
1

Algorithmen und Datenstrukturen

Wintersemester 2020/21

1. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Kapitel 1: Sortieren
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Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

Algorithmus

Beachte: Computerinterne Zahlendarstellung hier unwichtig!

Umordnung

Wichtig:

• Ein Vergleich dauert
”
konstante Zeit“,

d.h. die Dauer ist unabhängig von n.

Noch was: 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1

• Je zwei Zahlen lassen sich vergleichen.
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Frage an alle Erstis

Wie sortieren Sie?
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Eine Lösung

InsertionSort
• Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

• Rechte Hand nimmt Karten nacheinander auf und steckt
sie (von rechts kommend) an die richtige Position zwischen
die Karten in der linken Hand.

• Linke Hand hält immer eine sortierte Reihenfolge aufrecht.

Invariante!

⇓
Korrektheit am Ende sind alle Karten in der linken Hand –

und zwar sortiert!
:

inkrementeller Alg.

Zeichnung aus:
”
Algorithms: An Introduction“ (Cormen et al., MIT Press, 2. Aufl., 2001
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Ein inkrementeller Algorithmus

IncrementalAlg( array of . . . A )

Name des Alg. Eingabe

Typ der Eingabe (hier ein Feld von . . . )

Variable

// In Pseudocode

︸ ︷︷ ︸ ︸ ︷︷ ︸
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Ein inkrementeller Algorithmus

IncrementalAlg( array of . . . A )

berechne Lösung für A[1]

// Schleifenkopf

// Initialisierung

// In Pseudocode

Zuweisungoperator – in manchen Sprachen
– in manchen Büchern

j := 2
j ← 2

– in Java j = 2

for j = 2 to A.length do

Anzahl der Elemente des Feldes A
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Ein inkrementeller Algorithmus

IncrementalAlg( array of . . . A )

berechne Lösung für A[1]

// Schleifenkopf

berechne Lösung für A[1..j ] mithilfe der für A[1..j − 1]

// Initialisierung

// Schleifenkörper; wird (A.length − 1)-mal durchlaufen

return Lösung // Ergebnisrückgabe

// In Pseudocode

Teilarray von A mit den Elementen A[1],A[2], . . . ,A[j ]

for j = 2 to A.length do
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Ein inkrementeller Algorithmus

IncrementalAlg( array of . . . A )

berechne Lösung für A[1]

return Lösung

InsertionSort

// nix zu tun: A[1..1] ist sortiert

// berechne Lösung für A[1..j ] mithilfe der für A[1..j − 1]

int

// nicht nötig – das aufrufende Programm

hat Zugriff auf das sortierte Feld A

. . . kommt noch . . .

for j = 2 to A.length do

// Schreiben wir künftig so: int[ ] A
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Ein inkrementeller Algorithmus

IncrementalAlg( array of . . . A )

berechne Lösung für A[1]

InsertionSort

// nix zu tun: A[1..1] ist sortiert

// berechne Lösung für A[1..j ] mithilfe der für A[1..j − 1]

// hier: füge A[ j ] in die sortierte Folge A[1..j − 1] ein

key = A[ j ]

int

i = j − 1

while i > 0 and A[i ] > key do

A[i + 1] = A[i ]

i = i − 1

2 4 4 7 3 1 8 6

︷ ︸︸ ︷
1 j

A[1..j − 1]

A[ j ]

key = 3

i

Wie verschieben wir die Ein-
träge größer key nach rechts?

for j = 2 to A.length do

// Schreiben wir künftig so: int[ ] A
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Ein inkrementeller Algorithmus

IncrementalAlg( array of . . . A )

berechne Lösung für A[1]

InsertionSort

// nix zu tun: A[1..1] ist sortiert

// berechne Lösung für A[1..j ] mithilfe der für A[1..j − 1]

// hier: füge A[ j ] in die sortierte Folge A[1..j − 1] ein

key = A[ j ]

int

i = j − 1

while i > 0 and A[i ] > key do

A[i + 1] = A[i ]

i = i − 1

A[i + 1] = key
2 4 4 7 3 1 8 6

︷ ︸︸ ︷
1 j

A[1..j − 1]

A[ j ]

key = 3

i

for j = 2 to A.length do

// Schreiben wir künftig so: int[ ] A
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Fertig?

Nicht ganz. . .

Wir interessieren uns heute (und im Rest dieser Vorlesung) für
folgende zentrale Fragen:

• Ist der Algorithmus korrekt?

• Welche Laufzeit hat der Algorithmus?

• Wie viel Speicherplatz benötigt der Algorithmus?
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Korrektheit beweisen

InsertionSort(int[ ] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i ] > key do

A[i + 1] = A[i ]
i = i − 1

A[i + 1] = key

Idee der Schleifeninvariante:
am Beginn jeder Iteration der for-Schleife. . .Wo?

Was? WANTED: Bedingung, die
a) an dieser Stelle immer erfüllt ist und
b) bei Abbruch der Schleife Korrektheit liefert

Hier enthält A[1..j − 1]
dieselben Elemente wie zu
Beginn des Algorithmus –
jedoch sortiert.
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Korrektheit beweisen

InsertionSort(int[ ] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i ] > key do

A[i + 1] = A[i ]
i = i − 1

A[i + 1] = key

Schleifeninvariante

Beweis nach Schema
”
F“: Wir brauchen noch drei Zutaten. . .

1.) Initialisierung

Zeige:

Hier: klar, denn für j = 2 gilt:
A[1..j − 1] = A[1..1] ist unverändert und

”
sortiert“.

Invariante ist beim 1. Schleifendurchlauf erfüllt.

