Computational Geometry

Lecture 1:
Convex Hull or Mixing Things

Part I:
Organizational \& Overview

Philipp Kindermann
Winter Semester 2020

Organizational

Lectures: Pre-recorded videos (as you see here)
Release date: One week before the lecture
Wed 10:15-11:45: Questions/Discussion in Zoom
Questions/Tasks in the Videos

H: Hand In
S: Solutions
Tutorials: One sheet per lecture
$\geq 50 \%$: bonus on exam grade
Fri 14:15-15:45: Solutions/Discussion in Zoom

Our Lectures and Seminars

Algorithms and
 Data Structures

> Algorithmic Graph Theory

	Advanced Algorithms	Computational Geometry	Approximation Algorithms
	Exact Algorithms	Graph Visualization	Algorithms for Geographic Information Systems

> Seminar Graph Visualization

Master
Project

Computational Geometry

Learning goals: At the end of this lecture you will be able to

- decide which algorithms help to solve a number of fundamental geometric problems,
- analyze new problems and find efficient solutions with the concepts of the lecture.

Requirements: - Big-Oh notation (Landau); e.g., $O(n \log n)$

- Some basic Algorithms \mathcal{E} Data Structures (Balanced) binary search tree, priority queue
- Some basic Algorithmic Graph Theory Breadth-first search, Dijkstra's algorithm

Content (Prelim.)

1. Convex Hull in 2D
2. Segment Intersection
3. Polygon Triangulation
4. Linear Programming
5. Orthogonal Range Queries
6. Point Location
7. Voronoi Diagram
8. Delaunay Triangulation
9. Convex Hull in 3D
10. Motion Planning
11. Simplex Range Searching
12. Visibility Graph \& Shortest Path

titerature

M. de Berg, O. Cheong, M. van Kreveld, M. Overmars: Computational Geometry: Algorithms \& Applications. Springer, 3rd edition, 2008

Main resource for this course! Abbreviated as: Comp. Geom A\&A

Rolf Klein:
Algorithmische Geometrie: Grundlagen, Methoden, Anwendungen.
Springer, 2nd edition, 2005

Ketan Mulmuley:
Computational Geometry: An Introduction Through
Randomized Algorithms. Prentice Hall, 1st edition, 1993

Computational Geometry

Lecture 1:
Convex Hull or Mixing Things

Part II:
Mixing Things

Mixing Things
Given...

subst.	fract. A	fract. B
s_{1}	10%	35%
s_{2}	20%	5%
s_{3}	40%	25%

can we mix

q_{1}	25%	28%
q_{2}	15%	15%

using s_{1}, s_{2}, s_{3} ?

Observation. Given a set $S \subset \mathbb{R}^{2 d}$ of substances, we can mix a substance $q \in \mathbb{R}^{2 d d}$ using the substances in $S \Leftrightarrow q \in \mathrm{CH}(S)$.

Given $S \subset \mathbb{R}^{2}$, how do we define the convex hull $\mathrm{CH}(S)$?
Physics approach:- take (large enough) elastic rope

- stretch and let go
- take area inside (and on) the rope

Maths approach: - define convex

- define $\mathrm{CH}(S)=$

$C \supseteq S: C$ convex

Towards Computation

$$
\mathrm{CH}(S) \stackrel{\text { def }}{=} \bigcap_{C \supseteq S: C \text { convex }} C
$$

Problem with maths approach:

Maybe we can do with a little less?

