
1

and [Gramm, Guo, Hüffner, Niedermeier; Theory Comput. Syst. 38:373–392, 2005.
doi.org/10.1007/s00224-004-1178-y]

Based on: [Parameterized Algorithms: §1, 2.1]

Exact Algorithms
Sommer Term 2020

Alexander Wolff Lehrstuhl für Informatik I

Lecture 10 Kernelization

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

2

Complexity Theory

Natural problems tend to be either:

• in P
• NP-hard

← Easy
← Nasty

How to solve nasty problems?

• Solve only small instances (e.g., integer programming)
• Don’t solve the problem in full generality:

• . . . approximate
• . . . exploit properties of “reasonable” instances

Fixed-Parameter Tractability:

• In many applications, some aspect of a problem assumed
small.

• Runtime of algorithm polynomial except for this small
aspect.

3

Vertex Cover

Given:

Question:
Parameter:

Problem: k-Vertex Cover (k-VC)

Does G contain a size ≤ k vertex cover?

Minimum-size vertex set such that every edge is covered.

number k

Last time:
FPT :)graph G

4

Coloring

Question: Does G have a coloring with ≤ k colors?

Given: graph G , number k

For any k ≥ 3, not in polynomial time
assuming P 6= NP

k-Coloring

Given: graph G
Parameter: number k
Question: Does G have a coloring with ≤ k colors?

For any k ≥ 3, not in polynomial time
assuming P 6= NP

⇒ Not in FPT !!!!

5

k-Independent Set

Given: graph G
Parameter: number k
Question: Does G have a size ≥ k independent set?

How to find a 2-Independent Set? 3-Independent Set?

Easily in O(nk) time, i.e., polynomial for any k

Requires Ω(nf (k)) time...
assuming FPT 6= W[1]

6

Fixed-Parameter Complexity Theory

Fixed-Parameter Tractable
Solvable in O(f (k)nc) time – computable function f , const. c
Complexity Class: FPT

Slice-Wise Polynomial
Solvable in O(f (k)ng(k))) time – computable functions f , g
Complexity Class: XP

Evidence against Fixed-Parameter Tractability
Complexity classes FPT ⊆ W[1] ⊆ W[2] . . .
e.g. FPT = W[1] ⇒ NP ⊆ DTIME(2o(n)), contradicting ETH

see Parameterized Algorithms §14.4

7

Fixed-Parameter Problems

• k-Coloring
NP-complete for each k ≥ 3.
Seems to require more than polynomial time.

• k-Independent Set
In XP, but W[1]-complete...
Seems to require Ω(nf (k)) time.

• k-Vertex Cover
Solvable in O(2k(n + m)) time.

Obs: If there are no edges, solution size 0.
Obs: For each edge uv , either u or v in the cover.

Branching Rule:
Pick an edge uv , branch on (G − u, k − 1) and (G − v , k − 1).

branching
factor 2

k

8

Kernelisation

Preprocessing with quality guarantees

9

Kernelisation Algorithms

Parameterized Problem: input graph G , parameter k.

Polynomial-time algorithm:
Input: Graph G , parameter k
Output: Graph G ′, parameter k ′ ≤ k such that

• (G ′, k ′) is YES ⇔ (G , k) is YES.
• G ′ has O(f (k)) vertices.

eg, recall: Buss’ algorithm for k-VC

I) Reduce to the kernel of the instance

C = {v ∈ V | deg(v) > k}; if |C | > k then return (“NO”, ∅)

II) solve the reduced problem exactly

G ′ = (V ′, E ′) := G [V \ (C ∪ L)], k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

size-O(k2) kernel

(L = isolated vertices)

10

Kernel ⇔ FPT

Kernelisation ⇒ FPT

• run kernelisation algorithm
• solve kernel by any exact algorithm

FPT ⇒ Kernelisation

Suppose we have an f (k)|I |c -time algorithm for an instance I .

Run the algorithm for |I |c+1 steps.

If the decision is reached, output it.

Otherwise, f (k) ≥ |I |.

So, we have an f (k)-size kernel. �

11

Typical Form of Kernelisation

Repeat some rules, until no rule is possible

• Rules can do some necessary modification and decrease k.

• Rules can remove some part of the graph.

