
1

Philipp Kindermann Winter Semester 2020

Lecture 1:
Convex Hull or Mixing Things

Part I:
Organizational & Overview

Computational Geometry



2 - 16

Organizational

R2

Lectures:

Tutorials: One sheet per lecture

Fri 14:15 – 15:45: Solutions/Discussion in Zoom

Pre-recorded videos (as you see here)
Release date: One week before the lecture
Wed 10:15 – 11:45: Questions/Discussion in Zoom

R1 D1
R2

R3
D3

D3
R4

R1

R3
R4

D1
D2

D3

S1
S2

R: Release
D: Discussion
H: Hand In
S: Solutions

We WeFr Fr Fr WeWe FrFr

Questions/Tasks in the Videos

We FrFr

D4
R5 D5

S3
D4

≥ 50%: bonus on exam grade

R5

H1
H2

H3



3

Our Lectures and Seminars

Exact
Algorithms

Graph
Visualization

Algorithms for
Geographic Information

Systems

Advanced
Algorithms

Computational
Geometry

Approximation
Algorithms

Seminar Graph
Visualization

Algorithms and
Data Structures

Algorithmic
Graph Theory

Master
Thesis

Master
Project

Seminar Algorithms
for Programming

Contests

WS

SS



4 - 6

Computational Geometry
Learning goals:

– decide which algorithms help to solve a number of
fundamental geometric problems,

Requirements:

At the end of this lecture you will be able to

– analyze new problems and find efficient solutions
with the concepts of the lecture.

– Some basic Algorithms & Data Structures

– Some basic Algorithmic Graph Theory

– Big-Oh notation (Landau); e.g., O(n log n)

(Balanced) binary search tree, priority queue

Breadth-first search, Dijkstra’s algorithm



5

Content (Prelim.)
1. Convex Hull in 2D
2. Segment Intersection
3. Polygon Triangulation
4. Linear Programming
5. Orthogonal Range Queries
6. Point Location
7. Voronoi Diagram
8. Delaunay Triangulation
9. Convex Hull in 3D

10. Motion Planning
11. Simplex Range Searching
12. Visibility Graph & Shortest Path



6 - 3

Literature

Rolf Klein:
Algorithmische Geometrie: Grundlagen, Methoden,
Anwendungen.
Springer, 2nd edition, 2005

M. de Berg, O. Cheong, M. van Kreveld, M. Overmars:
Computational Geometry: Algorithms & Applications.
Springer, 3rd edition, 2008

Ketan Mulmuley:
Computational Geometry: An Introduction Through
Randomized Algorithms. Prentice Hall, 1st edition, 1993

Main resource for this course!
Abbreviated as: Comp. Geom A&A



7

Lecture 1:
Convex Hull or Mixing Things

Part II:
Mixing Things

Computational Geometry

Philipp Kindermann Winter Semester 2020



8 - 14

Mixing Things

Observation. Given a set S ⊂ R2 of substances, we can
mix a substance q ∈ R2 using the substances
in S ⇔

.1 .2 .3 .4

subst. fract. A fract. B
s1 10 % 35 %
s2 20 % 5 %
s3 40 % 25 %

.4

.3

.2

.1

B

A

s1

s2

s3

Given...

subst. fract. A fract. B
q1 25 % 28 %
q2 15 % 15 %

can we mix
q2

?using s1, s2, s3

q ∈ CH(S).

d

d

s4

s5
q1



9 - 10

Formally. . .

Given S ⊂ R2, how do we define the convex hull CH(S)?

Physics approach: – take (large enough) elastic rope
– stretch and let go
– take area inside (and on) the rope

Maths approach: – define convex
– define CH(S) =

⋂
C⊇S : C convex

C



10 - 7

Towards Computation

Problem with maths approach:

CH(S) def
=

⋂
C⊇S : C convex

C

This set is HUGE!

Maybe we can do with a little less?

Claim. CH(S) =
⋂

H⊇S :

H =
⋂

H⊇S : H cl. halfplane,

H

|∂H ∩ S| ≥ 2H closed halfplane



11

Lecture 1:
Convex Hull or Mixing Things

Part III:
Algorithmic Approach

Computational Geometry

Philipp Kindermann Winter Semester 2020



12 - 6

Algorithmic Approach
Input:

Output:

set S of n points in the plane, that is, S ⊂ R2

list of vertices of CH(S) in clockwise order

p q
−→pq

Observation. (p, q) is an edge of CH(S) ⇔
each point in S lies
– strictly to the right of the directed line −→pq or
– on the line segment pq



13 - 18

Finally, an Algorithm

FirstConvexHull(S)
E← ∅
foreach (p, q) ∈ S× S with p 6= q do

valid← true
foreach r ∈ S do

if not (r strictly right of −→pq or r ∈ pq) then
valid← false

if valid then
E← E ∪ {(p, q)}

from E construct sorted list L of vertices of CH(S)
return L

r strictly right of −→pq
m∣∣∣∣∣∣

xr yr 1
xp yp 1
xq yq 1

∣∣∣∣∣∣ < 0

Important:
Test takes O(1) time!