Computational Geometry

Lecture 1:
Convex Hull or Mixing Things

Part III:
Algorithmic Approach

Algorithmic Approach

Input: \quad set S of n points in the plane, that is, $S \subset \mathbb{R}^{2}$

Output: list of vertices of $\mathrm{CH}(S)$ in clockwise order
Observation. (p, q) is an edge of $\mathrm{CH}(S) \Leftrightarrow$ each point in S lies

- strictly to the right of the directed line $\overrightarrow{p q}$ or
- on the line segment $\overline{p q}$

Finally, an Algorithm
r strictly right of $\overrightarrow{p q}$
§
FirstConvexHull(S)
$E \leftarrow \varnothing$
foreach $(p, q) \in S \times S$ with $p \neq q$ do valid \leftarrow true
foreach $r \in S$ do

$$
\left.\begin{array}{lll}
x_{r} & y_{r} & 1 \\
x_{p} & y_{p} & 1 \\
x_{q} & y_{q} & 1
\end{array} \right\rvert\,<0
$$

Important:
Test takes $O(1)$ time!
if not (r strictly right of $\overrightarrow{p q}$ or $r \in \overline{p q}$) then valid \leftarrow false

if valid then

$$
E \leftarrow E \cup\{(p, q)\}
$$

from E construct sorted list L of vertices of $\mathrm{CH}(S)$
return L

Running Time Analysis

FirstConvexHull(S)
$E \leftarrow \varnothing$
foreach $(p, q) \in S \times S$ with $p \neq q$ do $\quad\left(n^{2}-n\right)$.

valid \leftarrow true
 foreach $r \in S$ do
 if valid then
 $$
E \leftarrow E \cup\{(p, q)\}
$$

from E construct sorted list L of vertices of $\mathrm{CH}(S)$ return L

Lemma. We can compute the convex hull of n pts in the plane in $\Theta\left(n^{3}\right)$ time.

Discussion if not (r strictly right of $\overrightarrow{p q}$ or $r \in \overline{p q}$) then valid \leftarrow false

Observation. Algorithm FirstConvexHull is not robust.

Computational Geometry

Lecture 1:
Convex Hull or Mixing Things

Part IV:
Graham Scan

New Ideas (Graham Scan) upper convex hull

- split computation in two
- bring pts in lexicographic order
- proceed incrementally
lower convex hull

UpperConvexHull(S: set of pts in the plane) $\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle \leftarrow$ sort S lexicographically $L \leftarrow\left\langle p_{1}, p_{2}\right\rangle$
for $i \leftarrow 3$ to n do / / compute upper convex hull of $\left\{p_{1}, p_{2}\right.$
L.append (p_{i}) while $|L|>2$ and last 3 pts in L make a left turn do remove second last pt from L
return L

Running Time Analysis

UpperConvexHull(S : set of pts in the plane)
$\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle \leftarrow$ sort S lexicographically $\quad O(n \log n)$
$L \leftarrow\left\langle p_{1}, p_{2}\right\rangle$
for $i \leftarrow 3$ to n do
L.append $\left(p_{i}\right)$
$O(n)$
while $|L|>2$ and last 3 pts in L make a left turn do remove second last pt from L
return L
Amortized analysis:

- each pt p_{2}, \ldots, p_{n-1} pays $1 €$ for its potential removal later on
- this pays for the total effort of all executions of the while loop

Theorem. We can compute the convex hull of n pts in the plane in $O(n \log n)$ time - in a robust way.

Computational Geometry

Lecture 1:
 Convex Hull or Mixing Things

Part V:

Output-Sensitive Algorithms

Output-Sensitive Algorithms

■ Jarvis' gift-wrapping algorithm (aka Jarvis' march) Runtime? $O(n \cdot h)$

- Chan's exponential-search algorithm
\ldots where $h=|\mathrm{CH}(S)|=$ size of the output

Chan's Algorithm

Algorithm $\operatorname{Hull2D}(P)$, where $P \subset E^{2}$

1. for $t=1,2, \ldots$ do
2. $L \leftarrow \operatorname{Hull2D}(P, m, H)$, where $m=H=\min \left\{2^{2^{\prime}}, n\right\}$
3. if $L \neq$ incomplete then return L

Algorithm $\operatorname{Hull2D}(P, m, H)$, where $P \subset E^{2}, 3 \leq m \leq n$, and $H \geq 1$

