
1

Algorithmen und Datenstrukturen

Wintersemester 2020/21

1. Vorlesung

Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

Kapitel 1: Sortieren

2

Das Problem

Gegeben: eine Folge A = 〈a1, a2, . . . , an〉 von n Zahlen

Gesucht: eine Permutation 〈a′1, a′2, . . . , a′n〉 von A,
so dass a′1 ≤ a′2 ≤ . . . ≤ a′n

Eingabe

Ausgabe

Algorithmus

Beachte: Computerinterne Zahlendarstellung hier unwichtig!

Umordnung

Wichtig:

• Ein Vergleich dauert
”
konstante Zeit“,

d.h. die Dauer ist unabhängig von n.

Noch was: 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1

• Je zwei Zahlen lassen sich vergleichen.

3

Frage an alle Erstis

Wie sortieren Sie?

4

Eine Lösung

InsertionSort
• Linke Hand anfangs leer. Alle Karten liegen auf dem Tisch.

• Rechte Hand nimmt Karten nacheinander auf und steckt
sie (von rechts kommend) an die richtige Position zwischen
die Karten in der linken Hand.

• Linke Hand hält immer eine sortierte Reihenfolge aufrecht.

Invariante!

⇓
Korrektheit am Ende sind alle Karten in der linken Hand –

und zwar sortiert!
:

inkrementeller Alg.

Zeichnung aus:
”
Algorithms: An Introduction“ (Cormen et al., MIT Press, 2. Aufl., 2001

5

Ein inkrementeller Algorithmus

IncrementalAlg(array of . . . A)

Name des Alg. Eingabe

Typ der Eingabe (hier ein Feld von . . .)

Variable

// In Pseudocode

︸ ︷︷ ︸ ︸ ︷︷ ︸

5

Ein inkrementeller Algorithmus

IncrementalAlg(array of . . . A)

berechne Lösung für A[1]

// Schleifenkopf

// Initialisierung

// In Pseudocode

Zuweisungoperator – in manchen Sprachen
– in manchen Büchern

j := 2
j ← 2

– in Java j = 2

for j = 2 to A.length do

Anzahl der Elemente des Feldes A

5

Ein inkrementeller Algorithmus

IncrementalAlg(array of . . . A)

berechne Lösung für A[1]

// Schleifenkopf

berechne Lösung für A[1..j] mithilfe der für A[1..j − 1]

// Initialisierung

// Schleifenkörper; wird (A.length − 1)-mal durchlaufen

return Lösung // Ergebnisrückgabe

// In Pseudocode

Teilarray von A mit den Elementen A[1],A[2], . . . ,A[j]

for j = 2 to A.length do

5

Ein inkrementeller Algorithmus

IncrementalAlg(array of . . . A)

berechne Lösung für A[1]

return Lösung

InsertionSort

// nix zu tun: A[1..1] ist sortiert

// berechne Lösung für A[1..j] mithilfe der für A[1..j − 1]

int

// nicht nötig – das aufrufende Programm

hat Zugriff auf das sortierte Feld A

. . . kommt noch . . .

for j = 2 to A.length do

// Schreiben wir künftig so: int[] A

5

Ein inkrementeller Algorithmus

IncrementalAlg(array of . . . A)

berechne Lösung für A[1]

InsertionSort

// nix zu tun: A[1..1] ist sortiert

// berechne Lösung für A[1..j] mithilfe der für A[1..j − 1]

// hier: füge A[j] in die sortierte Folge A[1..j − 1] ein

key = A[j]

int

i = j − 1

while i > 0 and A[i] > key do

A[i + 1] = A[i]

i = i − 1

2 4 4 7 3 1 8 6

︷ ︸︸ ︷
1 j

A[1..j − 1]

A[j]

key = 3

i

Wie verschieben wir die Ein-
träge größer key nach rechts?

for j = 2 to A.length do

// Schreiben wir künftig so: int[] A

5

Ein inkrementeller Algorithmus

IncrementalAlg(array of . . . A)

berechne Lösung für A[1]

InsertionSort

// nix zu tun: A[1..1] ist sortiert

// berechne Lösung für A[1..j] mithilfe der für A[1..j − 1]

// hier: füge A[j] in die sortierte Folge A[1..j − 1] ein

key = A[j]

int

i = j − 1

while i > 0 and A[i] > key do

A[i + 1] = A[i]

i = i − 1

A[i + 1] = key
2 4 4 7 3 1 8 6

︷ ︸︸ ︷
1 j

A[1..j − 1]

A[j]

key = 3

i

for j = 2 to A.length do

// Schreiben wir künftig so: int[] A

6

Fertig?

Nicht ganz. . .

Wir interessieren uns heute (und im Rest dieser Vorlesung) für
folgende zentrale Fragen:

• Ist der Algorithmus korrekt?

• Welche Laufzeit hat der Algorithmus?

• Wie viel Speicherplatz benötigt der Algorithmus?

7

Korrektheit beweisen

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

Idee der Schleifeninvariante:
am Beginn jeder Iteration der for-Schleife. . .Wo?

Was? WANTED: Bedingung, die
a) an dieser Stelle immer erfüllt ist und
b) bei Abbruch der Schleife Korrektheit liefert

Hier enthält A[1..j − 1]
dieselben Elemente wie zu
Beginn des Algorithmus –
jedoch sortiert.

7

Korrektheit beweisen

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

Schleifeninvariante

Beweis nach Schema
”
F“: Wir brauchen noch drei Zutaten. . .

1.) Initialisierung

Zeige:

Hier: klar, denn für j = 2 gilt:
A[1..j − 1] = A[1..1] ist unverändert und

”
sortiert“.

Invariante ist beim 1. Schleifendurchlauf erfüllt.

