
Problem X (don't pick as seminar topic)
Did you know that . . . ?

. . . this problem was originally
named Brace Yourself?
Amazing name, isn’t it?

When writing text, people sometimes rely on braces to inject ad-
ditional details to certain statements. Due to human defectiveness,
braces (especially closing ones are prone to be missing. A differ-
ent race – the compilers – heavily relies on braces to be balanced
and well nested. To prevent misapprehensions and ensure proper
interaction between humans and compilers, all humans’ texts need to be verified prior to passing
them on to the compilers.

The pairs of characters (), { }, [], and < > are used as control symbols in source code and
each define a control block. An opening brace (i.e., one of ({[<) marks the start of a control
block, the corresponding closing brace (i.e., the matching brace)}]>) marks the end of the
control block. Control blocks can encapsulate other control blocks, but no two control blocks
may intersect each other. A text may also contain string literals, which are character sequences
delimited by a pair of quotation marks ". Quotation marks cancel out control characters, which
means that after the first quotation mark no character is interpreted as control character until the
next quotation mark. Write a source code check that tests if all string literals and control blocks
are valid and closed.

Input

The input consists of:
• One or more lines (separated by \n) made up of whitespace, numbers, alphabetic charac-

ters, and all other printable ASCII characters. More precisely, the set of allowed characters
is the ASCII range 0x20-0x7e, as well as 0x09 (tab) and 0x0a (newline).

The total number of characters in the input is at most 1 048 576 (= 1MiB).

Output

Output correct if all control blocks and strings are valid and closed or incorrect if not.

Sample Input 1 Sample Output 1

{ [< "this is a > string" >]
this is not a string } ()

correct

Sample Input 2 Sample Output 2

{ [< "this is a > string "]
this is not a string } ()

incorrect

Problem A
Picky Servers

As part of his new job at the IT security department of his company, Bob got the task to track
how fast messages between the companies’ different offices are transmitted through the internet.
Since some offices are currently rebuilt and not finished yet he is not able to simply measure
the transmission speed but needs to compute it somehow. Therefore, Bob created a map of all
servers that may be involved in routing the packages through the internet. He also gathered the
times each server needs to process a message. The total processing time of a message is the sum
of the processing times of the sender, all servers along the path, and the receiver. Furthermore,
Bob read that messages are sent through the network of servers along a path such that the total
processing time of all servers on the path is minimal.

Bob thought that it might be an easy problem to compute the total transmission time between
two offices, but he forgot the intelligence agencies! Each server on the internet is controlled by
some agency that can decide which packages are routed and which of them are not. All servers
are configured in a way that they read all incoming data, since gathering all kind of information
is exactly what the intelligence agencies want to do, but not all data is forwarded to other servers.

Each server has a list of pairs of other servers such that messages from the first of them are
not sent to the second one. Can you still help Bob to compute how fast his messages will be
transmitted?

Input

The input consists of:

• one line with an integer n (2 ≤ n ≤ 100), where n is the number of servers labeled from

1 to n;

• n blocks describing the servers. Each server is described by:

– one line with two integers m (0 ≤ m ≤ n − 1) and t (0 ≤ t ≤ 1000), where m is

the number of outgoing connections from this server and t is the processing time of

this server;

– m lines with two integers s (0 ≤ s ≤ n− 1) and x (1 ≤ x ≤ n) and s more distinct

integers a1, . . . , as (1 ≤ aj ≤ n, aj 6= i for all 1 ≤ j ≤ s) indicating that server i

sends messages to server x, but only if it was not directly transmitted from one of

the servers a1, . . . , as to server i.

Bob’s messages start at server 1 and should go to server n.

Output

Output the sum of the processing times of all servers on the shortest path for Bob’s message

including the first and last one, or “impossible” if there is no such path.

1 10

2 1

3 10

4 10
1

1

1

10

2

10

3

10

1

Figure K.1: Illustration of the sample inputs.