1. partition P into subsets $P_{1}, \ldots, P_{[n / m]}$ each of size at most m
2. for $i=1, \ldots,\lceil n / m\rceil$ do
3. compute $\operatorname{conv}\left(P_{i}\right)$ by Graham's scan and store its vertices in an array in cow order $\quad[$ in $O(m \log m)$ time]
4. $p_{0} \leftarrow(0,-\infty)$
5. $p_{1} \leftarrow$ the rightmost point of P
6. for $k=1, \ldots, H$ do
7. for $i=1, \ldots,\lceil n / m\rceil$ do
8. compute the point $q_{i} \in P_{i}$ that maximizes $\angle p_{k-1} p_{k} q_{i}\left(q_{i} \neq p_{k}\right)$ by performing a binary search on the vertices of $\operatorname{conv}\left(P_{i}\right)$
9. $\quad p_{k+1} \leftarrow$ the point q from $\left\{q_{1}, \ldots, q_{[n / m\}}\right\}$ that maximizes $\angle p_{k-1} p_{k} q$
10. if $p_{k+1}=p_{1}$ then return the list $\left\langle p_{1}, \ldots, p_{k}\right\rangle$
11. return incomplete

Initially, we assume that the value of h is known and make a parameter $m=h$. This assumption is not realistic, but we remove it later. The algorithm starts by arbitrarily partitioning P into at most $1+\frac{n}{m}$ subsets Q with at most m points each. Then, it computes the convex hull of each subset Q using an $O(n \log n)$ algorithm - Graham's scan. Note that, as there are $O(n / m)$ subsets of $O(m)$ points each, this phase takes $O(n / m) \cdot O(m \log m)=O(n \log m)$ time.
The second phase consists of executing the Jarvis' march algorithm algorithm and using the precomputed convex hulls to speed up the execution. At each step in Jarvis's march, we have a point p_{i} in the convex hull, and need to find a point $p_{i+1}=f\left(p_{i}, P\right)$ such that all other points of P are to the right of the line $p_{i} p_{i+1}$. If we know the convex hull of a set Q of m points, then we can compute $f\left(p_{i}, Q\right)$ in $O(\log m)$ time, by using binary search. We can compute $f\left(p_{i}, Q\right)$ for all the $O(n / m)$ subsets Q in $O(n / m \log m)$ time. Then, we can determine $f\left(p_{i}, P\right)$ using the same technique as normally used in Jarvis's march, but only considering the points that are $f\left(p_{i}, Q\right)$ for some subset Q. As Jarvis's march repeats this process $O(h)$ times, the second phase also takes $O(n \log m)$ time, and therefore $O(n \log h)$ time if $m=h$.
By running the two phases described above, we can compute the convex hull of n points in $O(n \log h)$ time, assuming that we know the value of h. If we make $m<h$, we can abort the execution after $m+1$ steps, therefore spending only $O(n \log m)$ time (but not computing the convex hull). We can initially set m as a small constant (we use 2 for our analysis, but in practice numbers around 5 may work better), and increase the value of m until $m>h$, in which case we obtain the convex hull as a result.
If we increase the value of m too slowly, we may need to repeat the steps mentioned before too many times, and the execution time will be large. On the other hand, if we increase the value of m too quickly, we risk making m much larger than h, also increasing the execution time. Similar to strategy used by Chazelle and Matoušek's algorithm, Chan's algorithm squares the value of m at each iteration, and makes sure that m is never larger than n. In other words, at iteration t (starting at 1), we have $m=\min \left(n, 2^{2^{t}}\right)$. The total running time of the algorithm is

$$
\sum_{t=1}^{\lceil\log \log h\rceil} O\left(n \log \left(2^{2^{t}}\right)\right)=O(n) \sum_{t=1}^{\lceil\log \log h\rceil} O\left(2^{t}\right)=O\left(n \cdot 2^{1+\lceil\log \log h\rceil}\right)=O(n \log h)
$$

To generalize this construction for the 3-dimensional case, an $O(n \log n)$ algorithm to compute the 3-dimensional convex hull should be used instead of Graham scan, and a 3-dimensional version of Jarvis's march needs to be used. The time complexity remains $O(n \log h)$.