• Rules can output YES or NO.

• Sometimes add ‘annotations’ to the graph

12

Cluster Editing

Given: graph G = (V , E)
Parameter: number k
Question: Can we make ≤ k modifications to G so that

each connected component is a clique?
Accepted modifications: adding / deleting edges

Known kernelizations:

O(k2) vertices [Gramm, Guo, Hüffner, Niedermeier; TCSyst’05]

O(k) vertices

Let’s prove this!

2k vertices [Chen, Meng; JCSS’12]

[Fellows, Langston, Rosamund, Shaw; FCT’07]

13

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique,
remove this connected component:

G ′ ← G − C ; k ′ ← k

Rule 2: If we have more than k connected components
and Rule 1 does not apply:

Obs. After applying Rules 1 and 2,
at most k connected components remain.

Plan: Find rules that make connected component small!

Annotate the graph:
some pairs of vertices are permanent and others are forbidden.

Answer NO.

14

Rule 3: Common Neighbors

Obs. If two vertices have k + 1 neighbors in common,
they must belong to the same clique in any solution.

Rule 3: Let v , w be vertices with k + 1 common neighbors.
If vw is not present, add it and decrease k by 1.
Set the edge vw to be permanent.

G ′ ← G ∪ {vw} P ← P ∪ {vw}

k ′ =

{
k if vw present,

k − 1 otherwise.

v

w

15

Rule 4: Private Neighbors

Obs. If vtc. v and w have k + 1
“uncommon” neighbors,
then vw cannot be an edge
in the solution.

Rule 4: Let v , w be vtc. with k + 1 uncommon neighbors.
If vw is present, remove it and decrease k by 1.
Set the edge vw to be forbidden.

G ′ ← G − vw ; F ← F ∪ {vw}

k ′ ←

{
k if vw not present,

k − 1 otherwise.

Rule 5: If some edge is both permanent and forbidden,
then there is no solution.

v

w

Answer NO.

16

Rules 6 and 7: Transitivity (Triangles)

Rule 6: If vw and wx are permanent
then set vx to be permanent.
If vx is not present,
then add it and decrease k by 1.

Rule 7: If vw is permanent
and wx is forbidden,

then set vx to be forbidden.
If vx is present,
then remove it and decrease k by 1. v

w

x

w

x

17

Runtime

The rules can be computed in polynomial time.

With carefully chosen data structures, they can be exhaustively
applied in O(n3) time.

Challenge

• Already know: at most k connected components

• Aim for a quadratic kernel: O(k2) vertices

So, “small” components are fine –
but what if we have a “big” component?

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

Case 1A:

|C | ≥ |V |/(d + 1) > (2k+1)·k
k+1 = (k+1)·k

k+1 + k2

k+1 ≥ k + 1

(if k ≥ 2)

⇒ |C | ≥ k + 2

⇒ u and v have k + 1 uncommon neighbors Rule 4
Exercise: Find a contradiction for the case k = 1!

v is not adjacent to any u′ ∈ C \ {u}. Then

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

a = 0

Case 1B: v is adjacent to some u′ ∈ C \ {u}. Then

u′

|C | ≥ |V |/d > 2k + 1

⇒ u and v have k + 1 uncommon neighbors Rule 4

v has at most k neighbors in C (otherwise G is a NO)

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

Recall that |C | > 2k + 1.

Note: u has ≥ 2k + 1− a− 1 neighbors in C .

v has ≤ d − 1 neighbors in C \ {u}.
Let x = # uncommon neighbors of u and v .

Rule 4⇒ x ≥ 2k + 1− a− d = k + 1

Exercise: Find a simple branching rule for Cluster Editing!

??

	Titel
	Complexity Theory
	Vertex Cover
	Coloring
	k-Independent Set
	Fixed-Parameter Complexity Theory
	Fixed-Parameter Problems
	Kernelisation Algorithms
	Kernel \Leftrightarrow FPT
	Typical Form of Kernelisation
	Cluster Editing
	Trivial Rules and Plan
	Rule 3: Common Neighbors
	Rule 4: Private Neighbors
	Rules 6 and 7: Transitivity (Triangles)
	Runtime
	Analysis
	Analysis -- Case 2