Sample Input 1 Sample Output 1

4

2 10

0 2

0 3

1 1

1 4 1

2 10

1 2 1

0 4

0 10

30

Sample Input 2 Sample Output 2

3

1 10

0 2

1 10

1 3 1

0 10

impossible

Problem B: Avast!
The world is at the brink of extinction. A mutated virus threatens to destroy all living organisms.
As a last hope, a team of super-smart scientists, including – of course – you, is currently working
on an antivirus. Unfortunately, your team is unable to analyse the DNA in time. They sequenced

n parts of the virus’ DNA and need to match them with n available strands for antiviruses. As
the algorithms expert, you need to implement a specialised procedure to solve this problem.

Your approach needs to be fast – there is not much time left!

You first need to determine the repetition score of each DNA sequence. The repetition score of a
sequence s is equal to the length of the shortest sequence u such that s is equal to the k-fold
repetition of u, for some positive integer k. For instance, ATGATG has a repetition score of 3,
since it can be produced by repeating ATG two times. On the other hand, ATATA has a repetition

score of 5, as it cannot be produced from any proper substring.

Once you obtained the scores of all sequences, you need to match the n antivirus sequences
with the n virus sequences in a way that minimises the damage caused by the virus. When
two sequences are matched, the damage caused by the virus is equal to the squared difference
between the two repetition scores. For instance, matching the antivirus sequence ATGATG with

the virus sequence ATATA causes (3 − 5)2
= 4 units of damage.

If you match the DNA sequences optimally, what is the minimal total damage caused by the
virus, taken as a sum over all matched pairs?

Input

The input consists of:

• A line with an integer n (1 ≤ n ≤ 50), the number of DNA sequences of the virus and

antivirus each.

• n lines, each with a virus DNA sequence.

• n lines, each with an antivirus DNA sequence.

Each DNA sequence is a non-empty string with a length of at most 250 and consists of lowercase

letters a-z and uppercase letters A-Z.

Output

Output one integer, the minimal total damage.

Sample Input 1 Sample Output 1

2

TTTTTT

TATG

TATATA

AAAGAAAG

1

Sample Input 2 Sample Output 2

3

abcdef

aaa

bab

AbAb

xyzxyz

X

10

Problem C: Teamwork
Din Djarin the bounty hunter is tracking another criminal through space. Luckily for him
hyperspace travel has made the task of visiting several planets a lot easier. Each planet has a
number of Astral Gates; each gate connects with a gate on another planet. These hyperspace

connections are, for obvious safety reasons, one-way only with one gate being the entry point

and the other gate being the exit point from hyperspace. Furthermore, the network of

hyperspace connections must be loop-free to prevent the Astral Gates from exploding, a tragic

lesson learned in the gate accident of 2022 that destroyed most of the moon.

While looking at his star map Din wonders how many friends he needs to conduct a search on
every planet. Each planet should not be visited by more than one friend otherwise the criminal

might get suspicious and flee before he can be captured. While each person can start at a planet

of their choosing and travel along the hyperspace connections from planet to planet they are still

bound by the limitations of hyperspace travel.

0 1 2

3

0

1

4

2 5

3

Figure B.1: Illustration of the Sample Inputs.

Input

The input begins with an integer N specifying the number of planets (0 < N ≤ 1000). The

planets are numbered from 0 to N−1. The following N lines specify the hyperspace connections.

The i-th of those lines first contains the count of connections K (0 ≤ K ≤ N −1) from planet i

followed by K integers specifying the destination planets.

Output

Output the minimum number of persons needed to visit every planet.

Sample Input 1 Sample Output 1

4

1 1

1 2

0

1 1

2

Sample Input 2 Sample Output 2

6

0

1 2

2 4 5

1 2

0

0

4

Problem D: Toving Liles
The computer science Professor Toving Liles loves the floor tiles in his office so much that he

wants to protect them from damage by careless students. Therefore, he would like to buy cheap

small rectangular carpets from the supermarket and cover the floor such that:

1. The entire floor is covered.

2. The carpets do not overlap.

3. The carpets are rotated arbitrarily.

4. No carpet is cut into pieces.

But when checking the supermarket’s stock he begins to wonder whether he can accomplish his

plan at all. Can you help him?

