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Line-Segment Intersection

Definition: Is /< an intersection?

Answer:

Problem:

Task:

Depends. .. yes!

Given a set S of n closed non-overlapping line
segments in the plane, compute. ..

—all points where at least two segments
intersect and

— for each such point report all segments
that contain it.

How would you do it?



EEEEEEE




EEEEEEE




Example

Brute Force?

O(n?) ... can we do
better?




Example

Brute Force?

O(n?) ... can we do
better?

Idea:

Process segments
top-to-bottom using a
“sweep line”.
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Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
po—o—@-—

£ v
Store event pts in balanced binary search tree acc. to <

= nextEvent() and del/insEvent() take O(log|Q|) time

2) (sweep-line) status 7 / \ M/

Store the segments intersected by ¢ in left-to-right order.

How? In a balanced binary search tree!
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Pseudo-code

findIntersections(S)

Input:  set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I every s € S with p € s

Q <+ @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do

foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@

if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s) Y

while Q 7 © do This subroutine does the real work.
p <— Q.nextEvent()

Q.deleteEvent(p) How would you implement it?
' handleEvent(p)
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--------------------------------------------------------------------------------------------

‘handleEvent(event p)

if |[U(p)UL(p)UC(p)| > 1 then 5
| report intersection in p, report segments in L/(p) U L(p) UC(p)
'delete L(p) UC(p) from T // consecutive in 7! :
insert LI(p) UC(p) into T in their order slightly below\/

if L(p)UC(p) = @ then

| Diege/ bright = left/right neighbor of p in T \ / /
findNewEvent(bleft, bright/ ]9) bl e& p /bright

else
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if x below ¢ or on ¢ to the right of p then
W CrLpup) et
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if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/ (p) U L(p) UC(p)
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Dieft/ bright = left/right neighbor of p in T \ / /
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handleE if x € rel-int(s) then C(x) < C(x)U {s}
i LElETer et ) if x € rel-int(s') then C(x) + C(x) U {s'}
if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/ (p) U L(p) UC(p)
delete L.(p) UC(p) from T
insert LI(p) UC(p) into T in their order slightly below\/
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Lemma. findIntersections(S) correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume (by induction):
B Every int. pt g < p has been computed correctly.

B 7 contains all segments intersecting ¢ in
left-to-right order.

Case [: p is not an interior pt of a segment.

= p has been inserted in O in the beginning.

Segm. in U(p) and L(p) are stored with p in the beginning.
When p is processed, we output all segm. in U(p) U L(p).

= All segments that contain p are reported.
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Case II: p is an int. point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

We also need that every
segment with p as an interior

point is added to C(p).

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p)U{£} around p. Imagine moving ¢ slightly back in timel
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Then it’s clear that the runtime is O((m + n) logn).
We show that m € O(n + I). (= lemma)
Define (geometric) graph G = (V, E) with
V = { endpts, intersection pts } = |V| <2n + L.
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—insert s Ns’ into O
?
Can we do better- _ remove s N s from O

f  —re-insert s s’ into O

= need just O(n) space;
(asymptotic) running
time doesn’t change
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