Julius-Maximilians-
UNIVERSITAT Lonsunio ||||I - f
WURZBURG INFORMATIK | I |

Algorithmen & Komplexitat Institut fir Informatik

Exakte Algorithmen

Lecture 9.2 Reductions and the W/|t] Hierarchy

Alexander Wolff Lehrstuhl fiuir Informatik |

How to obtain lower bounds?

7 . 5 .
% 2 ‘ V=

“I can’t find an efficient algorithm, I guess I'm just too dumb.” *“I can’t find an efficient algorithm, because no such algorithm is possible!”’
Problem
e difficult to show absence of “nice” algorithms mmg TR

Solution fJ;J
e argue that having an efficient algorithm=- some ‘\
well studied diffcult problem can be solved WX
efficiently
e Tool: reduction between problems

I can’t find an efficient algorithm, but neither can all these famous people.”

Polynomial Reduction

Reduction from Problem £ to Problem £’

e map each instance | of £ to an instance /I’ of L so that

e | is a YES-instance < I is a YES-instance

e the mapping can be computed in polynomial time

Implications

e polynomial time algorithm for £" = polynomial time algorithm for £

e solving my problem L’ efficiently = solving "difficult” problem L efficiently

(here, we use “efficient” ~ “polynomial”)
Easy Example
e reduce INDEPENDENT SET to VERTEX COVER

e trivial reduction: G has IS of size k & G has VC of size n — k

ealso: VCeP=1I15€P INDEPENDENT SET VERTEX COVER
e what about VC € FPT = IS € FPT?
— NO, the parameter depends on n
o for “efficient” ~ “FPT"” we need a different V' C V, so that V! C V, so that
type of reduction Vee E:lenV/| <1 Vee E:lenV'|>1

Parameterized Reductions

Reduction from Problem £ to Problem £’
e map each instance (/, k) of L to an instance (/’, k') of L so that

o (/, k) is a YES-instance < (/', k') is a YES-instance where k' < g(k)
e the map must be computable in FPT-time (f(k) - |/|°M)

Implications (f and g must also be computable functions)

e FPT-algorithm for £ = FPT algorithm for £

e solving my problem L’ efficiently = solving “difficult” problem L efficiently

(now, “efficient” ~ “FPT")

Easy Example
e reduce INDEPENDENT SET to CLIQUE

e G has a size k IS & edge-complement of G has a size k Clique.

] a|so: CL'QUE c FPT — IS c FPT INDEPENDENT SET CLIQUE
e reverse reduction also applies:
CLIQUE € FPT < IS € FPT
e expectation: CLIQUE, IS ¢ FPT V' C V, so that V! C V, so that
Vee E: lenV'| <1 G[V’] complete

Colored Cliques

Problem: MULTICOLORED CLIQUE
Given: Graph G = (V/, E), parameter k,
and partition (V, ..., V) of V.

Find: Clique V' C V of size k, so that |V’ N Vi| =1 for each i. A Vv.
Reduction: from CLIQUE to MULTICOLORED CLIQUE
e copy each v € V to v!,..., vk,

G’ /
and set v/ € V;
_> .] .
@ e for each uv € E connect u' with v/

for each 1 #

Instance (G,3) of Instance of MC CLIQUE: ,
CLIQUE (G".3, (W, V2, @) °k=k
G has a size k clique = G’ has a size k colored clique

o Let vq,..., v, beacliquein G

e then vi, ..., /f is a clique in G’

e all these vertices have distinct colors

Colored Cliques

Problem: MULTICOLORED CLIQUE
Given: Graph G = (V/, E), parameter k,
and partition (V, ..., V) of V.

Find: Clique V' C V of size k, so that |V’ N Vi| =1 for each i. A Vv.
Reduction: from CLIQUE to MULTICOLORED CLIQUE
e copy each v € V to v!,..., vk,

G’ /
and set v/ € V;
_> .] .
@ e for each uv € E connect u' with v/

for each 1 #

Instance (G,3) of Instance of MC CLIQUE: /

CLIQUE (G".3, 4.2 pAa) o k=k

G’ has a size k colored clique = G has a size k clique

o Let v;(l), el V;((k) be a colored clique in G with 7: {1,..., k} —{1,...n}

® T Is injective . . .
J (the colored clique does not contain two copies of the same vertex)

o thus, v;1), ..., Vy(k) are k distinct nodes that form a clique in G

[]

Colored Cliques

Problem: MULTICOLORED CLIQUE
Given: Graph G = (V/, E), parameter k,
and partition (V, ..., V) of V.
Find: Clique V' C V of size k, so that |V’ N V;| =1 for each i. A Vv.

Reduction: from MULTICOLORED CLIQUE to CLIQUE
e delete edges within each color class

o k' =k
Instance of MC CLIQUE: Instance (G, 3) of
(G,3, (v v W) CLIQUE
G has a colored size k clique = G’ has a size k clique

e the colored clique does not use any edges inside a color class
e thus, G’ contains a size k clique

G’ has a size k clique = G has a colored size k clique

e in G’, no monochromatic vertices are adjacent
e thus, each clique must be a colored clique

FPT-Reductions so far

INDEPENDENT SET

e

CLIQUE

MULTICOLORED CLIQUE <«— MULTICOLORED IS

/

(also applies to INDEPENDENT SET <« CLIQUE)

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

e enforce the following properties on the DOMINATING SET instance

— select exactly one element from each color class

v

— avoid simultaneous selection of designated node pairs

One element in each color class

e vertex x; adjacent to all vertices in V; and no others

e Problem: can still choose x;

(forces the selection of at least one of V; U {x;})

e Solution: create a copy y; of x;
(picking both x; and y; is too costly to form a size k DS)

e make V; into a clique as to allow any vertex from V; to dominate it

and both x; and y;.