14 - 12

Running Time Analysis

FirstConvexHull(S)
E← ∅
foreach (p, q) ∈ S× S with p 6= q do

valid← true
foreach r ∈ S do

if not (r strictly right of −→pq or r ∈ pq) then
valid← false

if valid then
E← E ∪ {(p, q)}

from E construct sorted list L of vertices of CH(S)
return L

Θ
(1
)

Θ
(n
)

(n2 − n)·

Θ
(n

3 )
O
(n

2 )

Lemma. We can compute the convex hull of n pts in the
plane in Θ(n3) time.

n·



15 - 9

Discussion

r

p

q E

if not (r strictly right of −→pq or r ∈ pq) then
valid← false

E

Test may return
wrong answer
(floating pt arithmetic!):

r right of −→pq :-(

p not right of −→rq

q not right of −→pr

p

r

q

Observation. Algorithm FirstConvexHull is not robust.



16

Lecture 1:
Convex Hull or Mixing Things

Part IV:
Graham Scan

Computational Geometry

Philipp Kindermann Winter Semester 2020



17 - 40

New Ideas (Graham Scan)
� split computation in two

� bring pts in lexicographic order

upper convex hull

lower convex hull
UpperConvexHull(S: set of pts in the plane)
〈p1, p2, . . . , pn〉 ← sort S lexicographically
L← 〈p1, p2〉
for i← 3 to n do

L.append(pi)
while |L| > 2 and last 3 pts in L make a left turn do

remove second last pt from L

return L

� proceed incrementally

// compute upper convex hull of {p1, p2, . . . , pi}



18 - 10

Running Time Analysis
UpperConvexHull(S: set of pts in the plane)
〈p1, p2, . . . , pn〉 ← sort S lexicographically
L← 〈p1, p2〉
for i← 3 to n do

L.append(pi)
while |L| > 2 and last 3 pts in L make a left turn do

remove second last pt from L

return L

O(n log n)

(n− 2)·

?

Amortized analysis:
– each pt p2, . . . , pn−1 pays 1e for its potential removal later on
– this pays for the total effort of all executions of the while loop

O(n)

Theorem. We can compute the convex hull of n pts in the
plane in O(n log n) time – in a robust way.



19

Lecture 1:
Convex Hull or Mixing Things

Part V:
Output-Sensitive Algorithms

Computational Geometry

Philipp Kindermann Winter Semester 2020



20 - 14

Output-Sensitive Algorithms
� Jarvis’ gift-wrapping algorithm (aka Jarvis’ march)

� Chan’s exponential-search algorithm O(n log h)

. . . where h = |CH(S)| = size of the output

Runtime? O(n · h)



21 - 7

Chan’s Algorithm P1P2

P4

P3

q1

q3
q4

q2

[in O(m log m) time]

pk

pk−1

pk+1

p1

p0



22

Chan’s Algorithm
Initially, we assume that the value of h is known and make a parameter m = h. This assumption is not realistic, but we
remove it later. The algorithm starts by arbitrarily partitioning P into at most 1 + n

m subsets Q with at most m points
each. Then, it computes the convex hull of each subset Q using an O(n log n) algorithm – Graham’s scan. Note that, as
there are O(n/m) subsets of O(m) points each, this phase takes O(n/m) ·O(m log m) = O(n log m) time.

The second phase consists of executing the Jarvis’ march algorithm algorithm and using the precomputed convex
hulls to speed up the execution. At each step in Jarvis’s march, we have a point pi in the convex hull, and need to find
a point pi+1 = f (pi , P) such that all other points of P are to the right of the line pi pi+1. If we know the convex hull
of a set Q of m points, then we can compute f (pi , Q) in O(log m) time, by using binary search. We can compute
f (pi , Q) for all the O(n/m) subsets Q in O(n/m log m) time. Then, we can determine f (pi , P) using the same
technique as normally used in Jarvis’s march, but only considering the points that are f (pi , Q) for some subset Q. As
Jarvis’s march repeats this process O(h) times, the second phase also takes O(n log m) time, and therefore O(n log h)
time if m = h.
By running the two phases described above, we can compute the convex hull of n points in O(n log h) time, assuming
that we know the value of h. If we make m < h, we can abort the execution after m + 1 steps, therefore spending only
O(n log m) time (but not computing the convex hull). We can initially set m as a small constant (we use 2 for our
analysis, but in practice numbers around 5 may work better), and increase the value of m until m > h, in which case
we obtain the convex hull as a result.
If we increase the value of m too slowly, we may need to repeat the steps mentioned before too many times, and the
execution time will be large. On the other hand, if we increase the value of m too quickly, we risk making m much
larger than h, also increasing the execution time. Similar to strategy used by Chazelle and Matoušek’s algorithm,
Chan’s algorithm squares the value of m at each iteration, and makes sure that m is never larger than n. In other

words, at iteration t (starting at 1), we have m = min
(

n, 22t
)

. The total running time of the algorithm is

dlog log he
∑

t=1
O
(

n log(22t
)

)
= O(n)

dlog log he
∑

t=1
O(2t ) = O

(
n · 21+dlog log he) = O(n log h).

To generalize this construction for the 3-dimensional case, an O(n log n) algorithm to compute the 3-dimensional
convex hull should be used instead of Graham scan, and a 3-dimensional version of Jarvis’s march needs to be used.
The time complexity remains O(n log h).

[Text copied on October 17, 2017 from:
https://en.wikipedia.org/wiki/Chan’s algorithm]


	Organizational & Overview
	Organizational
	Our Lectures and Seminars
	Computational Geometry
	Content (Prelim.)
	Literature

	Mixing Things
	Formally\dots
	Towards Computation

	Algorithmic Approach
	Finally, an Algorithm
	Running Time Analysis
	Discussion

	Graham Scan
	Running Time Analysis

	Output-Sensitive Algorithms
	Jarvis' Gift-Wrapping Algorithm
	Chan's Algorithm


