Computational Geometry

Lecture 2:
 Line-Segment Intersection
 Or
 Map Overlay

Part I:
Map Overlay

Line-Segment Intersection

Definition: Is
 an intersection? Depends...

Problem: Given a set S of n closed non-overlapping line segments in the plane, compute...

- all points where at least two segments intersect and
- for each such point report all segments that contain it.

Task:
How would you do it?

Example

Brute Force?

$O\left(n^{2}\right)$... can we do better?

Idea:
Process segments top-to-bottom using a "sweep line".

Computational Geometry

Lecture 2:
Line-Segment Intersection
or
Map Overlay

Part II:
Sweep-Line Algorithm

Sweep-Line Algorithm

Which active segments should be compared?

Data Structures

1) event (-point) queue \mathcal{Q}

$$
\begin{aligned}
& p \prec q \quad \Leftrightarrow_{\text {def. }} \quad y_{p}>y_{q} \quad \text { or } \quad\left(y_{p}=y_{q} \text { and } x_{p}<x_{q}\right) \\
& \ell \xrightarrow{p}
\end{aligned}
$$

Store event pts in balanced binary search tree acc. to \prec
\Rightarrow nextEvent() and del/insEvent() take $O(\log |\mathcal{Q}|)$ time
2) (sweep-line) status \mathcal{T}

Store the segments intersected by ℓ in left-to-right order.
How? In a balanced binary search tree!

Computational Geometry

Lecture 2:
Line-Segment Intersection
Or
Map Overlay

Part III:
Algorithmic Details

Pseudo-code

findIntersections(S)
Input: \quad set S of n non-overlapping closed line segments
Output: - set I of intersection pts

- for each $p \in I$ every $s \in S$ with $p \in s$
$\mathcal{Q} \leftarrow \varnothing ; \mathcal{T} \leftarrow\langle$ vertical lines at $x=-\infty$ and $x=+\infty\rangle / /$ sentinels foreach $s \in S$ do foreach endpoint p of s do if $p \notin \mathcal{Q}$ then \mathcal{Q}.insert $(p) ; L(p)=U(p)=C(p)=\varnothing$ if p lower endpt of s then $L(p)$.append (s)
if p upper endpt of s then $U(p)$.append (s)

while $\mathcal{Q} \neq \varnothing$ do
$p \leftarrow \mathcal{Q}$.nextEvent()
Q.deleteEvent (p)
handleEvent (p)

Handling an Event

$C(p), L(p), U(p)$
findNewEvent $\left(s, s^{\prime}, p\right)$
if $s \cap s^{\prime}=\varnothing$ then return
$\{x\}=s \cap s^{\prime}$
if x below ℓ or on ℓ to the right of p then if $x \notin \mathcal{Q}$ then \mathcal{Q}. $\operatorname{add}(x)$ if $x \in \operatorname{rel}-\mathrm{int}(s)$ then $C(x) \leftarrow C(x) \cup\{s\}$ if $x \in \operatorname{rel}-\operatorname{int}\left(s^{\prime}\right)$ then $C(x) \leftarrow C(x) \cup\left\{s^{\prime}\right\}$ if $|U(p) \cup L(p) \cup C(p)|>1$ then report intersection in p, report segments in $U(p) \cup L(p) \cup C(p)$ delete $L(p) \cup C(p)$ from $\mathcal{T} / /$ consecutive in \mathcal{T} ! insert $U(p) \cup C(p)$ into \mathcal{T} in their order slightly below $\ell \ell$ if $U(p) \cup C(p)=\varnothing$ then
$b_{\text {left }} / b_{\text {right }}=$ left $/$ right neighbor of p in \mathcal{T} findNewEvent $\left(b_{\text {left }}, b_{\text {right }}, p\right)$
else

Computational Geometry

Lecture 2:
Line-Segment Intersection
Or
Map Overlay

Part IV:
Correctness

Correctness

Lemma. findIntersections(S) correctly computes all intersection points \& the segments that contain them.
Proof. Let p be an intersection pt. Assume (by induction):
■ Every int. pt $q \prec p$ has been computed correctly.

- \mathcal{T} contains all segments intersecting ℓ in left-to-right order.
Case I: p is not an interior pt of a segment.
$\Rightarrow p$ has been inserted in \mathcal{Q} in the beginning.
Segm. in $U(p)$ and $L(p)$ are stored with p in the beginning. When p is processed, we output all segm. in $U(p) \cup L(p)$.
\Rightarrow All segments that contain p are reported.

