Computational Geometry

Lecture 2:
Line-Segment Intersection

Map Overlay

Part I:
Map Overlay

Philipp Kindermann Winter Semester 2020



® Dawson




® Dawson




® Dawson

Ft. Simpson

" Eéallcrwknifc
., p ) 4




Map Overlay
in
Geographic
Information

Systems
(GIS)



Map Overlay
in
Geographic

Information



Map Overlay Here:
in

Geographic

Information



Map Overlay Here:
in

Geographic

Information

— bridge



Line-Segment Intersection

Definition:



Line-Segment Intersection

Definition: Is /< an intersection?



Line-Segment Intersection

Definition: Is /< an intersection?

Answer: Depends. ..



Line-Segment Intersection

Definition: Is /< an intersection?

Answer: Depends. ..

Problem:  Given a set S of n closed non-overlapping line
segments in the plane, compute. ..



Line-Segment Intersection

Definition: Is /< an intersection?

Answer: Depends. ..

Problem:  Given a set S of n closed non-overlapping line
segments in the plane, compute. ..

—all points where at least two segments
intersect and

— for each such point report all segments
that contain it.



Line-Segment Intersection

Definition:

Answer:

Problem:

Is /< an intersection?

Depends. .. yes!

Given a set S of n closed non-overlapping line
segments in the plane, compute. ..

—all points where at least two segments
intersect and

— for each such point report all segments
that contain it.



Line-Segment Intersection

Definition: Is /< an intersection?

Answer:

Problem:

Task:

Depends. .. yes!

Given a set S of n closed non-overlapping line
segments in the plane, compute. ..

—all points where at least two segments
intersect and

— for each such point report all segments
that contain it.

How would you do it?



EEEEEEE




EEEEEEE




Example

Brute Force?

O(n?) ... can we do
better?




Example

Brute Force?

O(n?) ... can we do
better?

Idea:

Process segments
top-to-bottom using a
“sweep line”.



Computational Geometry

Lecture 2:
Line-Segment Intersection

Map Overlay

Part II.
Sweep-Line Algorithm

Philipp Kindermann Winter Semester 2020



Sweep-Line Algorithm

\ /




Sweep-Line Algorithm

event points
Which active segments

should be compared?




Sweep-Line Algorithm

Which active segments

\ / should be compared?




Sweep-Line Algorithm

sweep line

Which active segments
should be compared?



Sweep-Line Algorithm

Which active segments

should be compared?



Sweep-Line Algorithm

Which active segments

\ T




Sweep-Line Algorithm

Which active segments
Q should be compared?

\



Sweep-Line Algorithm

Which active segments

\ should be compared?



Sweep-Line Algorithm

Which active segments

\ should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Sweep-Line Algorithm

Which active segments
should be compared?




Data Structures

1) event (-point) queue O

2) (sweep-line) status T



Data Structures

1) event (-point) queue O

P =4 <=det

2) (sweep-line) status T



Data Structures

1) event (-point) queue O

p <5] <7 def. ]/p >y6]

2) (sweep-line) status T



Data Structures

1) event (-point) queue O

p <5] <7 def. ]/p >y¢]

2) (sweep-line) status T

Pomooo——— o ]



Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)

Pomooo——— o ]

2) (sweep-line) status T



Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)

g—&+07—

2) (sweep-line) status T



Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
Po—o—@-—

‘ T

2) (sweep-line) status T



Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
Po—o-q-—
0 4

Store event pts in balanced binary search tree acc. to <

2) (sweep-line) status T



Data Structures

1) event (-point) queue O

P=4 <def. Yp>Yq or (yp=yqandxp <xg)
po—o—@——
¢ v
Store event pts in balanced binary search tree acc. to <

= nextEvent() and del/insEvent() take O(log|Q|) time

2) (sweep-line) status T



Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
Po—o-q—-

£ v
Store event pts in balanced binary search tree acc. to <

= nextEvent() and del/insEvent() take O(log|Q|) time

2) (sweep-line) status 7 / \ M/




Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
po—o—@——

£ v
Store event pts in balanced binary search tree acc. to <

= nextEvent() and del/insEvent() take O(log|Q|) time

2) (sweep-line) status 7 / \ M/

Store the segments intersected by ¢ in left-to-right order.




Data Structures

1) event (-point) queue O

P=4 <def. Yp>Yq or (yp=yqandxp <xg)
po—o—@——
¢ v
Store event pts in balanced binary search tree acc. to <

= nextEvent() and del/insEvent() take O(log|Q|) time

2) (sweep-line) status 7 / \ M/

Store the segments intersected by ¢ in left-to-right order.

How?




Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
po—o—@-—

£ v
Store event pts in balanced binary search tree acc. to <

= nextEvent() and del/insEvent() take O(log|Q|) time

2) (sweep-line) status 7 / \ M/

Store the segments intersected by ¢ in left-to-right order.

How? In a balanced binary search tree!