Input

The first line contains two integers W and H describing the size of his room (1 ≤ W,H ≤ 100).

The second line contains an integer c, denoting the number of different carpet colors the

supermarket has in stock (1 ≤ c ≤ 7).

Each of the following c lines consists of three integers ai, wi, and hi, which means: the

supermarket’s stock contains ai carpets of size wi, hi and color i (1 ≤ ai ≤ 7; 1 ≤ wi ≤ 100;

1 ≤ hi ≤ 100).

The supermarket has at most 7 carpets, i.e.
∑

i
ai ≤ 7.

Output

For the given room dimensions and the supermarket’s stock of carpets, print “yes” if it is

possible to cover the room with carpets as specified above and “no” otherwise.

Sample Input 1 Sample Output 1

2 4

2

3 1 3

2 2 1

yes

Sample Input 2 Sample Output 2

100 100

3

4 42 42

1 100 16

1 32 42

no

Problem E: A problem of packaging
Sophie loves to bake cakes and share them with friends. For the wedding of her best friend Bea

she made a very special cake using only the best ingredients she could get and added a picture of

the engaged couple on top of the cake. To make it even more special she did not make it round

or square, but made a custom convex shape for the cake. Sophie decided to send the cake by a
specialized carrier to the party. Unfortunately, the cake is a little too heavy for their default cake

package and the overweight fees are excessive. Therefore, Sophie decides to remove some parts

of the cake to make it a little lighter.

Sophie wants to cut the cake the following way: First, she chooses a real number s ≥ 2. For
each vertex and each incident edge of the cake she marks where 1/s of the edge’s length is.
Afterwards, she makes a direct cut between the two markings for each vertex and removes the

vertex that way.

1

4

3

4

1

4

3

4

(a) Cutting the upper-right corner of a

rectangle with s = 4

(b) Cutting a cake with s = 3

Figure C.1: Illustration of the first two Sample Inputs.

Sophie does not want to cut more from the cake than necessary for obvious reasons. Can you

tell her how to choose s?

Input

The first line contains a floating point number a and an integer N , where a denotes the ratio of

the cake’s weight allowed by the carrier and N the number of vertices of the cake (0.25 ≤ a < 1;

3 ≤ N ≤ 100). a will be specified with at most 7 digits after the decimal point.

Then follow N lines, each describing one of the cake’s vertices with two integers xi and yi, the

coordinates of the vertex (0 ≤ xi, yi ≤ 10
8 for all 1 ≤ i ≤ N). The vertices are given in the

order in which they form a strictly convex shape.

You may safely assume that the weight is uniformly distributed over the area of the cake.

Furthermore, it will always be possible to cut the cake with some 2 ≤ s ≤ 1000 such that the

proportion of the remaining cake is a of the original weight.

Output

Print a line containing s, the biggest value as specified above such that the remaining cake’s

weight is at most the proportion a of its original weight.

Your answer will be considered correct if the absolute error is at most 10−4.

Sample Input 1 Sample Output 1

0.875 4

0 0

8 0

8 4

0 4

4.000000

Sample Input 2 Sample Output 2

0.85 5

6 0

12 6

9 12

0 12

3 3

3.000000

Sample Input 3 Sample Output 3

0.999998 4

20008 10000

15004 15005

10001 20009

15005 15004

1000.000000

0 Athens

1 stay 2

2

3

4

stay 2

5stay 2

2

3

3

10

6

2

21

2

5

Problem F: Telephone a taxi
For a long time Tim wanted to visit Greece. He has already purchased his flight to and from

Athens. Tim has a list of historical sites he wants to visit, e.g., Olympia and Delphi. However,

due to recent political events in Greece, the public transport has gotten a little complicated. To

make the Greek happy and content with their new government, many short-range bus and train

lines have been created. They shall take the citizens around in their neighborhoods, to work or

to their doctor. At the same time, long-range trains that are perfect for tourists have been closed

down as they are too expensive. This is bad for people like Tim, who really likes to travel by

train. Moreover, he has already purchased the Greece’ Card for Public Conveyance (GCPC)

making all trains and buses free for him.

taxi 5

Figure A.1: Visual representation of the Sample Input: Tim’s tour has length 18.