MC INDEPENDENT SET

V' C V colored, so that
Vee E:lenV'| <1

B

X2 ,\ ﬁ)@

o R

2

&

DOMINATING SET

BR(

V' C V, so that
Vve V:|NvInV/|>1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

e enforce the following properties on the DOMINATING SET instance

— select exactly one element from each color class

— avoid simultaneous selection of designated node pairs ¢

Avoid selecting both v and v

e |dea: insert a vertex z that is dominated unless both u and v are picked

— z is not adjacent to v and not adjacent to v

but is adjacent to all other vertices in the color classes of u and v

MC INDEPENDENT SET

V' C V colored, so that
Vee E:lenV'| <1

B

X2 ,\ ﬁ)@

o R

2

DOMINATING SET

BR(

V' C V, so that
Vve V:|NvInV/|>1

FP T-Reductions so far

INDEPENDENT SET [<«—{ CLIQUE <«—®{ MULTICOLORED CLIQUE [<«— MULTICOLORED IS

l

Can we reverse this last reduction?
DOMINATING SET

e it is not known ... but seems very unlikely

e DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET
(DS € FPT = IS € FPT, but not the other way around)
e we need a refined notion of “hardness”

Similar to the complexity class P

e usually, one focuses on: NP-hardness

e but there are also intermediate problems (assuming P # NP)

e however, no natural hierarchy of NP-intermediate problems
(candidates: prime factorization, graph isomorphism)

And now? What about FPT?
e define natural hierarchy of complexity classes

e establish prototypical problem for each level

WEIGHTED CIRCUIT SATISFIABILITY

Boolean Circuits

e directed acyclic graph (DAG) with the following node types:

— sources (in-degree 0) are input nodes

[
-~ NEGATION nodes have in-degree 1 ©)
— AND- resp. OR-nodes have in-degree > 2 @ ®
— one sink (out-degree 0) is the output node O—out

e an assignment of 0 or 1 to each input node propogates through the other nodes, providing
an output value. (in the natural way)

e an assignment statisfying when the output value is 1

e the weight of an assignment is the number of 1s used

example

Problem: WEIGHTED CIRCUIT SATISFIABILITY (WCS)
Given a boolean circuit and a parameter k
Find: A weight k satisfying assignment

out

Reductions visualized

INDEPENDENT SET — WCS DOMINATING SET — WCS
OO

g 8

(—d)

out

DOMINATING SET

BR(

V' C V, so that
Vve V:|NvInV/|>1

INDEPENDENT SET

A

V' C V, so that
Vee E:lenV'| <1

Reductions visualized

INDEPENDENT SET — WCS DOMINATING SET — WCS
OO

g 8

©

)

Observations
e the circuits have constant depth

e the circuit for DS contains more nodes with in-degree > 2

e is DS harder (in terms of FPT) than IS?

Weft

Definition

directed path.

The Weft of a boolean circuit is the maximum number of nodes with in-degree > 2 on a

Problem

at most t.

WCS[t] is WCS limited to circuits with constant depth and weft

.j : A 4 ;
waa,m gﬂn;ﬁs{gn:@,
yal -y Tam
u!mf :j?;’fglf" ;
%;a"*;.".a%‘r;}m@
t.-l

‘] uﬂﬁmﬂ e

¥ s' .|‘._=_ h "
: vg;z;z;{m&,ﬁiﬁ]y!;z-u

Definition

The class W[t] contains all problems with a paramterized

reduction to WCS[t].

We have seen

e INDEPENDENT SET € WJ1] C W]2]
e DOMINATING SET € W|2]

Weft 2
a b C d e

out

out

FP T-Reductions so far

INDEPENDENT SET

<+—» CLIQUE

i

MULTICOLORED CLIQUE

WCS[1]

VERTEX COVER

!

FPT

Wi1]

MULTICOLORED IS

WCS[2]

v

DOMINATING SET

Wi(2]

Further reductions

e one can also reduce WCS[1] to INDEPENDENT SET

e and WCS[2]| to DOMINATING SET

e so, all problems in WT1] reduce to IS
~ IS is W/|1]-complete

e similarly DS is W[2]-complete

e note: W[1] C W]2]

e also: FPT C WIJ1] C W|2]

why?

why?

Summary

The W-Hierarchy
e Complexity Classes FPT C W[1] C W[2] C WI[3] C ---

e |V|[t] defined via a prototypical complete problem WCSJ[t]:

L € WJt] & L can be reduced to WCS[t] (by FPT-reduction)

e Inclusions expected to be strict
Is my W]t]-completeness proof useless if W[t] = FPT?
e finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all

problems in the class.

How do | show that my problem is hard?
e reduce a known hard problem to your problem

e reducing from MC INDEPENDENT SET or MC CLIQUE provides W/{1]-hardness

e reducing from DOMINATING SET or SET COVER provides W/|2]-hardness

	Titel