Computational Geometry

Lecture 2:
Line-Segment Intersection

Map Overlay

Part I1I:
Algorithmic Details

Philipp Kindermann Winter Semester 2020



Pseudo-code

findIntersections(S)

Input:  set S of n non-overlapping closed line segments



Pseudo-code

findIntersections(S)

Input:  set S of n non-overlapping closed line segments

Output: - set I of intersection pts



Pseudo-code

findIntersections(S)

Input:  set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I every s € S with p € s



Pseudo-code

findIntersections(S)

Input:  set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € [ everys € S with p €5




Pseudo-code

findIntersections(S)
Input:  set S of n non-overlapping closed line segments
Output: - set I of intersection pts

—foreach p € I every s € S with p € s

Q <« @; T <« (vertical lines at x = —co and x = 400 )



Pseudo-code

findIntersections(S)

Input:  set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I every s € S with p € s

Q <« @; T <« (vertical lines at x = —co and x = 400 )
foreach s € S do




Pseudo-code

findIntersections(S)
Input:  set S of n non-overlapping closed line segments
Output: - set I of intersection pts

—foreach p € I every s € S with p € s

Q <« @; T <« (vertical lines at x = —co and x = 400 )
foreach s € S do
foreach endpoint p of s do




Pseudo-code

findIntersections(S)
Input:  set S of n non-overlapping closed line segments
Output: - set I of intersection pts

—foreach p € I every s € S with p € s

Q <« @; T <« (vertical lines at x = —co and x = 400 )
foreach s € S do
foreach endpoint p of s do

if p € O then Q.insert(p);




Pseudo-code

findIntersections(S)
Input:  set S of n non-overlapping closed line segments
Output: - set I of intersection pts

—foreach p € I every s € S with p € s

Q <« @; T <« (vertical lines at x = —co and x = 400 )
foreach s € S do
foreach endpoint p of s do

if p € O then Q.insert(p);

| X




Pseudo-code

findIntersections(S)

Input:  set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I every s € S with p € s

Q <« @; T <« (vertical lines at x = —co and x = 400 )
foreach s € S do
foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = LU(p) = C(p) =D




Pseudo-code

findIntersections(S)
Input:  set S of n non-overlapping closed line segments
Output: - set I of intersection pts

—foreach p € I every s € S with p € s

Q <+ @, T < (vertical lines at x = —o0 and x = +00)

foreach s € S do

foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@

if p lower endpt of s then L(p).append(s) X




Pseudo-code

findIntersections(S)
Input:  set S of n non-overlapping closed line segments
Output: - set I of intersection pts

—foreach p € I every s € S with p € s

Q <+ @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do

foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@

if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s) Y




Pseudo-code

findIntersections(S)

Input:  set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I every s € S with p € s

Q <+ @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do

foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) = C(p) =@

if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s) Y

while O +# @ do




Pseudo-code

findIntersections(S)

Input:  set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I every s € S with p € s

Q <+ @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do

foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) = C(p) =@

if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s) Y

while O # @ do
p <— Q.nextEvent()




Pseudo-code

findIntersections(S)

Input:  set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I every s € S with p € s

Q <+ @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do

foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) = C(p) =@

if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s) Y

while O # @ do
p <— Q.nextEvent()
Q.deleteEvent(p)




Pseudo-code

findIntersections(S)

Input:  set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I every s € S with p € s

Q <+ @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do

foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) = C(p) =@

if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s) Y

while O # @ do
p <— Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)




Pseudo-code

findIntersections(S)

Input:  set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I every s € S with p € s

Q <+ @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do

foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@

if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s) Y

while Q 7 © do This subroutine does the real work.
p <— Q.nextEvent()

Q.deleteEvent(p) How would you implement it?
' handleEvent(p)




Handling an Event

X C(p).L(p),U(p)




Handling an Event

X C(p).L(p),U(p)




Handling an Event

X C(p).L(p),U(p)




Handling an Event

X C(p).L(p),U(p)




Handling an Event

X C(p).L(p),U(p)




Handling an Event

X C(p).L(p),U(p)




Handling an Event

X C(p),L(p),U(p)

--------------------------------------------------------------------------------------------

‘handleEvent(event p)

if |[U(p)UL(p)UC(p)| > 1 then :
| report intersection in p, report segments in L/ (p) U L(p)UC(p) -
'delete L(p) UC(p) from T // consecutive in 7! :
insert LI(p) UC(p) into T in their order slightly below\/

if L(p)UC(p) = @ then

else

____________________________________________________________________________________________



Handling an Event

X C(p),L(p),U(p)

--------------------------------------------------------------------------------------------

‘handleEvent(event p)

if |[U(p)UL(p)UC(p)| > 1 then 5
| report intersection in p, report segments in L/(p) U L(p) UC(p)
'delete L(p) UC(p) from T // consecutive in 7! :
insert LI(p) UC(p) into T in their order slightly below\/

if L(p)UC(p) = @ then

| brefe/ bright = left/right neighbor of p in T \

| Dieft
else




Handling an Event

X C(p),L(p),U(p)

--------------------------------------------------------------------------------------------