Despite his preferred railway lines being closed down, he still wants to make his travel trough

Greece. But taking all these local bus and train connections is slower than expected, so he wants

to know whether he can still visit all his favorite sites in the timeframe given by his flights. He

knows his schedule will be tight, but he has some emergency money to buy a single ticket for a

special Greek taxi service. It promises to bring you from any point in Greece to any other in a

certain amount of time.

For simplicity we assume, that Tim does never have to wait for the next bus or train at a station.

Tell Tim, whether he can still visit all sites and if so, whether he needs to use this taxi ticket.

Input

The first line contains five integers N , P , M , G and T , where N denotes the number of places

in Greece, P the number of sites Tim wants to visit, M the number of connections, G the total

amount of time Tim can spend in Greece, and T the time the taxi ride takes (1 ≤ N ≤ 2 · 104;

1 ≤ P ≤ 15; 1 ≤ M,G ≤ 10
5; 1 ≤ T ≤ 500).

Then follow P lines, each with two integers pi and ti, specifying the places Tim wants to visit

and the time Tim spends at each site (0 ≤ pi < N ; 1 ≤ ti ≤ 500). The sites pi are distinct from

each other.

Then follow M lines, each describing one connection by three integers si, di and ti, where si
and di specify the start and destination of the connection and ti the amount of time it takes

(0 ≤ si, di < N ; 1 ≤ ti ≤ 500).

All connections are bi-directional. Tim’s journey starts and ends in Athens, which is always the

place 0.

Output

Print either “impossible”, if Tim cannot visit all sites in time, “possible without

taxi”, if he can visit all sites without his taxi ticket, or “possible with taxi”, if he

needs the taxi ticket.

Sample Input 1 Sample Output 1

6 3 10 18 5

1 2

4 2

5 2

0 1 2

1 2 3

2 4 3

1 3 10

2 3 6

0 3 2

3 4 2

4 5 1

3 5 2

0 5 5

possible with taxi

Problem G
Patent Claims

The year is 1902. Albert Einstein is working in the patent office in Bern. Many patent proposals

contain egregious errors; some even violate the law of conservation of energy. To make matters

worse, the majority of proposals make use of non-standard physical units that are not part of the

metric system (or not even documented). All proposals are of the following form:

• Every patent proposal contains n energy converters.

• Every converter has an unknown input energy unit associated with it.

• Some energy converters can be connected: If converter a can be connected to converter b

such that one energy unit associated with a is turned into c input units for b, then this is

indicated by an arc a
c

−→ b in the proposal. The output of a can be used as input for b if

and only if such an arc from a to b exists.

Einstein would like to dismiss all those proposals out of hand where the energy converters can

be chained up in a cycle such that more energy is fed back to a converter than is given to it as

input, thereby violating the law of conservation of energy.

Einstein’s assistants know that he is born for higher things than weeding out faulty patent

proposals. Hence, they take care of the most difficult cases, while the proposals given to Einstein

are of a rather restricted form: Every admissible patent proposal given to Einstein does not allow

for a cycle where the total product of arc weights exceeds 0.9. By contrast, every inadmissible

patent proposal given to Einstein contains a cycle where the the number of arcs constituting the

cycle does not exceed the number of converters defined in the proposal, and the total product of

arc weights is greater or equal to 1.1.

Could you help Einstein identify the inadmissible proposals?

Input

The input consists of:

• one line with two integers n and m, where

– n (2 ≤ n ≤ 800) is the number of energy converters;

– m (0 ≤ m ≤ 4000) is the number of arcs.

