Computational Geometry

Lecture 2:
Line-Segment Intersection

Map Overlay

Part I:
Map Overlay

Philipp Kindermann Winter Semester 2020

Map Overlay Here:
in

Geographic

Information

— bridge

Line-Segment Intersection

Definition: Is /< an intersection?

Answer:

Problem:

Task:

Depends. .. yes!

Given a set S of n closed non-overlapping line
segments in the plane, compute. ..

—all points where at least two segments
intersect and

— for each such point report all segments
that contain it.

How would you do it?

Example

Brute Force?

O(n?) ... can we do
better?

Idea:

Process segments
top-to-bottom using a
“sweep line”.

Computational Geometry

Lecture 2:
Line-Segment Intersection

Map Overlay

Part II.
Sweep-Line Algorithm

Philipp Kindermann Summer Semester 2020

Sweep-Line Algorithm

Which active segments
should be compared?

Data Structures

1) event (-point) queue O

P=<q <def. Yp>Yq Or (yp=1yzandx, < xg)
po—o—@-—

£ v
Store event pts in balanced binary search tree acc. to <

= nextEvent() and del/insEvent() take O(log|Q|) time

2) (sweep-line) status 7 / \ M/

Store the segments intersected by ¢ in left-to-right order.

How? In a balanced binary search tree!

Computational Geometry

Lecture 2:
Line-Segment Intersection

Map Overlay

Part I1I:
Algorithmic Details

Philipp Kindermann Summer Semester 2020

Pseudo-code

findIntersections(S)

Input: set S of n non-overlapping closed line segments

Output: - set I of intersection pts
—foreach p € I every s € S with p € s

Q <+ @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do

foreach endpoint p of s do

if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@

if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s) Y

while Q 7 © do This subroutine does the real work.
p <— Q.nextEvent()

Q.deleteEvent(p) How would you implement it?
' handleEvent(p)

fmdNewEvent(s s', p)

Handlln an EVent if sNs’ = @ then return
g {x} =sn¥

if x below ¢ or on ¢ to the right of p then
W CrLpup) et

if x € rel-int(s) then C(x)
(

+«— C
handleEvent(event p) if x € rel-int(s’) then C(x) + C
UcC

if |[U(p)UL(p)UC(p)| > 1then—-
report intersection in p, report segments in L/(p) U L(p)
delete L.(p) UC(p) from T

insert LI(p) UC(p) into T in their order slightly below\/
if L/(p)UC(p) = then

bief/ Dy oht = = left/right neighbor of p in T \ / /
flnd-l\Ie‘NEvent(bleft/ rightr P) ble& P /bright
else

N

p

Computational Geometry

Lecture 2:
Line-Segment Intersection

Map Overlay

Part IV:
Correctness

Philipp Kindermann Summer Semester 2020

Correctness

Lemma. findIntersections(S) correctly computes all inter-
section points & the segments that contain them.

Proof. Let p be an intersection pt. Assume (by induction):
B Every int. pt g < p has been computed correctly.

B 7 contains all segments intersecting ¢ in
left-to-right order.

Case [: p is not an interior pt of a segment.

= p has been inserted in O in the beginning.

Segm. in U(p) and L(p) are stored with p in the beginning.
When p is processed, we output all segm. in U(p) U L(p).

= All segments that contain p are reported.

Correctness (Case 1I)

Case II: p is an int. point of some segment, i.e., C(p) # @.

If p is not an endpt, need that p is inserted into Q before ¢
reaches p.

We also need that every
segment with p as an interior

point is added to C(p).

Lets, s’ € C(p) be neighbors in the circular ordering of
C(p)U{£} around p. Imagine moving ¢ slightly back in timel

Then s, s’ were neighbors in the left-to-right order on ¢ (in
At the beginning of the alg., they weren’t neighbors in 7.
= There was some moment when they became neighbo

This is when {p} = s Ns’ was inserted into Q.

Computational Geometry

Lecture 2:
Line-Segment Intersection

Map Overlay

Part V:
Running Iime

Philipp Kindermann Summer Semester 2020

Q < @, T < (vertical lines at x = —o0 and x = +00)
foreach s € S do
foreach endpoint p of s do
if p ¢ Q then Q.insert(p); L(p) = U(p) =C(p) =@
if p lower endpt of s then L(p).append(s)
if p upper endpt of s then L/(p).append(s)

while Q # @ do handleEvent(event p)
p < Q.mnextEvent() if |L/(p)UL(p)UC(p)| > 1 then
Q.deleteEvent(p) report int. in p, report segments in L/ (p) U L(p)UC(p)

handleEvent(p) delete L(p)UC(p) from 7
= insert L/(p) UC(p) into T in their order slightly below ¢

if U(p)UC(p) =@ then
Diett/ bright = left/right neighbor of p in T

fmdNewEvent(bleft, sl (7 {x} =sn¥
Running time? alse if x ¢ Q then Q.insert(x)
Sleft/ Sright = leftmost/rightmost segment in L/(p) U C(p)
biet = left neighbor of sjeg in T
bright = right neighbor of sgp; in T
findNewEvent(bieft, Steft, P)
findNewEvent(bioht, Srights P)

Checl
Running Time 77" knowleqge 41, plar
ar gr. thc/

Lemma. findIntersections() finds I intersection points
among n non-overlapping line segments in
O((n+I)logn) time.

Proof. Let p be an event pt,

m(p) = |L(p) UC(p)|+ |U(p)UC(p)

and m =}, m(p).

Then it’s clear that the runtime is O((m + n) logn).

We show that m € O(n + I). (= lemma)

Define (geometric) graph G = (V, E) with

V = { endpts, intersection pts } = |V| <2n + L.

For any p € V: m(p) = deg(p).

= m =}, deg(p) =2|E| < 2-(3|V|—-6)
cOmn—+1)

Euler (G is planar!!)

Today’s Main Result

\

‘Theorem. We can report all I intersection points among n
non-overlapping line segments in the plane and
report the segments involved in the intersections
in O((n+ I)logn) time and O(n) space.

. J

Sure? The event-point queue Q contains
B all segment end pts below the sweep line
B all intersection pts below the sweep line
= (worst-case) space consumption €@(n + I) :-(

—insert s Ns’ into O
?
Can we do better- _ remove s N s from O

f —re-insert s s’ into O

= need just O(n) space;
(asymptotic) running
time doesn’t change

	Map Overlay
	Line-Segment Intersection
	Example

	Sweep-Line Algorithm
	Data Structures

	Algorithmic Details
	Handling an Event

	Correctness
	Correctness (Case II)

	Running Time
	Proof of Running Time
	Today's Main Result