‘handleEvent(event p)

if |[U(p)UL(p)UC(p)| > 1 then 5

| report intersection in p, report segments in L/(p) U L(p) UC(p)
'delete L(p) UC(p) from T // consecutive in 7! :
insert LI(p) UC(p) into T in their order slightly below\/

if L(p)UC(p) = @ then

| Diege/ bright = left/right neighbor of p in T \ / /

b lek P /b right

else




Handling an Event

X C(p),L(p),U(p)

--------------------------------------------------------------------------------------------

‘handleEvent(event p)

if |[U(p)UL(p)UC(p)| > 1 then 5
| report intersection in p, report segments in L/(p) U L(p) UC(p)
'delete L(p) UC(p) from T // consecutive in 7! :
insert LI(p) UC(p) into T in their order slightly below\/

if L(p)UC(p) = @ then

| Diege/ bright = left/right neighbor of p in T \ / /
findNewEvent(bleft, bright/ ]9) bl e& p /bright

else




findNewEvent(s, s/, p)

Handling an Event

a( C(p)L(p)U(p)

handleEvent(event p)

if |[U(p)UL(p)UC(p)| > 1 then

report intersection in p, report segments in L/ (p) U L(p) UC(p)
delete L.(p) UC(p) from T

insert LI(p) UC(p) into T in their order slightly below\/

if L/(p)UC(p) = then

Diett/ bright = left/right neighbor of p in T \ / /
ﬁndNeWEvent(bleft/ bright/ P ) ble& P /bright
else




findNewEvent(s, s/, p)
Handllng an EVent if s s’ = @ then return

a( C(p)L(p)U(p)

handleEvent(event p)

if |[U(p)UL(p)UC(p)| > 1 then

report intersection in p, report segments in L/ (p) U L(p) UC(p)
delete L.(p) UC(p) from T

insert LI(p) UC(p) into T in their order slightly below\/

if L/(p)UC(p) = then

Diett/ bright = left/right neighbor of p in T \ / /
ﬁndNeWEvent(bleft/ bright/ P ) ble& P /bright
else




fmdNewEvent(s s', p)
Handllng an EVent if sNs' = @ then return

{x} =sn¥
a( C(p) L(p)U(p)

handleEvent(event p)

if |[U(p)UL(p)UC(p)| > 1 then

report intersection in p, report segments in L/ (p) U L(p) UC(p)
delete L.(p) UC(p) from T

insert LI(p) UC(p) into T in their order slightly below\/

if L/(p)UC(p) = then

bief/ Dy oht = = left/right neighbor of p in T \ / /
flnd-l\Ie‘NEvent(bleft/ rightr P ) ble& P /bright
else




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

X C(P),L(P),U(P) if x below ¢ or on ¢ to the right of p then

handleEvent(event p)
if |[U(p)UL(p)UC(p)| > 1 then—
report intersection in p, report segments in L/ (p) U L(p) UC(p)
delete L.(p) UC(p) from T

insert LI(p) UC(p) into T in their order slightly below\/

if L/(p)UC(p) = then

bief/ Dy oht = = left/right neighbor of p in T \ / /
flnd-l\Ie‘NEvent(bleft/ rightr P ) ble& P /bright
else




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

handleEvent(event p)
if |[U(p)UL(p)UC(p)| > 1 then—
report intersection in p, report segments in L/ (p) U L(p) UC(p)
delete L.(p) UC(p) from T

insert LI(p) UC(p) into T in their order slightly below\/

if L/(p)UC(p) = then

bief/ Dy oht = = left/right neighbor of p in T \ / /
flnCH\IeVVEV@nt(bleft/ rightr P ) ble& P /bright
else




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

VR
handleEvent(event p) if x € rel-int(s ) then C(x) = C(x) U {s}
if |[U(p)UL(p)UC(p)| > 1 then—
report intersection in p, report segments in LI (p) U L(p) UC(p)
delete [.(p) UC(p) from T

insert L/(p) U C(p) into T in their order slightly below\¢

if LU(p)UC(p) =@ then

bief/ Dy oht = = left/right neighbor of p in T \ / /
flnCH\IeVVEV@nt(bleft/ rightr P ) ble& P /bright
else




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

if x € rel-int(s) then C(x) < C(x)U{s}
if x € rel-int(s’) then C(x) + C(x) U {s'}
UC

(p)

handleEvent(event p)
if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/(p) U L(p)
delete L.(p) UC(p) from T

insert LI(p) UC(p) into T in their order slightly below\/
if L/(p)UC(p) = then

bief/ Dy oht = = left/right neighbor of p in T \ / /
flnCH\IeVVEV@nt(bleft/ rightr P ) ble& P /bright
else




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

if x € rel-int(s ) then C(x)
(

+«— C
handleEvent(event p) if x € rel-int(s’) then C(x) + C
UcC

if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/(p) U L(p)
delete L.(p) UC(p) from T

insert LI(p) UC(p) into T in their order slightly below\/
if L/(p)UC(p) = then

bief/ Dy oht = = left/right neighbor of p in T \ / /
flnd-l\Ie‘NEvent(bleft/ rightr P ) ble& P /bright
else

