(P) \text{ if } \text{helper}(e) \text{ merge vtx then}$

 $\mathcal{T} \leftarrow$ empty bin. search tree

while $Q \neq \emptyset$ do

 $v \leftarrow Q$.extractMax() type \leftarrow type of vertex vhandleTypeVertex(v)

return DCEL ${\cal D}$

handleMergeVertex(vertex *v***)**

 $e \leftarrow \text{edge following } v \text{ cw}$

 \mathcal{D} .insert(diag(v, helper(e)))

 \mathcal{T} .delete(e)

 $e' \leftarrow \mathcal{T}.edgeLeftOf(v)$

if helper(e') merge vtx then

 \mathcal{D} .insert(diag(v, helper(e')))

2) Treating merge vertices

makeMonotone(polygon P) $\mathcal{D} \leftarrow \text{DCEL}(V(P), E(P))$ $\mathcal{Q} \leftarrow \text{priority queue on } V(P)$ $\mathcal{T} \leftarrow \text{empty bin. search tree}$ while $\mathcal{Q} \neq \emptyset$ do $v \leftarrow \mathcal{Q}.\text{extractMax()}$ type \leftarrow type of vertex v

handleTypeVertex(v)

return DCEL $\mathcal D$

```
handleMergeVertex(vertex v)
e \leftarrow \text{edge following } v \text{ cw}
if helper(e) merge vtx then
    \mathcal{D}.insert(diag(v, helper(e)))
\mathcal{T}.delete(e)
e' \leftarrow \mathcal{T}.edgeLeftOf(v)
if helper(e') merge vtx then
     \mathcal{D}.insert(diag(v, helper(e')))
helper(e') \leftarrow v
```

Analysis

Lemma.

makeMonotone() adds a set of non-intersecting diagonals to *P* such that *P* is partitioned into *y*-monotone subpolygons.

Analysis

Lemma.

makeMonotone() adds a set of non-intersecting diagonals to *P* such that *P* is partitioned into *y*-monotone subpolygons.

Lemma.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Computational Geometry

Lecture 3:

Guarding Art Galleries

Triangulating Polygons

Part IV:

Triangulating a y-monotone Polygon

Approach: greedy, going from top to bottom

Invariant?

Approach: greedy, going from top to bottom

Invariant?

Approach: greedy, going from top to bottom

Invariant?

Approach: greedy, going from top to bottom

Invariant?

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Triangulating a y-Monotone Polygon P

Approach: greedy, going from top to bottom

Invariant?

The part of *P* that we have seen but not yet triangulated is a *funnel*.

Our funnels are special:

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$ Stack S; S.push(u_1); S.push(u_2) **for** $j \leftarrow 3$ **to** n-1 **do**

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_i and S.top() lie on different chains then

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_i and S.top() lie on different chains then

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_i and S.top() lie on different chains then

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not *S*.empty() **then** draw diag. (u_j, v)

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_j, v)

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_j, v)

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_j, v)

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_j, v)

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_j, v)

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_j, v)

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_j, v)

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_j, v)

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_j, v)

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push (u_1) ; S.push (u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push (u_1) ; S.push (u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push (u_1) ; S.push (u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

else

 $v \leftarrow S.pop()$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

else

 $v \leftarrow S.pop()$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

else

 $v \leftarrow S.pop()$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push (u_1) ; S.push (u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

else

 $v \leftarrow S.pop()$ **while not** S.empty() **and** u_j sees S.top() **do** $v \leftarrow S.pop()$ draw diagonal (u_i, v)

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push (u_1) ; S.push (u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

else

 $v \leftarrow S.pop()$

while not S.empty() and u_i sees S.top() do

 $v \leftarrow S.pop()$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

else

 $v \leftarrow S.pop()$

while not S.empty() and u_j sees S.top() do

 $v \leftarrow S.pop()$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

else

 $v \leftarrow S.pop()$

while not S.empty() and u_j sees S.top() do

 $v \leftarrow S.pop()$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

else

 $v \leftarrow S.pop()$

while not S.empty() and u_j sees S.top() do

 $v \leftarrow S.pop()$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.\operatorname{push}(u_{j-1}); S.\operatorname{push}(u_j)$

else

 $v \leftarrow S.pop()$

while not S.empty() and u_j sees S.top() do

 $v \leftarrow S.pop()$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

else

 $v \leftarrow S.pop()$

while not S.empty() and u_j sees S.top() do

 $v \leftarrow S.pop()$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

else

 $v \leftarrow S.pop()$

while not S.empty() and u_j sees S.top() do

 $v \leftarrow S.pop()$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push (u_1) ; S.push (u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.\operatorname{push}(u_{j-1}); S.\operatorname{push}(u_j)$

else

 $v \leftarrow S.pop()$

while not S.empty() and u_j sees S.top() do

 $v \leftarrow S.pop()$

draw diagonal (u_i, v)