• m lines each containing three numbers ai, bi, and ci, where

– ai and bi (1 ≤ ai, bi ≤ n) are integers identifying energy converters;

– ci (0 < ci ≤ 5.0) is a decimal number

indicating that the converter ai can be connected to the converter bi such that one input

unit associated with ai is converted to ci units associated with bi. The number ci may have

up to 4 decimal places.

Output

Output a single line containing inadmissible if the proposal given to Einstein is inadmissi-

ble, admissible otherwise.

Sample Input 1 Sample Output 1

2 2

1 2 0.5

2 1 2.3

inadmissible

Sample Input 2 Sample Output 2

2 2

1 2 0.5

2 1 0.7

admissible

Problem H
Single-lane Serpentine

In Franconian Switzerland, there is a narrow mountain road. With only a single lane, this is a
bottleneck for two-way traffic. Your job is to schedule incoming cars at both ends so that the last
car leaves the road as early as possible.
Each car is specified by three values: the direction in which it is going, the arrival time at the
corresponding beginning of the road, and the driving time this car needs to get through, provided it
is not slowed down by other cars in front. Cars cannot overtake each other on the mountain road,
and reordering cars in the queues at the ends of the road is not allowed.
For safety reasons, two successive cars going in the same direction may not pass any point of the
road within less than 10 seconds. This ensures that the second car will not crash into the first car if
the latter brakes hard. However, if another car passes in the other direction in between, it will be
clear that the road is empty, so in this case, this rule does not apply.

Input

The first line of the input consists of a single integer c (1 ≤ c ≤ 200), the number of test cases.
Then follow the test cases, each beginning with a single line consisting of an integer n (1 ≤ n ≤ 200),
the number of cars you are to consider in this test case. The remainder of each test case consists of

n lines, one line per car, starting with a single upper case letter (“A” or “B”), giving the direction
in which the car is going. Then follow, on the same line, two integers t (0 ≤ t ≤ 100 000) and d
(1 ≤ d ≤ 100 000), giving the arrival time at the beginning of the road and the minimum travel time,
respectively, both in seconds.
Within a test case, the cars are given in order of increasing arrival time, and no two cars will arrive
at the same time.

Output

For each test case, print a single line consisting of the point in time (in seconds) the last car leaves
the road when the cars are scheduled optimally.

Sample Input Sample Output

2

4

A 0 60

B 19 10

B 80 20

A 85 100

4

A 0 100

B 50 100

A 100 1

A 170 100

200

270

Problem K
Flipping out

Once there was an inventor congress, where inventors from all over the world met in one place. The
organizer of the congress reserved exactly one hotel room for each inventor. Each inventor, however,
had its own preference regarding which room he would like to stay in. Being a clever inventor himself,
the organizer soon found an objective way of doing the room assignments in a fair manner: each
inventor wrote two different room numbers on a fair coin, one room number on each side. Then,
each inventor threw his coin and was assigned the room number which was shown on the upper side
of his coin. If some room had been assigned to more than one inventor, all inventors had to throw
their coins again.
As you can imagine, this assignment process could take a long time or even not terminate at all.
It has the advantage, however, that among all possible room assignments, one assignment is chosen
randomly according to a uniform distribution. In order to apply this method in modern days, you
should write a program which helps the organizer.
The organizer himself needs a hotel room too. As the organizer, he wants to have some advantage: he
should be able to rate each of the rooms (the higher the rating, the better), and the program should
tell him which two room numbers he should write on his coin in order to maximize the expected
rating of the room he will be assigned to. The program also has access to the choices of the other
inventors before making the proposal. It should never propose two rooms for the organizer such that
it is not possible to assign all inventors to the rooms, if a valid assignment is possible at all.