Correctness (Case II)

Case II: p is an int. point of some segment, i.e., $C(p) \neq \varnothing$. If p is not an endpt, need that p is inserted into \mathcal{Q} before ℓ
 reaches p.

We also need that every segment with p as an interior point is added to $C(p)$.

Let $s, s^{\prime} \in C(p)$ be neighbors in the circular ordering of $C(p) \cup\{\ell\}$ around p. Imagine moving ℓ slightly back in time. Then s, s^{\prime} were neighbors in the left-to-right order on ℓ (in \mathcal{T}). At the beginning of the alg., they weren't neighbors in \mathcal{T}. \Rightarrow There was some moment when they became neighbors! This is when $\{p\}=s \cap s^{\prime}$ was inserted into \mathcal{Q}.

Computational Geometry

Lecture 2:
 Line-Segment Intersection
 Or
 Map Overlay

Part V:
Running Time

$\mathcal{Q} \leftarrow \varnothing ; \mathcal{T} \leftarrow\langle$ vertical lines at $x=-\infty$ and $x=+\infty\rangle / /$ sentinels foreach $s \in S$ do
foreach endpoint p of s do
if $p \notin \mathcal{Q}$ then \mathcal{Q}.insert $(p) ; L(p)=U(p)=C(p)=\varnothing$
if p lower endpt of s then $L(p)$.append (s)
if p upper endpt of s then $U(p)$.append (s)
while $\mathcal{Q} \neq \varnothing$ do handleEvent(event p)
$p \leftarrow \mathcal{Q}$.nextEvent () if $|U(p) \cup L(p) \cup C(p)|>1$ then
Q.deleteEvent (p) report int. in p, report segments in $U(p) \cup L(p) \cup C(p)$
handleEvent (p)

Running time?
delete $L(p) \cup C(p)$ from $\mathcal{T} / /$ consecutive in \mathcal{T} !
insert $U(p) \cup C(p)$ into \mathcal{T} in their order slightly below ℓ if $U(p) \cup C(p)=\varnothing$ then
$b_{\text {left }} / b_{\text {right }}=$ left $/$ right neighbor of p in \mathcal{T}
findNewEvent $\left(b_{\text {left }}, b_{\text {right }}, p\right) \rightarrow\{x\}=s \cap s^{\prime}$ else if $x \notin \mathcal{Q}$ then \mathcal{Q}.insert (x)
$s_{\text {left }} / s_{\text {right }}=$ leftmost $/$ rightmost segment in $U(p) \cup C(p)$
$b_{\text {left }}=$ left neighbor of $s_{\text {left }}$ in \mathcal{T}
$b_{\text {right }}=$ right neighbor of $s_{\text {right }}$ in \mathcal{T}
findNewEvent $\left(b_{\text {left }}, s_{\text {left }}, p\right)$
findNewEvent $\left(b_{\text {right }}, s_{\text {right }}, p\right)$

Check your knowledge about planar

Lemma. findIntersections() finds I intersection points among n non-overlapping line segments in $O((n+I) \log n)$ time.

Proof. Let p be an event pt ,
$m(p)=|L(p) \cup C(p)|+|U(p) \cup C(p)|$
and $m=\sum_{p} m(p)$.
Then it's clear that the runtime is $O((m+n) \log n)$.
We show that $m \in O(n+I)$. $(\Rightarrow$ lemma)
Define (geometric) graph $G=(V, E)$ with
$V=\{$ endpts, intersection pts $\} \Rightarrow|V| \leq 2 n+I$.
For any $p \in V: m(p)=\operatorname{deg}(p)$.
$\Rightarrow m=\sum_{p} \operatorname{deg}(p)=2|E| \leq 2 \cdot(3|V|-6) \quad \underset{q}{\leq O(n+I) \quad \square}$
Euler (G is planar!!)

Today's Main Result

Theorem. We can report all I intersection points among n non-overlapping line segments in the plane and report the segments involved in the intersections in $O((n+I) \log n)$ time and $O(n)$ space.

Sure? The event-point queue \mathcal{Q} contains
■ all segment end pts below the sweep line - all intersection pts below the sweep line \Rightarrow (worst-case) space consumption $\in \Theta(n+I):-($

Can we do better?

- insert $s \cap s^{\prime}$ into \mathcal{Q}
- remove $s \cap s^{\prime}$ from \mathcal{Q}
- re-insert $s \cap s^{\prime}$ into \mathcal{Q}
\Rightarrow need just $O(n)$ space; (asymptotic) running time doesn't change