Hier enthält A[1..j − 1]
dieselben Elemente wie zu
Beginn des Algorithmus –
jedoch sortiert.
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Korrektheit beweisen

InsertionSort(int[ ] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i ] > key do

A[i + 1] = A[i ]
i = i − 1

A[i + 1] = key

Schleifeninvariante

Beweis nach Schema
”
F“: Wir brauchen noch drei Zutaten. . .

1.) Initialisierung

Zeige:

2.) Aufrechterhaltung

Wenn die Invariante vor dem j . Schleifendurchlauf
erfüllt ist, dann auch vor dem j + 1.

Hier: Eigentlich: Invariante für while-Schleife aufstellen
und beweisen!

Hier enthält A[1..j − 1]
dieselben Elemente wie zu
Beginn des Algorithmus –
jedoch sortiert.
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Korrektheit beweisen

InsertionSort(int[ ] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i ] > key do

A[i + 1] = A[i ]
i = i − 1

A[i + 1] = key

Schleifeninvariante

Beweis nach Schema
”
F“: Wir brauchen noch drei Zutaten. . .

1.) Initialisierung

Zeige:

2.) Aufrechterhaltung

Wenn die Invariante vor dem j . Schleifendurchlauf
erfüllt ist, dann auch vor dem j + 1.

Hier: Beob.: Elemente werden so lange nach rechts
geschoben wie nötig. key wird korrekt eingefügt.

Hier enthält A[1..j − 1]
dieselben Elemente wie zu
Beginn des Algorithmus –
jedoch sortiert.
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Korrektheit beweisen

InsertionSort(int[ ] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i ] > key do

A[i + 1] = A[i ]
i = i − 1

A[i + 1] = key

Schleifeninvariante

Beweis nach Schema
”
F“: Wir brauchen noch drei Zutaten. . .

1.) Initialisierung

Zeige:

2.) Aufrechterhaltung 3.) Terminierung

Hier:

Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Verletzte Schleifenbedingung ist j > A.length.
D.h. j = A.length + 1. Einsetzen in Inv. ⇒ korrekt!

Hier enthält A[1..j − 1]
dieselben Elemente wie zu
Beginn des Algorithmus –
jedoch sortiert.
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Noch ein Beispiel: Fakultät berechnen

Factorial(int k)

if k < 0 then error(. . . )
f = 1
j = 2
while j ≤ k do

f = f · j
j = j + 1

return f

Korrekt?

Was passiert, wenn die Schleife gar
nicht betreten wird?

Dann ist j > k. Da j = 2⇒
k = 0 oder k = 1. Also k! = 1.

Rückgabewert ist f = 1.⇒ korrekt.

Zur Erinnerung: k Fakultät := k! := 1 · 2 · . . . · (k − 1) · k
wobei 0! = 1, 1! = 1, 2! = 2, 3! = 6, . . .

,
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Noch ein Beispiel: Fakultät berechnen

Factorial(int k)

if k < 0 then error(. . . )
f = 1
j = 2
while j ≤ k do

f = f · j
j = j + 1

return f

Schleifeninvariante:
f = (j − 1)!

1.) Initialisierung

Zeige:

Hier: klar, denn für j = 2 gilt:
f = (2− 1)! = 1! = 1

Invariante ist beim 1. Schleifendurchlauf erfüllt.
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Noch ein Beispiel: Fakultät berechnen

Factorial(int k)

if k < 0 then error(. . . )
f = 1
j = 2
while j ≤ k do

f = f · j
j = j + 1

return f

Schleifeninvariante:
f = (j − 1)!

1.) Initialisierung 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j . Schleifendurchlauf
erfüllt ist, dann auch vor dem j + 1.

Hier: Vor dem j . Durchlauf gilt INV, d.h. f = (j − 1)!
Dann wird f mit j multipliziert ⇒ f = j!
Dann wird j um 1 erhöht ⇒ f = (j − 1)! ⇒ INV
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Noch ein Beispiel: Fakultät berechnen

Factorial(int k)

if k < 0 then error(. . . )
f = 1
j = 2
while j ≤ k do

f = f · j
j = j + 1

return f

Schleifeninvariante:
f = (j − 1)!

1.) Initialisierung 2.) Aufrechterhaltung 3.) Terminierung

Zeige:

Hier:

Algo terminiert. Zusammen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Algo terminiert, da j in jedem Durchlauf erhöht wird.

Einsetzen von
”
j = k + 1“ in INV liefert f = k!

Verletzte Schleifenbedingung: j > k, also j = k + 1.
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Noch ein Beispiel: Fakultät berechnen

Factorial(int k)

if k < 0 then error(. . . )
f = 1
j = 2
while j ≤ k do

f = f · j
j = j + 1

return f

Schleifeninvariante:
f = (j − 1)!

1.) Initialisierung 2.) Aufrechterhaltung 3.) Terminierung

Der Algorithmus Factorial(int) terminiert
und liefert das korrekte Ergebnis.
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Selbstkontrolle

• Bringen Sie Fragen in die Übung mit!

• Bleiben Sie von Anfang an am Ball!

• Schreiben Sie sich in die Vorlesung ein:
– wuecampus2.uni-wuerzburg.de

– wuestudy.zv.uni-wuerzburg.de

– chat.uni-wuerzburg.de

• Programmieren Sie InsertionSort in Java!

• Lesen Sie Kapitel 1 und
Anhang A des Buchs von
Cormen et al. durch und machen Sie
dazu so viel Übungsaufgaben wie möglich!

Zählen Sie Vergleiche
für verschiedene Eingaben.
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