Input

The input starts with a single number c (1 ≤ c ≤ 200) on one line, the number of test cases. Each
test case starts with one line containing a number n (2 ≤ n ≤ 50 000), the number of inventors and
rooms. The following n − 1 lines contain the choices of the n − 1 guests (excluding the organizer).
For each inventor, there is a line containing two numbers a and b (1 ≤ a < b ≤ n), the two room
numbers which are selected by the inventor. The last line of each test case consists of n integers
v1, . . . , vn (1 ≤ vi ≤ 1 000 000), where vi is the organizer’s rating for room i.

Output

For each test case, print a single line containing the two different room numbers a and b which should
be selected by the organizer in order to maximize the expected rating of the room he will be assigned
to. If there is more than one optimal selection, break ties by choosing the smallest a and, for equal
a, the smallest b. If there is no way for the organizer to select two rooms such that an assignment of
inventors to rooms is possible, print “impossible” instead.

Sample Input Sample Output

3

4

1 2

2 3

1 3

2 3 4 1

3

1 2

2 3

100 40 70

5

1 2

1 2

1 2

3 4

1 1 1 1 1

1 4

1 3

impossible

1

2 3

Problem L: Molvanian Castles
The royal castles in Molvania follow the design of king Sane, first of his dynasty. He ruled by
divide and conquer. Therefore, all castles are built according to a hierarchical pattern based
on interconnected buildings. A building consists of halls and corridors that connect halls.

Initially, a castle consists of only one building (the main building). When its population grows,
the castle is extended as follows: A new peripheral building is constructed, attached to one
of the existing buildings. Like any other building, the new building also consists of halls and
corridors. An additional corridor is created to connect a hall in the existing building to a hall
in the new building. That corridor is the only way to access the new building.

The number of halls in a building is at most 10.

4

5

6

78 9

10

11

12

13

14 15

16

Figure 1: The castle layout of the example provided below.

In times of turmoil, the king monitors all corridors by strategically placing guards in halls.

He asks you to determine the least number of guards required to monitor all corridors in the

castle (as he wants to keep his personal guard as large as possible). Note that since the last

fire, there are no doors in the castle, so we can safely assume that a guard placed in a hall

can monitor all connecting corridors.

Input

The input contains a number of castle descriptions. Within a castle, each hall is identified by

a unique number between 1 and 10000. Each castle is recursively defined, starting with a

description of the main building:

1. A line containing three integers, representing the number of halls in this building

(2 ≤ n ≤ 10), the number of corridors in this building (1 ≤ m ≤ 45), and the num-

ber of peripheral buildings that were later attached to this building (0 ≤ w ≤ 10).

2. For each of the m corridors:

• A line containing two integers (each ≤ 10000), representing the two halls con-

nected by this corridor. Both halls are located inside the current building.

3. For each of the w peripheral buildings:

• A line containing two integers, describing the corridor that leads to this peripheral

building. The first integer represents a hall in the current building, while the

second integer represents a hall in the peripheral building.

• The structure of the peripheral building and any newer buildings that were later

attached to it, described by repeating rules 1 to 3.

The castle is fully connected: any hall is directly or indirectly reachable from any other hall.

Corridors with the same start and end hall do not exist, and for every two halls there is at

most one corridor between them.

Output

For each castle, print a single line containing a positive integer: the minimum number of

guards to place in halls such that all corridors in the castle are monitored.

Example

input output

5 8 2

1 2

2 4

3 4

1 3

1 5

2 5

3 5

4 5

1 6

3 3 0

6 7

7 8

8 6

5 10

3 2 2

10 11

10 12

11 13

2 1 0

13 9

11 14

3 2 0

14 15

14 16

8

Problem M: Inconspicuous Hacking
Karl is competing in the preliminary round of a talent show called North-Western European

Idol (NWEI), and wants to advance to the next round: World Idol. In the talent show, each

contestant gets 10 minutes to impress the judges. After all the contestants have performed,

each of the judges will cast two distinct votes. A vote can be either in favour of a contestant

(meaning this contestant should advance) or against a contestant (meaning this contestant

should not advance). The number of contestants that advance to the next round is not known

in advance; if there are only very bad contestants, then it is possible that nobody will advance,

or if everybody is amazing, then everybody may advance.

