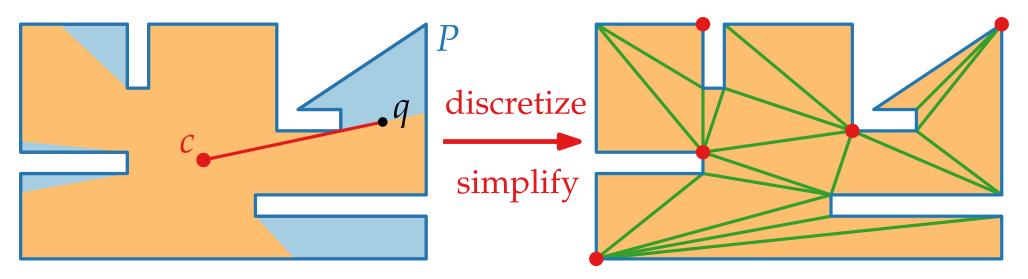
Lecture 3: Guarding Art Galleries or Triangulating Polygons

Part I: The Art Gallery Problem

Philipp Kindermann

Guarding an Art Gallery

Given a *simple* polygon *P* (i.e., no holes, no self-intersection)...



Observation. Camera *c* "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

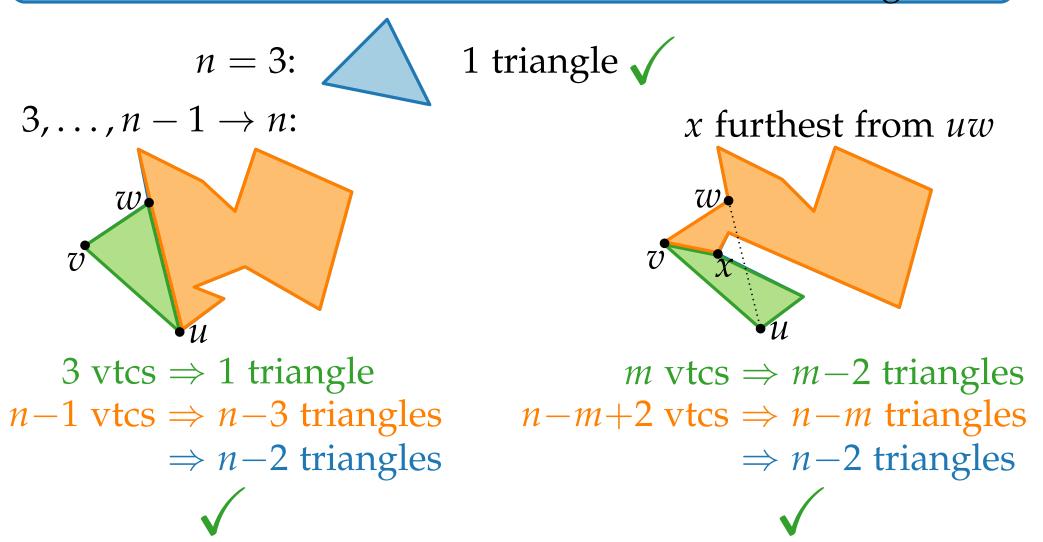
Aim: Use few cameras! *But minimizing them is NP-hard...*

	Theorem.	1.	Every simple polygon can be triangulated.
	low can we rove these?		Any triangulation of a simple polygon with <i>n</i> vertices consists of $n - 2$ triangles.
Γ			

Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.

