Lecture 2:
Line-Segment Intersection
or
Map Overlay

Part I: Map Overlay

Edmonton

Victoria i

Saskatoon

Regina

in
Geographic
Information
Systems
(GIS)

Line-Segment Intersection

Definition: Is an intersection?

Answer: Depends...

Problem: Given a set S of n closed non-overlapping line segments in the plane, compute...

all points where at least two segments intersect and

ves!

 for each such point report all segments that contain it.

Task: How would you do it?

Example

Brute Force?

 $O(n^2)$... can we do better?

Idea:

Process segments top-to-bottom using a "sweep line".

Lecture 2:
Line-Segment Intersection
or
Map Overlay

Part II: Sweep-Line Algorithm

Sweep-Line Algorithm

Data Structures

1) event (-point) queue Q

$$p \prec q \Leftrightarrow_{\text{def.}} y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q)$$

$$\ell \qquad \qquad \ell \qquad \qquad \ell$$

Store event pts in balanced binary search tree acc. to \prec

 \Rightarrow nextEvent() and del/insEvent() take $O(\log |Q|)$ time

Store the segments intersected by ℓ in left-to-right order. How? In a balanced binary search tree!

Lecture 2:
Line-Segment Intersection
or
Map Overlay

Part III: Algorithmic Details

Pseudo-code

findIntersections(S)

Input: set *S* of *n* non-overlapping closed line segments

Output: – set *I* of intersection pts

– for each $p \in I$ every $s \in S$ with $p \in s$

```
\mathcal{Q} \leftarrow \emptyset; \mathcal{T} \leftarrow \langle vertical lines at x = -\infty and x = +\infty \rangle // sentinels foreach s \in S do // initialize event queue \mathcal{Q} foreach endpoint p of s do | if p \notin \mathcal{Q} then \mathcal{Q}.insert(p); L(p) = U(p) = C(p) = \emptyset | if p lower endpt of s then L(p).append(s) | if p upper endpt of s then U(p).append(s)
```

while $Q \neq \emptyset$ do $p \leftarrow Q$.nextEvent() Q.deleteEvent(p) handleEvent(p)

This subroutine does the real work. How would you implement it?

Handling an Event

handleEvent(event *p*)

if $|U(p) \cup L(p) \cup C(p)| > 1$ then

report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$

delete $L(p) \cup C(p)$ from \mathcal{T} // consecutive in \mathcal{T} !

insert $U(p) \cup C(p)$ into T in their order slightly below ℓ

if $U(p) \cup C(p) = \emptyset$ then

 $b_{\text{left}}/b_{\text{right}} = \text{left/right neighbor of } p \text{ in } \mathcal{T}$ findNewEvent($b_{\text{left}}, b_{\text{right}}, p$)

else

Lecture 2:
Line-Segment Intersection
or
Map Overlay

Part IV: Correctness

Correctness

Lemma. findIntersections(*S*) correctly computes all intersection points & the segments that contain them.

Proof. Let *p* be an intersection pt. Assume (by induction):

- Every int. pt $q \prec p$ has been computed correctly.
- lacksquare $\mathcal T$ contains all segments intersecting ℓ in left-to-right order.

Case I: *p* is not an interior pt of a segment.

 \Rightarrow *p* has been inserted in \mathcal{Q} in the beginning.

Segm. in U(p) and L(p) are stored with p in the beginning.

When p is processed, we output all segm. in $U(p) \cup L(p)$.

 \Rightarrow All segments that contain p are reported.

Correctness (Case II)

Case II: p is an int. point of some segment, i.e., $C(p) \neq \emptyset$. If p is not an endpt, need that p is inserted into Q before ℓ reaches p.

We also need that *every* segment with p as an interior point is added to C(p).

Let $s, s' \in C(p)$ be neighbors in the circular ordering of $C(p) \cup \{\ell\}$ around p. Imagine moving ℓ slightly back in time. Then s, s' were neighbors in the left-to-right order on ℓ (in \mathcal{T}). At the beginning of the alg., they weren't neighbors in \mathcal{T} . \Rightarrow There was some moment when they became neighbors! This is when $\{p\} = s \cap s'$ was inserted into \mathcal{Q} .

Lecture 2:
Line-Segment Intersection
or
Map Overlay

Part V: Running Time

```
\mathcal{Q} \leftarrow \emptyset; \mathcal{T} \leftarrow \langle \text{ vertical lines at } x = -\infty \text{ and } x = +\infty \rangle // sentinels
                                                                     // initialize event queue Q
foreach s \in S do
 foreach endpoint p of s do
   if p \notin Q then Q.insert(p); L(p) = U(p) = C(p) = \emptyset
   if p lower endpt of s then L(p).append(s)
   if p upper endpt of s then U(p).append(s)
while Q \neq \emptyset do
                                  handleEvent(event p)
  p \leftarrow Q.\text{nextEvent()} if |U(p) \cup L(p) \cup C(p)| > 1 then
                                  report int. in p, report segments in U(p) \cup L(p) \cup C(p)
  Q.deleteEvent(p)
                                  delete L(p) \cup C(p) from \mathcal{T} // consecutive in \mathcal{T}!
 handleEvent(p)
                                  insert U(p) \cup C(p) into \mathcal{T} in their order slightly below \ell
                                  if U(p) \cup C(p) = \emptyset then
                                    b_{\text{left}}/b_{\text{right}} = \frac{\text{left/right neighbor}}{\text{of }p} in \mathcal{T}
                                    findNewEvent(b_{\text{left}}, b_{\text{right}}, p) \longrightarrow \{x\} = s \cap s'
                                                                                   if x \notin \mathcal{Q} then \mathcal{Q}.insert(x)
                                   else
Running time?
                                    s_{\text{left}}/s_{\text{right}} = \text{leftmost/rightmost segment in } U(p) \cup C(p)
                                    b_{\text{left}} =  left neighbor of s_{\text{left}} in \mathcal{T}
                                    b_{\text{right}} = \frac{\text{right neighbor}}{\text{right neighbor}} \text{ of } s_{\text{right}} \text{ in } \mathcal{T}
                                    findNewEvent(b_{left}, s_{left}, p)
                                    findNewEvent(b_{right}, s_{right}, p)
```

Running Time

Check your knowledge about planar graphs!

Lemma.

findIntersections() finds I intersection points among n non-overlapping line segments in $O((n+I)\log n)$ time.

Proof.

Let *p* be an event pt,

$$m(p) = |L(p) \cup C(p)| + |U(p) \cup C(p)|$$

and $m = \sum_{p} m(p)$.

Then it's clear that the runtime is $O((m+n)\log n)$.

We show that $m \in O(n + I)$. (\Rightarrow lemma)

Define (geometric) graph G = (V, E) with $V = \{ \text{ endpts, intersection pts } \} \Rightarrow |V| \leq 2n + I.$

For any $p \in V$: $m(p) = \deg(p)$.

$$\Rightarrow m = \sum_{p} \deg(p) = 2|E| \le 2 \cdot (3|V| - 6)$$
$$\in O(n + I)$$

Euler (*G* is planar!!)

Today's Main Result

Theorem. We can report all I intersection points among n non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n + I) \log n)$ time and O(n) space.

Sure? The event-point queue Q contains

- all segment end pts below the sweep line
- all intersection pts below the sweep line
- \Rightarrow (worst-case) space consumption $\in \Theta(n+I)$:-(

Can we do better?

- insert $s \cap s'$ into Q
- remove $s \cap s'$ from Q
- re-insert $s \cap s'$ into Q
- \Rightarrow need just O(n) space; (asymptotic) running time doesn't change