Karl is afraid that the judges will not appreciate his programming talents, and hence wants

to use his other talent to advance to the next round: hacking. Having gained access to the

jury system, Karl is capable of overriding the regular process of counting votes, and instead

selecting exactly which contestants advance to the next round. The only problem is, he has

to be careful not to arouse suspicion.

Each judge expects that at least one of his (or her) own two votes corresponds to the outcome

of the contest. If the outcome contradicts both votes, the judge becomes alarmed. As an

example, assume judge Harry casts a vote in favour of Pete and a vote against Sally. If Sally

advances and Pete does not, judge Harry will be alarmed and may discover Karl’s tampering

with the system.

Since Karl’s programming talents are limited (otherwise he would not have needed his hack-

ing talents), he needs you to make a program that finds out if there is a set of contestants,

which includes himself, that he can select to advance to the next round by hacking the jury

system, such that it does not alarm any of the judges.

Input

For each test case, the input is as follows:

• One line containing two positive integers: the number of contestants n (2 ≤ n < 1000)

and the number of judges m (1 ≤ m < 2000).

• m lines containing the votes of each judge.

Each of these line contains two integers: the numbers a (1 ≤ |a| ≤ n), and b (1 ≤ |b| ≤ n),

the two votes of this judge (|a| 6= |b|).

A vote x < 0 means that the vote is against advancement of contestant |x|.

A vote x > 0 means that the vote is in favour of contestant |x|.

Contestants are numbered 1 . . . n.
Karl is contestant 1.

Output

For each test case, print one line of output containing the word ‘yes’ if there is a set of

contestants that advances to the next round that includes Karl, and does not alarm any of the

judges. If there is no such set of contestants, the line should contain ‘no’.

Example

input output

4 3

1 2

-2 -3

2 4

2 4

1 2

1 -2

-1 2

-1 -2

yes

no

Problem N
Around the Track

In order to compare race tracks, we wish to compute their lengths. A racetrack is strictly

two-dimensional (no elevation). It is described by two simple polygons, where one is completely

contained inside the other. The track is the region between these two polygons. We define

the length of the track as the absolute minimum distance that one needs to travel in order to
complete a lap. This could involve traveling on the very edge of the track and arbitrarily sharp

cornering (see Figure A.1).

Figure A.1: Illustration of sample input number 3 together with the shortest route around the

track (dashed).

Input

The input consists of:

• one line with one integer n (3 ≤ n ≤ 50), the number of vertices of the inner polygon;

• n lines, the ith of which contains two integers xi and yi (−5 000 ≤ xi, yi ≤ 5 000): the

coordinates of the ith vertex of the inner polygon;

• one line with one integer m (3 ≤ m ≤ 50), the number of vertices of the outer polygon;

• m lines, the ith of which contains two integers xi and yi (−5 000 ≤ xi, yi ≤ 5 000): the

coordinates of the ith vertex of the outer polygon.

For both polygons, the vertices are given in counterclockwise order. The borders of the two

polygons do not intersect or touch each other.

Output

Output one line with one floating point number: the length of the race track. Your answer should

have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1

3

1 1

2 1

1 2

3

0 0

4 0

0 4

3.41421356237309

Sample Input 2 Sample Output 2

5

1 1

5 1

5 5

3 3

1 5

4

0 0

6 0

6 6

0 6

16

Sample Input 3 Sample Output 3

5

1 1

5 1

5 5

3 3

1 5

5

0 0

6 0

6 6

3 4

0 6

16.4721359549996

	problemX
	very_easy_helpless_humans

	Combined
	Routing-dual+dijkstra
	assessingGenomes-repetition+stringMatching
	bountyHunter-matching
	bf_carpets
	Cake-geometry+BF+BS
	tsp_dp_journey_greece
	fw_perpetuum_mobile
	MountainRoad-DP
	RoomAssignment-Matching
	Guards-DP+recursion
	idol-2SAT
	AroundTheTrack-CG

