/ ¢ Thlevery ¢ \

Yophave broken into a shop. In the shop
ar aluable items. For each, you know
its weight w; and its value \&Unfortunately,
y

O

carry only a maximum total weight
hich subset of the items should you
take, such that the sum of wj 1s at most W

and the sum of vj is maximised?

_ /

Input

* One line with an integer N, 1 < N < 5000,

the number of items.

* One line with an integer W, 1 = W = 30000,
your carrying capacity.

* N lines with two integers v, and w,
with 0 < v, w, = 10000.

Output

For each test case, output one line with a single
integer: the maximum value you can carry out of

the shop.

e

Y]

.\)
T ~

mm@
= = N =
xO
®
O
5
~

Oo
T »T 71

-C(im-’ MaX Valug, us\’né_ on/j

Tems 9k | and %av:’rg_
weign- Uty w

(1 w)={0 Fwxy

vV LN $%

l

£<"a“>= Mi C(I"LW), 7°
5 f(ie1)#, §

vector<vector< >> table(n, vectorc« >(max_w + 1));

Small items: W = 5n, vjand wi ~ [1,10]

vi and wi ~ [1,100]

Large items: W = 5n,

Fixed cap: W = 1000, viand wi ~ [1,10]

&
N N W=
O
O
0/

Alternative
table indexing

o1 |2|3|4a|5|6|7|8]|9|10]11(12|13]14(15|16[17 |18 19
o |5, 10|15
|
1| 6| |14 |16
2| | 7] {12 |17
3|| 8| |18 |18
2\ N 14y 19

import java.1o0.x;

public class Thievery {

public static void main(String[] args) throws Exception {
“

BufferedReader br = new BufferedReader(
new InputStreamReader(System.in));

Small items

¢ ;) %/%

Small items Large items

++++++++++

W = 1008 Constant knapsack size

++++++++++

