

# Visualization of graphs

### Partial visibility representation extension With SPQR-trees

Jonathan Klawitter · Summer semester 2020



## SPQR-tree

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- The nodes of T are of four types:
  S nodes represent a series composition
  P nodes represent a parallel composition
  Q nodes represent a single edge
  R nodes represent 3-connected (*rigid*) subgraphs
- A decomposition tree of a series-parallel graph is an SPQR-tree without R nodes.
- $\blacksquare$  T represents all planar embeddings of G.
- **T** can be computed in  $\mathcal{O}(n)$  time. [Gutwenger, Mutzel '01]





# Bar visibility representation

- Vertices correspond to horizontal open line segments called bars
- Edges correspond to vertical unobstructed vertical sightlines
- What about unobstructed 0-width vertical sightlines? Do all visibilities induce edges?

### Models.

- Strong: Edge *uv* ⇔ unobstructed 0-width vertical sightlines
- Edge  $uv \Leftrightarrow \epsilon$  wide vertical sightlines for  $\epsilon > 0$
- Weak: Edge  $uv \Rightarrow$  unobstructed vertical sightlines exists, i. e., any subset of *visible* pairs





## Problems



#### **Recognition problem.**

Given a graph G, **decide** if there exists a weak/strong/ $\varepsilon$  bar visibility representation  $\psi$  of G.

#### **Construction problem.**

Given a graph G, construct a weak/strong/ $\varepsilon$  bar visibility representation  $\psi$  of G when one exists.



Partial Representation Extension (& Construction) problem. Given a graph G and a set of bars  $\psi'$  of  $V' \subset V(G)$ , decide if there exists a weak/strong/ $\varepsilon$  bar visibility representation  $\psi$  of G where  $\psi|_{V'} = \psi'$ (and construct  $\psi$  when it exists).

# Background



#### Weak Bar Visibility.

- All planar graphs. [Tamassia & Tollis 1986; Wismath 1985]
- Linear time recognition and construction [T&T '86]
- Representation Extension is NP-complete [Chaplick et al. '14]

#### Strong Bar Visibility.

■ NP-complete to recognize [Andreae '92]

# Background



#### ε-Bar Visibility.

- Planar graphs that can be embedded with all cut vertices on the outerface. [T&T 1986, Wismath '85]
- Linear time recognition and construction [T&T '86]
- What about Representation Extension?

Let's see!

# $\epsilon$ -bar visiblity and st-graphs

Recall that an **st-graph** is a planar digraph G with exactly one soure s and one sink t where s and t occur on the outer face of an embedding of G.

- *ɛ*-bar visability testing is easily done via st-graph recognition.
- Strong bar visability recognition...open?

In a **rectangular** bar visability representation  $\psi(s)$  and  $\psi(t)$  span an enclosing rectangle.

#### **Observation.**

st-orientations correspond to  $\varepsilon$ -bar visibility representations.



### Results and outline

#### Theorem 1. [Chaplick et al. '18]

**Rectangular**  $\varepsilon$ -Bar Visibility Representation Extension can be solved in  $\mathcal{O}(n \log^2 n)$  time for *st*-graphs.

Dynamic program via SPQR-trees

Easier version:  $\mathcal{O}(n^2)$ 

#### Theorem 2. [Chaplick et al. '18]

 $\epsilon$ -Bar Visibility Representation Ext. is NP-complete.

Reduction from Planar Monotone 3-SAT

#### **Theorem 3.** [Chaplick et al. '18]

 $\varepsilon$ -Bar Visibility Representation Ext. is NP-complete for (series-parallel) *st*-graphs when restricted to the **integer grid** (or if any fixed  $\varepsilon > 0$  is specified).

Reduction from 3-Partition

# Representation extension for st-graphs

Theorem 1'.

**Rectangular**  $\varepsilon$ -Bar Visibility Representation Extension can be solved in  $\mathcal{O}(n^2)$  time for *st*-graphs.

- Simplify with assumption on y-coordinates
- Look at connection to SPRQ-trees – tiling
- Solve problems for S, P and R nodes
- Dynamic program via SPQR-tree



## y-coordinate invariant

Let G be an st-graph, and  $\psi'$  be a representation of  $V' \subseteq V(G)$ .

• Let  $y: V(G) \to \mathbb{R}$  such that

• for each  $v \in V'$ , y(v) = the y-coordinate of  $\psi'(v)$ .

• for each edge (u, v), y(u) < y(v).

Lemma 1.

G has a representation extending  $\psi'$  iff G has a representation  $\psi$  extending  $\psi'$  where the y-coordinates of the bars are as in y. We can now assume all y-coordinates are given!

**Proof idea.** The relative positions of **adjacent** bars must match the order given by y. So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom-to-top.

## But why do SPQR-trees help?

**Lemma 2.** The SPQR-tree of an st-graph G induces a recursive **tiling** of any  $\varepsilon$ -bar visibility representation of G.