Hier enthält A[1..j − 1]
dieselben Elemente wie zu
Beginn des Algorithmus –
jedoch sortiert.

7

Korrektheit beweisen

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

Schleifeninvariante

Beweis nach Schema
”
F“: Wir brauchen noch drei Zutaten. . .

1.) Initialisierung

Zeige:

2.) Aufrechterhaltung

Wenn die Invariante vor dem j . Schleifendurchlauf
erfüllt ist, dann auch vor dem j + 1.

Hier: Eigentlich: Invariante für while-Schleife aufstellen
und beweisen!

Hier enthält A[1..j − 1]
dieselben Elemente wie zu
Beginn des Algorithmus –
jedoch sortiert.

7

Korrektheit beweisen

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

Schleifeninvariante

Beweis nach Schema
”
F“: Wir brauchen noch drei Zutaten. . .

1.) Initialisierung

Zeige:

2.) Aufrechterhaltung

Wenn die Invariante vor dem j . Schleifendurchlauf
erfüllt ist, dann auch vor dem j + 1.

Hier: Beob.: Elemente werden so lange nach rechts
geschoben wie nötig. key wird korrekt eingefügt.

Hier enthält A[1..j − 1]
dieselben Elemente wie zu
Beginn des Algorithmus –
jedoch sortiert.

7

Korrektheit beweisen

InsertionSort(int[] A)

for j = 2 to A.length do
key = A[j]
i = j − 1
while i > 0 and A[i] > key do

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

Schleifeninvariante

Beweis nach Schema
”
F“: Wir brauchen noch drei Zutaten. . .

1.) Initialisierung

Zeige:

2.) Aufrechterhaltung 3.) Terminierung

Hier:

Zusammengenommen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Verletzte Schleifenbedingung ist j > A.length.
D.h. j = A.length + 1. Einsetzen in Inv. ⇒ korrekt!

Hier enthält A[1..j − 1]
dieselben Elemente wie zu
Beginn des Algorithmus –
jedoch sortiert.

8

Noch ein Beispiel: Fakultät berechnen

Factorial(int k)

if k < 0 then error(. . .)
f = 1
j = 2
while j ≤ k do

f = f · j
j = j + 1

return f

Korrekt?

Was passiert, wenn die Schleife gar
nicht betreten wird?

Dann ist j > k. Da j = 2⇒
k = 0 oder k = 1. Also k! = 1.

Rückgabewert ist f = 1.⇒ korrekt.

Zur Erinnerung: k Fakultät := k! := 1 · 2 · . . . · (k − 1) · k
wobei 0! = 1, 1! = 1, 2! = 2, 3! = 6, . . .

,

8

Noch ein Beispiel: Fakultät berechnen

Factorial(int k)

if k < 0 then error(. . .)
f = 1
j = 2
while j ≤ k do

f = f · j
j = j + 1

return f

Schleifeninvariante:
f = (j − 1)!

1.) Initialisierung

Zeige:

Hier: klar, denn für j = 2 gilt:
f = (2− 1)! = 1! = 1

Invariante ist beim 1. Schleifendurchlauf erfüllt.

8

Noch ein Beispiel: Fakultät berechnen

Factorial(int k)

if k < 0 then error(. . .)
f = 1
j = 2
while j ≤ k do

f = f · j
j = j + 1

return f

Schleifeninvariante:
f = (j − 1)!

1.) Initialisierung 2.) Aufrechterhaltung

Zeige: Wenn die Invariante vor dem j . Schleifendurchlauf
erfüllt ist, dann auch vor dem j + 1.

Hier: Vor dem j . Durchlauf gilt INV, d.h. f = (j − 1)!
Dann wird f mit j multipliziert ⇒ f = j!
Dann wird j um 1 erhöht ⇒ f = (j − 1)! ⇒ INV

8

Noch ein Beispiel: Fakultät berechnen

Factorial(int k)

if k < 0 then error(. . .)
f = 1
j = 2
while j ≤ k do

f = f · j
j = j + 1

return f

Schleifeninvariante:
f = (j − 1)!

1.) Initialisierung 2.) Aufrechterhaltung 3.) Terminierung

Zeige:

Hier:

Algo terminiert. Zusammen ergeben Invariante und
verletzte Schleifenbedingung die Korrektheit.

Algo terminiert, da j in jedem Durchlauf erhöht wird.

Einsetzen von
”
j = k + 1“ in INV liefert f = k!

Verletzte Schleifenbedingung: j > k, also j = k + 1.

8

Noch ein Beispiel: Fakultät berechnen

Factorial(int k)

if k < 0 then error(. . .)
f = 1
j = 2
while j ≤ k do

f = f · j
j = j + 1

return f

Schleifeninvariante:
f = (j − 1)!

1.) Initialisierung 2.) Aufrechterhaltung 3.) Terminierung

Der Algorithmus Factorial(int) terminiert
und liefert das korrekte Ergebnis.

9

Selbstkontrolle

• Bringen Sie Fragen in die Übung mit!

• Bleiben Sie von Anfang an am Ball!

• Schreiben Sie sich in die Vorlesung ein:
– wuecampus2.uni-wuerzburg.de

– wuestudy.zv.uni-wuerzburg.de

– chat.uni-wuerzburg.de

• Programmieren Sie InsertionSort in Java!

• Lesen Sie Kapitel 1 und
Anhang A des Buchs von
Cormen et al. durch und machen Sie
dazu so viel Übungsaufgaben wie möglich!

Zählen Sie Vergleiche
für verschiedene Eingaben.

	Titel
	Das Problem
	Frage an alle Erstis
	Eine Lösung
	Ein inkrementeller Algorithmus
	Fertig?
	Korrektheit beweisen
	Noch ein Beispiel: Fakultät berechnen
	Selbstkontrolle

