/ ¢ Thlevery ¢ \

Yophave broken into a shop. In the shop
ar aluable items. For each, you know
its weight w; and its value \&Unfortunately,
y

O

carry only a maximum total weight
hich subset of the items should you
take, such that the sum of wj 1s at most W

and the sum of vj is maximised?

\_ /

Input

* One line with an integer N, 1 < N < 5000,

the number of items.

* One line with an integer W, 1 = W = 30000,
your carrying capacity.

* N lines with two integers v, and w,
with 0 < v, w, = 10000.

Output

For each test case, output one line with a single
integer: the maximum value you can carry out of

the shop.
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vector<vector< >> table(n, vectorc« >(max_w + 1));

Small items: W = 5n,  vjand wi ~ [1,10]

vi and wi ~ [1,100]

Large items: W = 5n,

Fixed cap: W = 1000, viand wi ~ [1,10]
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Alternative
table indexing
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import java.1o0.x;

public class Thievery {

public static void main(String[] args) throws Exception {
“

BufferedReader br = new BufferedReader(
new InputStreamReader(System.in));
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W = 1008 Constant knapsack size
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