N

p




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

if x € rel-int(s ) then C(x)
(

+«— C
handleEvent(event p) if x € rel-int(s’) then C(x) + C
UcC

if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/(p) U L(p)
delete L.(p) UC(p) from T

insert LI(p) UC(p) into T in their order slightly below\/
if L/(p)UC(p) = then

Dieft/ bright = left/right neighbor of p in T \ / /
flnd-l\Ie‘NEvent(bleft/ rightr P ) ble& P /bright
else
/
p




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

if x € rel-int(s ) then C(x)
(

+«— C
handleEvent(event p) if x € rel-int(s’) then C(x) + C
UcC

if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/(p) U L(p)
delete L.(p) UC(p) from T

insert LI(p) UC(p) into T in their order slightly below\/
if L/(p)UC(p) = then

bief/ Dy oht = = left/right neighbor of p in T \ / /
flnd-l\Ie‘NEvent(bleft/ rightr P ) ble& P /bright
else

Sleft/ Sright = leftmost/rightmost segment in LI(p) U C(p)




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

if x € rel-int(s ) then C(x)
(

+«— C
handleEvent(event p) if x € rel-int(s’) then C(x) + C
UcC

if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/(p) U L(p)
delete L.(p) UC(p) from T

insert LI(p) UC(p) into T in their order slightly below\/
if L/(p)UC(p) = then

bief/ Dy oht = = left/right neighbor of p in T \ / /
flnd-l\Ie‘NEvent(bleft/ rightr P ) ble& P /bright
else

Sleft/ Sright = leftmost/rightmost segment in LI(p) U C(p)

Sleft




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

if x € rel-int(s ) then C(x)
(

+«— C
handleEvent(event p) if x € rel-int(s’) then C(x) + C
UcC

if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/(p) U L(p)
delete L.(p) UC(p) from T

insert LI(p) UC(p) into T in their order slightly below\/
if L/(p)UC(p) = then

bief/ Dy oht = = left/right neighbor of p in T \ / /
flnd-l\Ie‘NEvent(bleft/ rightr P ) ble& P /bright
else

Sleft/ Sright = leftmost/rightmost segment in LI(p) U C(p)

Sleft Sright



fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

if x € rel-int(s) then C(x) < C(x)U{s}
pandictventieventn) if x € rel-int(s') then C(x) + C(x) U {s'}
if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/ (p) U L(p) UC(p)
delete L.(p) UC(p) from T
insert LI(p) UC(p) into T in their order slightly below\/
if L/(p)UC(p) = then
Dieft/ bright = left/right neighbor of p in T \ / /
fmdNeWEvent(bleft, rights P) bm& p /@ﬂght
else
Sleft/ Sright = leftmost/rightmost segment in LI(p) U C(p)
bieft = left neighbor of s in T
bright = right neighbor of syjep in T
Z ¢
a Sleft Sright




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

handleE if x € rel-int(s) then C(x) < C(x)U {s}
i LElETer et ) if x € rel-int(s') then C(x) + C(x) U {s'}
if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/ (p) U L(p) UC(p)
delete L.(p) UC(p) from T
insert LI(p) UC(p) into T in their order slightly below\/
if L/(p)UC(p) = then

Diett/ bright = left/right neighbor of p in T \ / /

flnCH\IeVVEV@nt(bleft/ rights P ) ble& P /bright
else

Sleft/ Sright = leftmost/rightmost segment in LI(p) U C(p)

bieft = left neighbor of s in T

bright = right neighbor of sy in T b f g
- / Sleft g Sright




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

handleE if x € rel-int(s) then C(x) < C(x)U {s}
i LElETer et ) if x € rel-int(s') then C(x) + C(x) U {s'}
if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/ (p) U L(p) UC(p)
delete L.(p) UC(p) from T
insert LI(p) UC(p) into T in their order slightly below\/
if LU(p)UC(p) =@ then

Diett/ bright = left/right neighbor of p in T \ /

flnCH\IeVVEV@nt(bleft/ rights P ) ble& P /brlght
else

Sleft/ Sright = leftmost/rightmost segment in LI(p) U C(p)

bieft = left neighbor of s in T

bright = right neighbor of sy in T b f \brigélt
- / Sleft g Sright\




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

if x € rel-int(s) then C(x) < C(x)U{s}

pandictventieventn) if x € rel-int(s') then C(x) « C(x) U {s'}
if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/ (p) U L(p) UC(p)
delete L.(p) UC(p) from T
insert LI(p) UC(p) into T in their order slightly below\/
if L/(p)UC(p) = then

Dieft/ bright = left/right neighbor of p in T \ /

fmdNeWEvent(bleft, rights P) bm& p /@nght
else

Sleft/ Sright = leftmost/rightmost segment in LI(p) U C(p)

bieft = left neighbor of s in T

b.right = right neighbor of sy;gp in T b f \bright

findNewEvent(bjeft, Steft, P) 7 \ [4
B / Sleft Sright




fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

if x € rel-int(s) then C(x) < C(x)U{s}

pandictventieventn) if x € rel-int(s') then C(x) « C(x) U {s'}
if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/ (p) U L(p) UC(p)
delete L.(p) UC(p) from T
insert LI(p) UC(p) into T in their order slightly below\/
if L/(p)UC(p) = then