2. Any triangulation of a simple polygon with *n* vertices consists of n - 2 triangles.



Lecture 3: Guarding Art Galleries or Triangulating Polygons

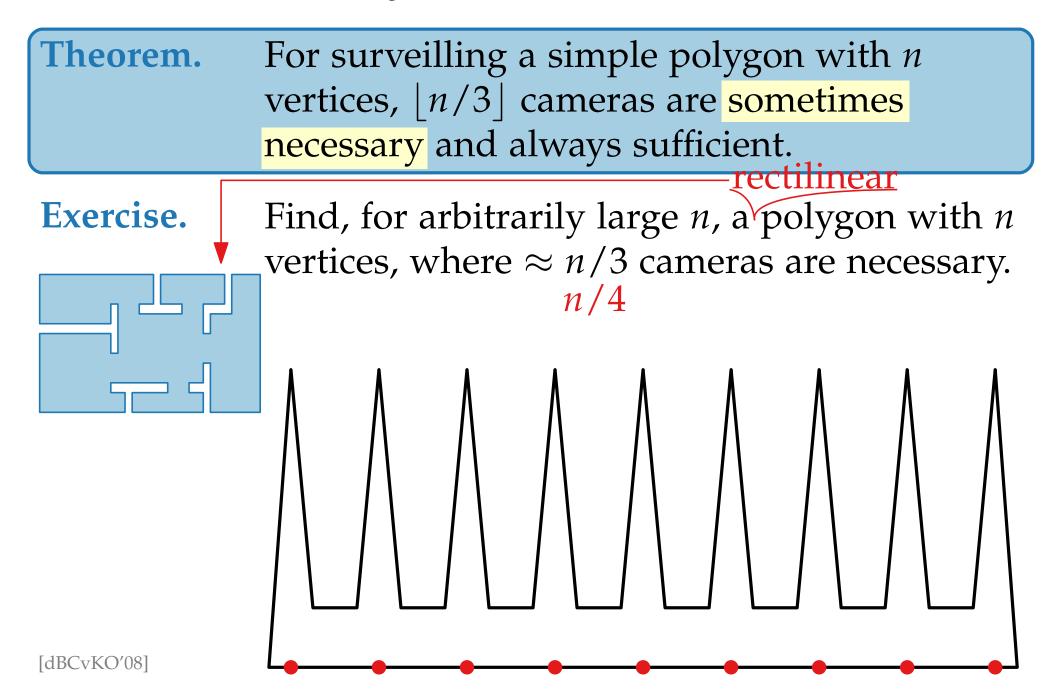
Part II: The Art Gallery Theorem

Philipp Kindermann

The Art Gallery Theorem

[Chvátal '75]

