Visualization of graphs

Partial visibility representation extension

 With SPQR-trees```
Jonathan Klawitter . Summer semester 2020
```



## SPQR-tree

- An SPQR-tree $T$ is a decomposition of a planar graph $G$ by separation pairs.
- The nodes of $T$ are of four types:
- S nodes represent a series composition
- P nodes represent a parallel composition
- Q nodes represent a single edge
- R nodes represent 3 -connected (rigid) subgraphs

- A decomposition tree of a series-parallel graph is an SPQR-tree without R nodes.
- $T$ represents all planar embeddings of $G$.

■ T can be computed in $\mathcal{O}(n)$ time. [Gutwenger, Mutzel '01]

## SPQR-tree example



## Bar visibility representation

■ Vertices correspond to horizontal open line segments called bars
■ Edges correspond to vertical unobstructed vertical sightlines

- What about unobstructed 0 -width vertical
 sightlines? Do all visibilities induce edges?


## Models.

$\square$ Strong: Edge $u v \Leftrightarrow$ unobstructed 0 -width vertical sightlines
■ : Edge $u v \Leftrightarrow \epsilon$ wide vertical sightlines for $\varepsilon>0$
■ Weak: Edge $u v \Rightarrow$ unobstructed vertical
 sightlines exists, i. e., any subset of visible pairs

## Problems



## Recognition problem.

Given a graph $G$, decide if there exists a weak/strong/ $\varepsilon$ bar visibility representation $\psi$ of $G$.
Construction problem.
Given a graph $G$, construct a weak/strong/ $\varepsilon$ bar visibility representation $\psi$ of $G$ when one exists.


Partial Representation Extension (\& Construction) problem.
Given a graph $G$ and a set of bars $\psi^{\prime}$ of $V^{\prime} \subset V(G)$, decide if there exists a weak/strong/ $\varepsilon$ bar visibility representation $\psi$ of $G$ where $\left.\psi\right|_{V^{\prime}}=\psi^{\prime}$ (and construct $\psi$ when it exists).

## Background



## Weak Bar Visibility.

■ All planar graphs. [Tamassia \& Tollis 1986; Wismath 1985]

- Linear time recognition and construction [T\&T '86]

■ Representation Extension is NP-complete [Chaplick et al. '14]

## Strong Bar Visibility.

■ NP-complete to recognize [Andreae '92]

## Background



## $\varepsilon$-Bar Visibility.

- Planar graphs that can be embedded with all cut vertices on the outerface. [T\&T 1986, Wismath '85]
■ Linear time recognition and construction [T\&T '86]
- What about Representation Extension?

Let's see!

## $\varepsilon$-bar visiblity and st-graphs

Recall that an st-graph is a planar digraph $G$ with exactly one soure $s$ and one sink $t$ where $s$ and $t$ occur on the outer face of an embedding of $G$.

■ $\varepsilon$-bar visability testing is easily done via st-graph recognition.

- Strong bar visability recognition. . open?
- In a rectangular bar visability representation $\psi(s)$ and $\psi(t)$ span an enclosing rectangle.


## Observation.

st-orientations correspond to $\varepsilon$-bar visibility representations.


## Results and outline

Theorem 1. [Chaplick et al. '18]
Rectangular $\varepsilon$-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n \log ^{2} n\right)$ time for $s t$-graphs.

- Dynamic program via SPQR-trees
- Easier version: $\mathcal{O}\left(n^{2}\right)$


## Theorem 2. [Chaplick et al. '18]

$\varepsilon$-Bar Visibility Representation Ext. is NP-complete.
■ Reduction from Planar Monotone 3-SAT

## Theorem 3. [Chaplick et al. '18]

$\varepsilon$-Bar Visibility Representation Ext. is NP-complete for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

- Reduction from 3-Partition


## Representation extension for st-graphs

Theorem 1'.
Rectangular $\varepsilon$-Bar Visibility Representation Extension can be solved in $\mathcal{O}\left(n^{2}\right)$ time for st-graphs.


- Simplify with assumption on $y$-coordinates
- Look at connection to SPRQ-trees - tiling
- Solve problems for S, P and R nodes
- Dynamic program via SPQR-tree



## y-coordinate invariant

■ Let $G$ be an st-graph, and $\psi^{\prime}$ be a representation of $V^{\prime} \subseteq V(G)$.
■ Let $y: V(G) \rightarrow \mathbb{R}$ such that

- for each $v \in V^{\prime}, y(v)=$ the y -coordinate of $\psi^{\prime}(v)$.
- for each edge $(u, v), y(u)<y(v)$.


## Lemma 1. <br> $G$ has a representation extending $\psi^{\prime}$ iff <br> $G$ has a representation $\psi$ extending $\psi^{\prime}$ where the $y$-coordinates of the bars are as in $y$.