Dieft/ bright = left/right neighbor of p in T \ /

fmdNeWEvent(bleft, rights P) bm& p /@nght
else

Sleft/ Sright = leftmost/rightmost segment in LI(p) U C(p)

bieft = left neighbor of s in T

b.right = right neighbor of sy;gp in T b f \bright

findNewEvent(bieft, Sieft, P) [4
¥ﬁndNeWEvent(bright/ Srights P ) / Sleft q Sright\




Computational Geometry

Lecture 2:
Line-Segment Intersection

Map Overlay

Part IV:
Correctness

Philipp Kindermann Winter Semester 2020



Correctness

Lemma. findIntersections(S) correctly computes all inter-
section points & the segments that contain them.




Correctness

Lemma. findIntersections(S) correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt.



Correctness

Lemma. findIntersections(S) correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume:
B Every int. pt g < p has been computed correctly.



Correctness

Lemma. findIntersections(S) correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume:
B Every int. pt g < p has been computed correctly.

B 7 contains all segments intersecting ¢ in
left-to-right order.



Correctness

Lemma. findIntersections(S) correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume (by induction):
B Every int. pt g < p has been computed correctly.

B 7 contains all segments intersecting ¢ in
left-to-right order.



Correctness

Lemma. findIntersections(S) correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume (by induction):
B Every int. pt g < p has been computed correctly.

B 7 contains all segments intersecting ¢ in
left-to-right order.

Case I: p is not an interior pt of a segment.



Correctness

Lemma. findIntersections(S) correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume (by induction):
B Every int. pt g < p has been computed correctly.
B 7 contains all segments intersecting ¢ in
left-to-right order.
Case I: p is not an interior pt of a segment.

= p has been inserted in Q in the beginning.



Correctness

Lemma. findIntersections(S) correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume (by induction):
B Every int. pt g < p has been computed correctly.

B 7 contains all segments intersecting ¢ in
left-to-right order.

Case [: p is not an interior pt of a segment.
= p has been inserted in O in the beginning.
Segm. in U(p) and L(p) are stored with p in the beginning.



Correctness

Lemma. findIntersections(S) correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume (by induction):
B Every int. pt g < p has been computed correctly.

B 7 contains all segments intersecting ¢ in
left-to-right order.

Case [: p is not an interior pt of a segment.

= p has been inserted in O in the beginning.

Segm. in U(p) and L(p) are stored with p in the beginning.
When p is processed, we output all segm. in U(p) U L(p).



Correctness

Lemma. findIntersections(S) correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume (by induction):
B Every int. pt g < p has been computed correctly.

B 7 contains all segments intersecting ¢ in
left-to-right order.

Case [: p is not an interior pt of a segment.

= p has been inserted in O in the beginning.

Segm. in U(p) and L(p) are stored with p in the beginning.
When p is processed, we output all segm. in U(p) U L(p).

= All segments that contain p are reported.



Correctness (Case II)

Case II: p is an int. point of some segment.



Correctness (Case II)

Case II: p is an int. point of some segment, i.e., C(p) # @.



Correctness (Case II)

Case II: p is an int. point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.



Correctness (Case II)

Case II: p is an int. point of some segment, i.e., C(p) # @.
If p is not an endpt, need that p is inserted into Q before ¢

reaches p.
— /

7



Correctness (Case II)

Case II: p is an int. point of some segment, i.e., C(p) # @.
If p is not an endpt, need that p is inserted into Q before ¢

reaches p.
— /

7



Correctness (Case II)

Case II: p is an int. point of some segment, i.e., C(p) # @.
If p is not an endpt, need that p is inserted into Q before ¢

reaches p.
— /

7



Correctness (Case II)

Case II: p is an int. point of some segment, i.e., C(p) # @.
If p is not an endpt, need that p is inserted into Q before ¢

reaches p.
— /

7

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p) U {¢} around p.



Correctness (Case II)

Case II: p is an int. point of some segment, i.e., C(p) # @.
If p is not an endpt, need that p is inserted into Q before ¢

— / / reaches p.
5

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p) U {¢} around p.



Correctness (Case 1I)

Case II: p is an int. point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p)U{£} around p. Imagine moving ¢ slightly back in time.



Correctness (Case 1I)

Case II: p is an int. point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p)U{£} around p. Imagine moving ¢ slightly back in time.

Then s, s’ were neighbors in the left-to-right order on ¢ (in 7).



Correctness (Case 1I)

Case II: p is an int. point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p)U{£} around p. Imagine moving ¢ slightly back in time.

Then s, s’ were neighbors in the left-to-right order on ¢ (in 7).
At the beginning of the alg., they weren’t neighbors in 7.



Correctness (Case 1I)

Case II: p is an int. point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p)U{£} around p. Imagine moving ¢ slightly back in time.

Then s, s’ were neighbors in the left-to-right order on ¢ (in 7).
At the beginning of the alg., they weren’t neighbors in 7.
= There was some moment when they became neighbors!