5 - 6



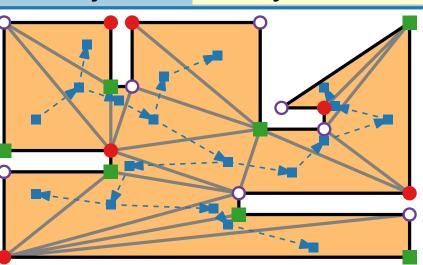
The Art Gallery Theorem

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs

Traverse the dual tree



Pick "smallest" color

Lecture 3: Guarding Art Galleries or Triangulating Polygons

Part III: Partitioning a Polygon into *y*-monotone Pieces

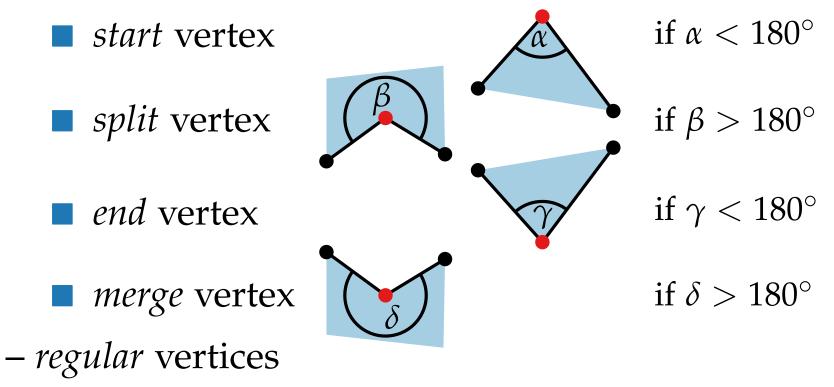
Philipp Kindermann

Part. a Polygon into Monotone Pieces

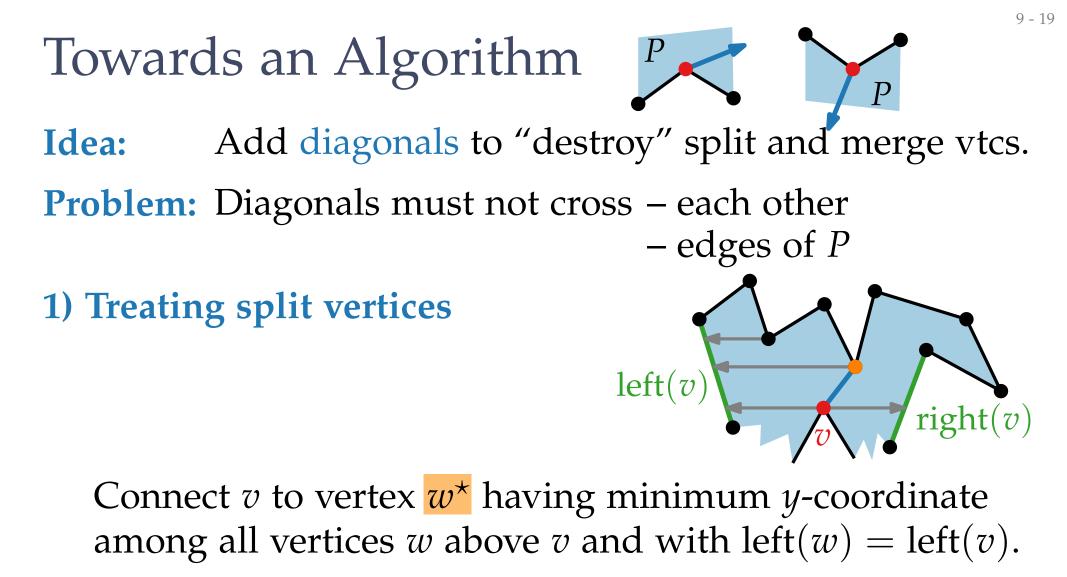
Idea: Classify vertices of given simple polygon *P*

– turn vertices:

vertical component of walking direction changes



Lemma. Let *P* be a simple polygon. Then *P* is *y*-monotone \Leftrightarrow *P* has neither split vertices nor merge vertices.

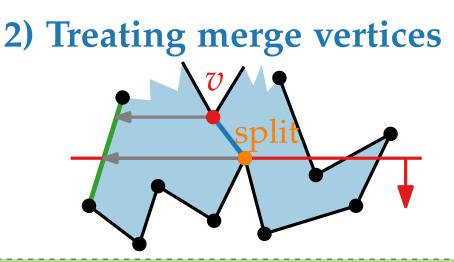


Think of a sweep-line algorithm:

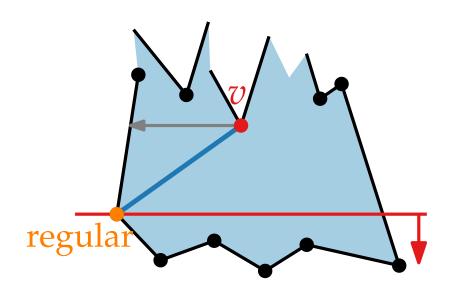
Connect v to helper(left(v)).



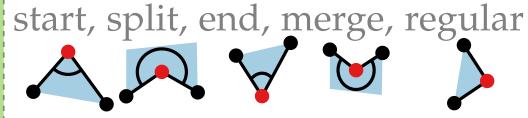
An Algorithm



makeMonotone(polygon P) $\mathcal{D} \leftarrow \text{DCEL}(V(P), E(P))$ $\mathcal{Q} \leftarrow \text{priority queue on } V(P)$ $\mathcal{T} \leftarrow$ empty bin. search tree while $\mathcal{Q} \neq \emptyset$ do $v \leftarrow Q.extractMax()$ type \leftarrow type of vertex $v \in$ handleTypeVertex(v) return DCEL \mathcal{D}

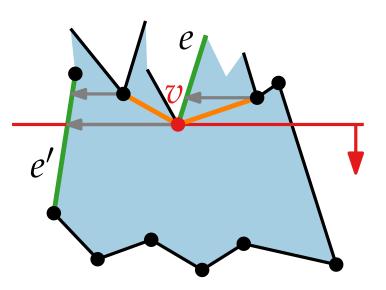


doubly-connected edge list: data structure for planar subdivisions $(x,y) \prec (x',y') :\Leftrightarrow$ $y > y' \lor (y = y' \land x < x')$



An Algorithm

2) Treating merge vertices



handleMergeVertex(vertex v) makeMonotone(polygon P) $\mathcal{D} \leftarrow \text{DCEL}(V(P), E(P))$ $e \leftarrow edge following v cw$ $\mathcal{Q} \leftarrow$ priority queue on V(P) if helper(e) merge vtx then \mathcal{D} .insert(diag(v, helper(e))) $\mathcal{T} \leftarrow \text{empty bin. search tree}$ while $\mathcal{Q} \neq \emptyset$ do \mathcal{T} .delete(*e*) $v \leftarrow Q.extractMax()$ $e' \leftarrow \mathcal{T}.edgeLeftOf(v)$ type \leftarrow type of vertex vif helper(e') merge vtx then handleTypeVertex(v) \mathcal{D} .insert(diag(v, helper(e'))) return DCEL \mathcal{D}

Analysis

Lemma. makeMonotone() adds a set of non-intersecting diagonals to *P* such that *P* is partitioned into *y*-monotone subpolygons.