S.push(v); $S.\text{push}(u_i)$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push (u_1) ; S.push (u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

else

 $v \leftarrow S.pop()$

while not S.empty() and u_j sees S.top() do

 $v \leftarrow S.pop()$

draw diagonal (u_i, v)

S.push(v); $S.push(u_i)$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push(u_1); S.push(u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.\operatorname{push}(u_{j-1}); S.\operatorname{push}(u_j)$

else

 $v \leftarrow S.pop()$

while not S.empty() and u_i sees S.top() do

 $v \leftarrow S.pop()$

draw diagonal (u_i, v)

S.push(v); $S.push(u_i)$

draw diagonals from u_n to all vtc on S except first and last one

Running time?

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push (u_1) ; S.push (u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.\operatorname{push}(u_{j-1}); S.\operatorname{push}(u_j)$

else

 $v \leftarrow S.pop()$

while not S.empty() and u_i sees S.top() do

white not s.empty() and u_j sees s.top() do $v \leftarrow S.\text{pop}()$ $\text{draw diagonal } (u_j, v)$ $S.\text{push}(v); S.\text{push}(u_j)$

draw diagonals from u_n to all vtc on S except first and last one

Algorithm

Running time? $\Theta(n)$

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$

Stack S; S.push (u_1) ; S.push (u_2)

for $j \leftarrow 3$ to n-1 do

if u_j and S.top() lie on different chains then while not S.empty() do

 $v \leftarrow S.pop()$

if not S.empty() then draw diag. (u_i, v)

 $S.push(u_{j-1}); S.push(u_j)$

else

 $v \leftarrow S.pop()$

while not S.empty() and u_i sees S.top() do

 $v \leftarrow S.pop()$

draw diagonal (u_i, v)

S.push(v); $S.\text{push}(u_i)$

draw diagonals from u_n to all vtc on S except first and last one

n-vtx polygon—"nice" pieces, n' vtc—n'' triangles $O(n \log n)$

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem. A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it?

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Tarjan & van Wyk [1988]:

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Tarjan & van Wyk [1988]:

 $O(n \log \log n)$

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Tarjan & van Wyk [1988]: $O(n \log \log n)$

Clarkson, Tarjan, van Wyk [1989]:

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Tarjan & van Wyk [1988]: $O(n \log \log n)$ Clarkson, Tarjan, van Wyk [1989]: $O(n \log^* n)$

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Tarjan & van Wyk [1988]: $O(n \log \log n)$ Clarkson, Tarjan, van Wyk [1989]: $O(n \log^* n)$ Chazelle [1991]:

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Tarjan & van Wyk [1988]: $O(n \log \log n)$ Clarkson, Tarjan, van Wyk [1989]: $O(n \log^* n)$ Chazelle [1991]: O(n)

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Tarjan & van Wyk [1988]: $O(n \log \log n)$ Clarkson, Tarjan, van Wyk [1989]: $O(n \log^* n)$ Chazelle [1991]: O(n)

Kirkpatrick, Klawe, Tarjan [1992]

A *y*-monotone polygon with n vertices can be triangulated in O(n) time.

A simple polygon with n vertices can be subdivided into y-monotone polygons in $O(n \log n)$ time.

Subdividing a simple polygon with n vertices by drawing d (pairwise non-crossing) diagonals yields d + 1 simple polygons of total complexity O(n).

Theorem.

A simple polygon with n vertices can be triangulated in $O(n \log n)$ time.

Is this it?

Tarjan & van Wyk [1988]: $O(n \log \log n)$ Clarkson, Tarjan, van Wyk [1989]: $O(n \log^* n)$ Chazelle [1991]: O(n)

Kirkpatrick, Klawe, Tarjan [1992] Seidel [1991]: randomized