Correctness (Case 1I)

Case II: p is an int. point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p)U{£} around p. Imagine moving ¢ slightly back in time.

Then s, s’ were neighbors in the left-to-right order on ¢ (in 7).
At the beginning of the alg., they weren’t neighbors in 7.
= There was some moment when they became neighbors!

This is when {p} = s Ns’ was inserted into Q.



Correctness (Case 1I)

Case II: p is an int. point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

We also need that every
segment with p as an interior

point is added to C(p).

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p)U{£} around p. Imagine moving ¢ slightly back in timel

Then s, s’ were neighbors in the left-to-right order on ¢ (in
At the beginning of the alg., they weren’t neighbors in 7.
= There was some moment when they became neighbo

This is when {p} = s Ns’ was inserted into Q.




Computational Geometry

Lecture 2:
Line-Segment Intersection

Map Overlay

Part V:
Running Iime

Philipp Kindermann Winter Semester 2020



Q< @; T « (vertical lines at x = —coand x = +o0) // sentinels:
HoreachicicR-Idn // initialize event queue O;

| foreach endpoint p of s do
if p ¢ Q then Q.insert(p); L(p) = L(p) =C(p) =0
if p lower endpt of s then L(p).append(s)

- | if p upper endpt of s then L/(p).append(s)

iwhile Q # ©®do

| p  Q.nextEvent()

| Q.deleteEvent(p)

| handleEvent(p)

Running time?



Q < @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do
foreach endpoint p of s do
if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s)

while Q # @ do handleEvent(event p)
p < Q.nextEvent()if [L/(p)UL(p)UC(p)| > 1 then
Q.deleteEvent(p) report int. in p, report segments in L/ (p) U L(p)UC(p)

handleEvent(p) delete L(p) UC(p) from T
= insert LI(p) UC(p) into T in their order slightly below ¢

if U(p)UC(p) =@ then
Dieft/ bright = left/right neighbor of p in T
flnd-l\Ie"VEvent(blef’c/ rights P )

Running time? else
Sleft/ Sright = leftmost/rightmost segment in L/(p) U C(p)

bieft = left neighbor of sjeg in T
bright = right neighbor of sgp; in T
findNewEvent(bieft, Steft, P)
findNewEvent(bioht, Srights P)




Q < @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do
foreach endpoint p of s do
if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s)

while Q # @ do handleEvent(event p)
p < QmnextEvent()if |L/(p)UL(p)UC(p)| > 1 then
Q.deleteEvent(p) report int. in p, report segments in L/ (p) U L(p)UC(p)

handleEvent(p) delete L(p) UC(p) from T
= insert LI(p) UC(p) into T in their order slightly below ¢

if U(p)UC(p) =@ then
Dieft/ bright = left/right neighbor of p in T
fmdNewEvent(bleft, sl (7 {x} =sn¥
Running time? else if x ¢ Q then Q.insert(x)
Sleft/ Sright = leftmost/rightmost segment in L/(p) U C(p)
bieft = left neighbor of sjeg in T
bright = right neighbor of sgp; in T
findNewEvent(bieft, Steft, P)
findNewEvent(bioht, Srights P)




Q < @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do
foreach endpoint p of s do
if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s)

while Q # @ do handleEvent(event p)
p < QmnextEvent()if |L/(p)UL(p)UC(p)| > 1 then
Q.deleteEvent(p) report int. in p, report segments in L/ (p) U L(p)UC(p)

handleEvent(p) delete L(p) UC(p) from T
= insert LI(p) UC(p) into T in their order slightly below ¢

if U(p)UC(p) =@ then
Dieft/ bright = left/right neighbor of p in T
fmdNewEvent(bleft, sl (7 {x} =sn¥
Running time? else if x ¢ Q then Q.insert(x)
Sleft/ Sright = leftmost/rightmost segment in L/(p) U C(p)
bieft = left neighbor of sjeg in T
bright = right neighbor of sgp; in T
findNewEvent(bieft, Steft, P)
findNewEvent(bioht, Srights P)




Q < @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do
foreach endpoint p of s do
if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s)

while Q # @ do handleEvent(event p)
p < Q.mnextEvent() if |L/(p)UL(p)UC(p)| > 1 then
Q.deleteEvent(p) report int. in p, report segments in L/ (p) U L(p)UC(p)

handleEvent(p) delete L(p) UC(p) from T
= insert LI(p) UC(p) into T in their order slightly below ¢

if U(p)UC(p) =@ then
Dieft/ bright = left/right neighbor of p in T
fmdNewEvent(bleft, sl (7 {x} =sn¥
Running time? else if x ¢ Q then Q.insert(x)
Sleft/ Sright = leftmost/rightmost segment in L/(p) U C(p)
bieft = left neighbor of sjeg in T
bright = right neighbor of sgp; in T
findNewEvent(bieft, Steft, P)
findNewEvent(bioht, Srights P)