Lemma. A simple polygon with *n* vertices can be subdivided into *y*-monotone polygons in $O(n \log n)$ time.

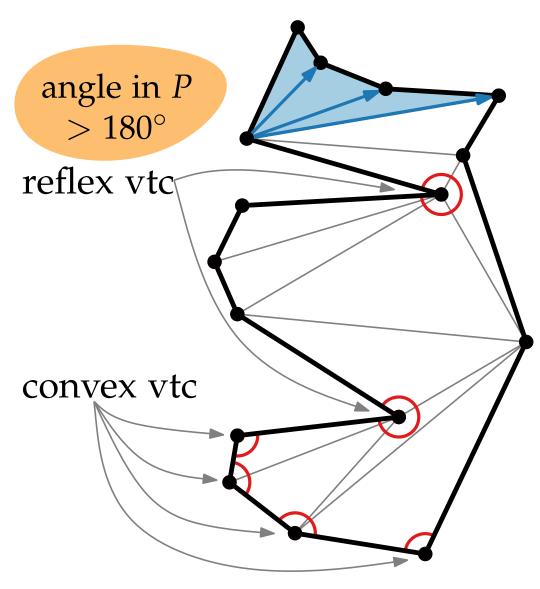
Lecture 3: Guarding Art Galleries or Triangulating Polygons

Part IV: Triangulating a *y*-monotone Polygon

Philipp Kindermann

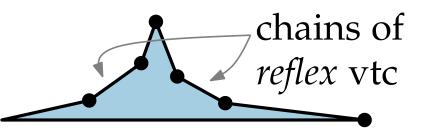
Triangulating a *y*-Monotone Polygon P

Approach: greedy, going from top to bottom

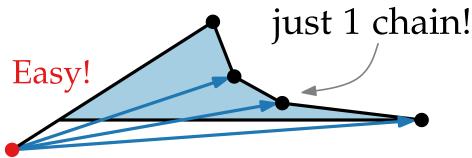


Invariant?

The part of *P* that we have seen but not yet triangulated is a *funnel*.



Our funnels are special:

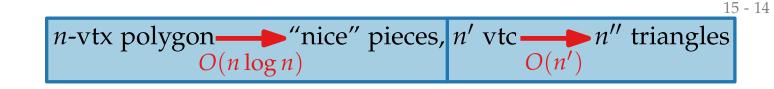


Algorithm

Running time? $\Theta(n)$

TriangulateMonotonePolygon(Polygon *P* as circular vertex list) merge left and right chain \rightarrow seq. u_1, \ldots, u_n with $y_1 \ge \ldots \ge y_n$ Stack *S*; *S*.push(u_1); *S*.push(u_2) for $i \leftarrow 3$ to n - 1 do if *u_i* and *S*.top() lie on different chains then while not S.empty() do $v \leftarrow S.pop()$ if not S.empty() then draw diag. (u_i, v) $S.push(u_{i-1})$; $S.push(u_i)$ else $v \leftarrow S.pop()$ while not *S*.empty() and *u_i* sees *S*.top() do $v \leftarrow S.pop()$ draw diagonal (u_i, v) S.push(v); $S.push(u_i)$ draw diagonals from u_n to all vtc on S except first and last one

Summary



A *y*-monotone polygon with *n* vertices can be triangulated in O(n) time.

A simple polygon with *n* vertices can be subdivided into *y*-monotone polygons in $O(n \log n)$ time.

Is this it?

Subdividing a simple polygon with *n* vertices by drawing *d* (pairwise non-crossing)
diagonals yields *d* + 1 simple polygons of total complexity *O*(*n*).

Theorem. A simple polygon with *n* vertices can be triangulated in $O(n \log n)$ time.

Tarjan & van Wyk [1988]: $O(n \log \log n)$ Clarkson, Tarjan, van Wyk [1989]: $O(n \log^* n)$ Chazelle [1991]:O(n)

Kirkpatrick, Klawe, Tarjan [1992] Seidel [1991]: *randomized*