Proof idea. The relative positions of adjacent bars must match the order given by $y$. So, we can adjust the y-coordinates of any solution to be as in $y$ by sweeping from bottom-to-top.

We can now assume all y -coordinates are given!

## But why do SPQR-trees help?

## Lemma 2. The SPQR-tree of an st-graph G induces a recursive tiling of any $\varepsilon$-bar visibility representation of $G$.



Solve tiles bottom-up


## Tiles

Convention. Orange bars are from the partial representation


## Observation.

The bounding box (tile) of any solution $\psi$, contains the bounding box of the partial representation.

How many different tiles can we really have?

Types of tiles


- Right Fixed - due to the orange bar
- Left Loose - due to the orange bar
- Left Fixed - due to the orange bar
- Right Loose - due to the orange bar


Four different types: FF, FL, LF, LL

## P nodes


$\square$ Children of P node with prescribed bars occur in given left-to-right order


■ But there might be some gaps...

## Idea.

Greedily fill the gaps by preferring to "stretch" the children with prescribed bars.


## Outcome.

After processing, we must know the valid types for the corresponding subgraphs.

## $S$ nodes



This fixed vertex means we can only make a Fixed-Fixed representation!

## $S$ nodes



## This fixed vertex

 means we can only make a Fixed-Fixed representation!

## R nodes with 2-SAT formulation

- for each child
- 2 variables encoding fixed/loose type of its tile
- restriction clauses to subsets of $\{F F, F L, L F, L L\}$

- for each face
- 2 variables encoding position of the splitting line
- consistency clauses
- ordering clauses
- quadratically many
- tricky part: use only $O\left(n \log ^{2} n\right)$ clauses


## NP-hardness of RepExt in general case

Theorem 2.
$\varepsilon$-Bar Visibility Representation Ext. is NP-complete.
■ Reduction from Planar Monotone 3-SAT

## NP-hardness of RepExt in general case



Remark. The following details omit the copying gadgets used for multiple occurrences of the variables

## NP-hardness of RepExt in general case

## NOT gate



Note: the bars of $x$ and $y$ cannot occur between $a$ and $b$ since $a$ and $b$ are not supposed to be adjacent to either of $\perp$ and $\top$

## NP-hardness of RepExt in general case OR gate



## NP-hardness of RepExt in general case



## NP-hardness on the Integer Grid (or fixed $\varepsilon$ )

## Theorem 3. <br> $\varepsilon$-Bar Visibility Representation Ext. is NP-complete for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon>0$ is specified).

## 3-Partition.

Input: A set of positive integers $w, a_{1}, a_{2}, \ldots, a_{3 m}$ such that for each $i=1, \ldots, 3 m$, we have $\frac{w}{4}<a_{i}<\frac{w}{2}$.
Question: Can $\left\{a_{1}, \ldots, a_{3 m}\right\}$ be partitioned into $m$ triples such that the total sum of each triple is exactly $w$ ?

■ Strongly NP-complete [Garey \& Johnson '79]

## NP-hardness on the Integer Grid (or fixed $\varepsilon$ )

## 3-Partition.

Input: A set of positive integers $w, a_{1}, a_{2}, \ldots, a_{3 m}$ such that for each $i=1, \ldots, 3 m$, we have $\frac{w}{4}<a_{i}<\frac{w}{2}$.
Question: Can $\left\{a_{1}, \ldots, a_{3 m}\right\}$ be partitioned into $m$ triples such that the total sum of each triple is exactly $w$ ?


■ rectangular $\varepsilon$-Bar Visibility Representation Extension can be solved in $O\left(n \log ^{2} n\right)$ time for st-graphs.

■ $\varepsilon$-Bar Visibility Representation Extension is NP-complete.

- $\varepsilon$-Bar Visibility Representation Extension is NP-complete for (series-parallel) st-graphs when restricted to the Integer Grid (or if any fixed $\varepsilon>0$ is specified).

Open Problems:

- Can rectantar $\varepsilon$-Bar Visibility Representation Extension can be solved in polynomial time on st-graphs? DAGs?
- Can Strong Bar Visibility Recognition / Representation Extension can be solved in polynomial time on st-graphs?


## Literature

## Main source:

■ [Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18] The Partial Visibility Representation Extension Problem
Referenced papers:
■ [Gutwenger, Mutzel '01] A Linear Time Implementation of SPQR-Trees

- [Wismath '85] Characterizing bar line-of-sight graphs

■ [Tamassia, Tollis '86] Algorithms for visibility representations of planar graphs

- [Andreae '92] Some results on visibility graphs

■ [Chaplick, Dorbec, Kratchovíl, Montassier, Stacho '14] Contact representations of planar graphs: Extending a partial representation is hard