Q < @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do
foreach endpoint p of s do
if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s)

while Q # @ do handleEvent(event p)
p < Q.mnextEvent() if |L/(p)UL(p)UC(p)| > 1 then
Q.deleteEvent(p) report int. in p, report segments in L/ (p) U L(p)UC(p)

handleEvent(p) delete L(p) UC(p) from T
= insert LI(p) UC(p) into T in their order slightly below ¢

if U(p)UC(p) =@ then
Dieft/ bright = left/right neighbor of p in T
fmdNewEvent(bleft, sl (7 {x} =sn¥
Running time? else if x ¢ Q then Q.insert(x)
Sleft/ Sright = leftmost/rightmost segment in L/(p) U C(p)
bieft = left neighbor of sjeg in T
bright = right neighbor of sgp; in T
findNewEvent(bieft, Steft, P)
findNewEvent(bioht, Srights P)




Q < @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do
foreach endpoint p of s do
if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s)

while Q # @ do handleEvent(event p)
p < Q.mnextEvent() if |L/(p)UL(p)UC(p)| > 1 then
Q.deleteEvent(p) report int. in p, report segments in L/ (p) U L(p)UC(p)

handleEvent(p) delete L(p)UC(p) from 7
= insert L/(p) UC(p) into T in their order slightly below ¢

if U(p)UC(p) =@ then
Dieft/ bright = left/right neighbor of p in T
fmdNewEvent(bleft, sl (7 {x} =sn¥
Running time? else if x ¢ Q then Q.insert(x)
Sleft/ Sright = leftmost/rightmost segment in L/(p) U C(p)
bieft = left neighbor of sjeg in T
bright = right neighbor of sgp; in T
findNewEvent(bieft, Steft, P)
findNewEvent(bioht, Srights P)




Q < @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do
foreach endpoint p of s do
if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s)

while Q # @ do handleEvent(event p)
p < Q.mnextEvent() if |L/(p)UL(p)UC(p)| > 1 then
Q.deleteEvent(p) report int. in p, report segments in L/ (p) U L(p)UC(p)

handleEvent(p) delete L(p)UC(p) from 7
= insert L/(p) UC(p) into T in their order slightly below ¢

if U(p)UC(p) =@ then
Diett/ bright = left/right neighbor of p in T

fmdNewEvent(bleft, sl (7 {x} =sn¥
Running time? alse if x ¢ Q then Q.insert(x)
Sleft/ Sright = leftmost/rightmost segment in L/(p) U C(p)
bieft = left neighbor of sjeg in T
bright = right neighbor of sgp; in T
findNewEvent(bieft, Steft, P)
findNewEvent(bioht, Srights P)




Q < @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do
foreach endpoint p of s do
if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s)

while Q # @ do handleEvent(event p)
p < Q.mnextEvent() if |L/(p)UL(p)UC(p)| > 1 then
Q.deleteEvent(p) report int. in p, report segments in L/ (p) U L(p)UC(p)

handleEvent(p) delete L(p)UC(p) from 7
= insert L/(p) UC(p) into T in their order slightly below ¢

if U(p)UC(p) =@ then
Diett/ bright = left/right neighbor of p in T

fmdNewEvent(bleft, sl (7 {x} =sn¥
Running time? alse if x ¢ Q then Q.insert(x)
Sleft/ Sright = leftmost/rightmost segment in L/(p) U C(p)
bieft = left neighbor of sjeg in T
bright = right neighbor of sgp; in T
findNewEvent(bieft, Steft, P)
findNewEvent(bioht, Srights P)




Q < @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do
foreach endpoint p of s do
if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s)

while Q # @ do handleEvent(event p)
p < Q.mnextEvent() if |L/(p)UL(p)UC(p)| > 1 then
Q.deleteEvent(p) report int. in p, report segments in L/ (p) U L(p)UC(p)

handleEvent(p) delete L(p)UC(p) from 7
= insert L/(p) UC(p) into T in their order slightly below ¢

if U(p)UC(p) =@ then
Diett/ bright = left/right neighbor of p in T

fmdNewEvent(bleft, sl (7 {x} =sn¥
Running time? alse if x ¢ Q then Q.insert(x)
Sleft/ Sright = leftmost/rightmost segment in L/(p) U C(p)
biet = left neighbor of sjeg in T
bright = right neighbor of sgp; in T
findNewEvent(bieft, Steft, P)
findNewEvent(bioht, Srights P)




Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+ I)logn) time.




Checl
Running Time YOUr knowledge ape,. plan
ar L7 thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+ I)logn) time.

A J

Proof. Let p be an event pt,




Checl
Running Time YOUr knowledge ape,. plan
ar L7 thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+ I)logn) time.

A J

Proof. Let p be an event pt,
m(p) = [L(p) UC(p)| +[U(p)UC(p)




Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)| +[U(p) UC(p)]
and m =}, m(p).



Checl
Running Time YOUr knowledge ape,. plan
ar L7 thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)| +[U(p) UC(p)]
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) log n).



: : Check
Running Time YOUr knowledge ape,. Pl
nar Sraphg/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)| +[U(p) UC(p)]
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n + I).



: . Check
Running Time 77" knowleqge 41, plan
Y Sraphs/

Lemma.

findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+ I)logn) time.