8

R

8

9





**Convention. Orange** bars are from the partial representation



#### **Observation.**

The bounding box (tile) of any solution  $\psi$ , contains the bounding box of the partial representation.

How many **different** tiles can we really have?

Types of tiles



- Right Fixed due to the orange bar
- Left Loose due to the orange bar

Left Fixed – due to the orange bar
 Right Loose – due to the orange bar



Four different types: FF, FL, LF, LL

# P nodes



- Children of P node with prescribed bars occur in given left-to-right order
- But there might be some gaps...

#### Idea.

Greedily *fill* the gaps by preferring to "stretch" the children with prescribed bars.



![](_page_14_Figure_7.jpeg)

#### Outcome.

After processing, we must know the valid types for the corresponding subgraphs.

S nodes

![](_page_15_Figure_1.jpeg)

This fixed vertex means we can only make a Fixed-Fixed representation! S nodes

![](_page_16_Figure_1.jpeg)

Here we have a chance to make all (LL, FL, LF, FF) types.

How does this work?

This fixed vertex means we can only make a Fixed-Fixed representation!

S

![](_page_16_Figure_5.jpeg)

S

# R nodes with 2-SAT formulation

- for each child
  - 2 variables encoding fixed/loose type of its tile
    - restriction clauses to subsets of {FF,FL,LF,LL}

![](_page_17_Figure_4.jpeg)

- for each face
  - 2 variables encoding position of the splitting line
  - consistency clauses
    - ordering clauses
       quadratically many
      - tricky part: use only O(n log<sup>2</sup> n) clauses

## NP-hardness of RepExt in general case

Theorem 2.

 $\varepsilon$ -Bar Visibility Representation Ext. is NP-complete.

Reduction from Planar Monotone 3-SAT

# NP-hardness of RepExt in general case

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

Remark. The following details omit the copying gadgets used for multiple occurrences of the variables

## NP-hardness of RepExt in general case

 $\chi$ 

![](_page_20_Figure_1.jpeg)

х

Note: the bars of x and y cannot occur between a and b since a and b are not supposed to be adjacent to either of  $\bot$  and  $\top$ 

### NP-hardness of RepExt in general case OR gate

![](_page_21_Figure_1.jpeg)

sublte point: only need to guarantee that "false" values trasmit

NP-hardness of RepExt in general case

![](_page_22_Figure_1.jpeg)

## NP-hardness on the Integer Grid (or fixed $\varepsilon$ )

#### Theorem 3.

 $\varepsilon$ -Bar Visibility Representation Ext. is NP-complete for (series-parallel) *st*-graphs when restricted to the **integer grid** (or if any fixed  $\varepsilon > 0$  is specified).

#### **3-Partition.**

**Input:** A set of positive integers  $w, a_1, a_2, \ldots, a_{3m}$  such that for each  $i = 1, \ldots, 3m$ , we have  $\frac{w}{4} < a_i < \frac{w}{2}$ . **Question:** Can  $\{a_1, \ldots, a_{3m}\}$  be partitioned into *m* triples such that the total sum of each triple is exactly *w*?

Strongly NP-complete [Garey & Johnson '79]

### NP-hardness on the Integer Grid (or fixed $\varepsilon$ )

#### **3-Partition.**

**Input:** A set of positive integers  $w, a_1, a_2, \ldots, a_{3m}$  such that for each  $i = 1, \ldots, 3m$ , we have  $\frac{w}{4} < a_i < \frac{w}{2}$ . **Question:** Can  $\{a_1, \ldots, a_{3m}\}$  be partitioned into *m* triples such that the total sum of each triple is exactly *w*?

![](_page_24_Figure_3.jpeg)

### Discussion

- *rectangular*  $\varepsilon$ -Bar Visibility Representation Extension can be solved in  $O(n \log^2 n)$  time for *st*-graphs.
- $\bullet$  *\varepsilon*-Bar Visibility Representation Extension is NP-complete.
- $\varepsilon$ -Bar Visibility Representation Extension is NP-complete for (series-parallel) *st*-graphs when restricted to the *Integer Grid* (or if any fixed  $\varepsilon > 0$  is specified).

**Open Problems:** 

- Can <u>rectangular</u> ε-Bar Visibility Representation Extension can be solved in polynomial time on st-graphs? DAGs?
- Can Strong Bar Visibility Recognition / Representation Extension can be solved in polynomial time on *st*-graphs?

### Literature

Main source:

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18] The Partial Visibility Representation Extension Problem

Referenced papers:

- [Gutwenger, Mutzel '01] A Linear Time Implementation of SPQR-Trees
- [Wismath '85] Characterizing bar line-of-sight graphs
- [Tamassia, Tollis '86] Algorithms for visibility representations of planar graphs
- [Andreae '92] Some results on visibility graphs
- [Chaplick, Dorbec, Kratchovíl, Montassier, Stacho '14] Contact representations of planar graphs: Extending a partial representation is hard