
Lehrstuhl für Informatik I

Algorithmen und Komplexität

Universität Würzburg

Würzburg, 9 November 2020

Jonathan Klawitter

Boris Klemz

Oksana Firman

2nd Exercise Sheet

Advanced Algorithms (WS20)

Exercise 1 � Brute Force Maximum Shiny Set

In this exercise we design a very basic algorithm for testing arbitrary (decidable) subset
problems on graphs. Let G = (V,E) be a graph and n = |V |. An ordering of the nodes is
available, that is, we can write V [i] to index nodes 1 ≤ i ≤ n.

Let shiny(S) :: 2V → {Y es,No} be a black-box function that tells us whether S ⊆ V is a
`shiny' subset. Now we want to �nd a shiny subset of maximum cardinality, which we call a
Maximum Shiny Set.

a) Design a simple recursive algorithm that returns the size of a Maximum Shiny Set

of a given graph G. It should make at most 2n calls to shiny. Give pseudocode.
3 Points

b) Now implement your algorithm in a �normal� imperative language, e.g. Java or C++/#.
Assume that you are given a function shiny. It takes as argument an array of booleans
indicating for each node whether or not it is in the subset; it returns whether this subset
is shiny.

Disregarding the time taken by shiny, your algorithm should take O(2n) time. (Equiv-
alently, you may assume shiny takes constant time.) Your code should not take many
lines. 3 Points

c) A recursive algorithm goes through its recursion tree in depth-�rst order. Now speci�-
cally consider exponential-time branching algorithms. Would it be a good idea to do a
breadth-�rst search of the branching tree rather than a depth-�rst recursion? Why or
why not? 2 Points

d) For arbitrary black-box properties it is unclear how one can do better. Now lets say
shiny has the following property: if S is shiny, then all T ⊆ S are also shiny. This
is a very common property (consider for example independent sets). How could you
improve your recursive algorithm to take advantage of this property?

Note: You do not need to prove a runtime better than O(2n); I know of no such bound
in general. Just argue that your improvement is a good idea in practice. 3 Points

Exercise 2 � Edge-branching Independent Set

In the lecture we talked about a branching algorithm for Maximum Independent Set.
The algorithm was based on the following properties:

(Vertex 1) If a node is in the independent set, then its neighbours are not in it.

(Vertex 2) If a node is not in the independent set, then in a maximal independent set at least
one of its neighbours is in the independent set.

Branching algorithms are often based on such observations about the properties of feasible
and/or optimal solutions. We will now design an algorithm based on a di�erent property of
independent sets.

(Edge) Consider an edge (v, w). An independent set does not contain both v and w.

Design a branching algorithm for Maximum Independent Set based on this property of
edges. The algorithm should have a runtime in o(2n).

a) Describe how your algorithm branches (based on property Edge). If appropriate, give
pseudocode. 4 Points

b) Prove an appropriate upper bound on the worst-case runtime of your algorithm. Use of
O∗(·) notation is allowed. 4 Points

c) Show that your running time analysis is tight by constructing a suitable family of input
instances. 2 Points

Exercise 3 � Enumerating Maximal Independent Sets

In the lecture we dealt with maximum independent sets, which are independent sets of maxi-
mum cardinality. In contrast, a maximimal independent set I is an independent set such that
no proper superset of I is an independent set.

a) Give an algorithm that explicitly enumerates all maximal independent sets in time
O∗(3n/3). 3 Points

b) Show that your running time analysis is tight by constructing a suitable family of input
instances. 2 Points

c) How many maximal independent sets can there be in a graph with n vertices? How
few? 2 Points

This assignment is due on November 16 at 5:00 in the morning. Please submit your
solutions via WueCampus. The exercises on this assignment will be discussed in the tutorial
session on November 16 at 13:00.