Proof.

Let p be an event pt,

m(p) = |L(p) UC(p)| +[U(p) UC(p)]
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) log n).
We show that m € O(n + I). (= lemma)



Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+I)logn) time.

Proof. Let p be an event pt,
m(p) = |L(p) UC(p)| + [U(p) UC(p)
and m =}, m(p).
Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n + I). (= lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }



Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+ I)logn) time.

Proof. Let p be an event pt,
m(p) = |L(p) UC(p)| + [U(p) UC(p)
and m =}, m(p).
Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n + I). (= lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts }



Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+I)logn) time.

Proof. Let p be an event pt,
m(p) = |L(p) UC(p)|+ |U(p)UC(p)
and m =}, m(p).
Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n + I). (= lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts } = |V| <2n + L.



Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+I)logn) time.

Proof. Let p be an event pt,
m(p) = |L(p) UC(p)|+ |U(p)UC(p)
and m =}, m(p).
Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n + I). (= lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts } = |V| <2n + L.
For any p € V: m(p) = deg(p).



Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)|+ |U(p)UC(p)
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n + I). (= lemma)

Define (geometric) graph G = (V, E) with

V = { endpts, intersection pts } = |V| <2n + L.
For any p € V: m(p) = deg(p).

= m =}, deg(p) =2|E]



Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)|+ |U(p)UC(p)
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n + I). (= lemma)

Define (geometric) graph G = (V, E) with

V = { endpts, intersection pts } = |V| <2n + L.
For any p € V: m(p) = deg(p).

= m =} ,deg(p) =2|E| <



Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)|+ |U(p)UC(p)
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n + I). (= lemma)

Define (geometric) graph G = (V, E) with

V = { endpts, intersection pts } = |V| <2n + L.
For any p € V: m(p) = deg(p).

= m =} ,deg(p) =2|E| <

Euler (G is planar!!)



Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)|+ |U(p)UC(p)
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n + I). (= lemma)

Define (geometric) graph G = (V, E) with

V = { endpts, intersection pts } = |V| <2n + L.
For any p € V: m(p) = deg(p).

= m =}, deg(p) =2|E| < 2-(3|V|—-6)

Euler (G is planar!!)



Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)|+ |U(p)UC(p)
and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n + I). (= lemma)

Define (geometric) graph G = (V, E) with

V = { endpts, intersection pts } = |V| <2n + L.
For any p € V: m(p) = deg(p).

= m =}, deg(p) =2|E| < 2-(3|V|—-6)

c O( )
Euler (G is planar!!)



Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)|+ |U(p)UC(p)

and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).

We show that m € O(n + I). (= lemma)

Define (geometric) graph G = (V, E) with

V = { endpts, intersection pts } = |V| <2n + L.

For any p € V: m(p) = deg(p).

= m =}, deg(p) =2|E| < 2-(3|V|—-6)
cOmn—+1)

Euler (G is planar!!)



Today’s Main Result

‘Theorem. We can report all I intersection points among n |

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

J




Today’s Main Result

‘Theorem. We can report all I intersection points among n |

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

J




Today’s Main Result

‘Theorem. We can report all I intersection points among n |

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption &



Today’s Main Result

‘Theorem. We can report all I intersection points among n |

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :-(



Today’s Main Result

‘Theorem. We can report all I intersection points among n |

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :-(

Can we do better?



Today’s Main Result

‘Theorem. We can report all I intersection points among n |

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :-(

Can we do better? |

N




Today’s Main Result

‘Theorem. We can report all I intersection points among n |

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :-(

Can we do better? 14

N




Today’s Main Result

‘Theorem. We can report all I intersection points among n |

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :-(

— —insert sNs’ into 9O
Can we do better? | ¢

N




Today’s Main Result

‘Theorem. We can report all I intersection points among n |

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :-(

- —insert s Ns’ into O
Can we do better?




Today’s Main Result

‘Theorem. We can report all I intersection points among n |

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :-(

- —insert s Ns’ into O
Can we do better?

¢ —removesns' from Q




Today’s Main Result

‘Theorem. We can report all I intersection points among n |

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :-(

i —insert sNs’ into O
?
Can we do better i —remove sNs’ from O




Today’s Main Result

‘Theorem. We can report all I intersection points among n |

non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :-(

—insert s Ns’ into O
?
Can we do better- _ remove s N s from O

f  —re-insert s s’ into O




Today’s Main Result

~\

‘Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :-(

—insert s Ns’ into O
?
Can we do better- _ remove s N s from O

f  —re-insert s s’ into O

= need just O(n) space;




Today’s Main Result

\

‘Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :-(

—insert s Ns’ into O
?
Can we do better- _ remove s N s from O

f  —re-insert s s’ into O

= need just O(n) space;
(asymptotic) running
time doesn’t change




	Map Overlay
	Line-Segment Intersection
	Example

	Sweep-Line Algorithm
	Data Structures

	Algorithmic Details
	Handling an Event

	Correctness
	Correctness (Case II)

	Running Time
	Proof of Running Time
	Today's Main Result


