

Exakte Algorithmen

Lecture 9.2 Reductions and the W[t] Hierarchy

Based on: [Parameterized Algorithms: §13]

(slides by Thomas Bläsius)

Alexander Wolff

Lehrstuhl für Informatik I

How to obtain lower bounds?

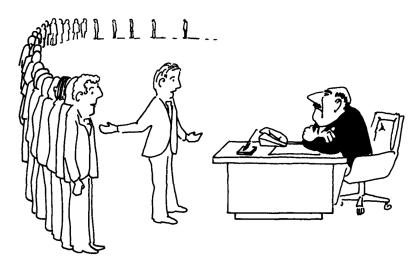
"I can't find an efficient algorithm, because no such algorithm is possible!"

Problem

• difficult to show absence of "nice" algorithms

Solution

- argue that having an efficient algorithm⇒ some well studied diffcult problem can be solved efficiently
- Tool: reduction between problems



"I can't find an efficient algorithm, but neither can all these famous people."

Polynomial Reduction

Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

- ullet map each instance I of $\mathcal L$ to an instance I' of $\mathcal L'$ so that
- I is a YES-instance \Leftrightarrow I' is a YES-instance
- the mapping can be computed in polynomial time

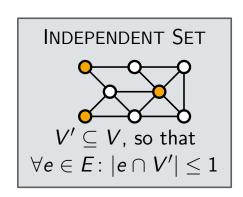
Implications

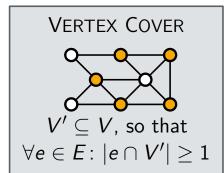
- ullet polynomial time algorithm for $\mathcal{L}'\Rightarrow$ polynomial time algorithm for \mathcal{L}
- ullet solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(here, we use "efficient" \sim "polynomial")

Easy Example

- reduce INDEPENDENT SET to VERTEX COVER
- trivial reduction: G has IS of size $k \Leftrightarrow G$ has VC of size n-k
- also: $VC \in P \Rightarrow IS \in P$
- what about $VC \in FPT \Rightarrow IS \in FPT$? $\rightarrow NO$, the parameter depends on n
- ullet for "efficient" \sim "FPT" we need a different type of reduction





Parameterized Reductions

Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

- ullet map each instance (I, k) of \mathcal{L} to an instance (I', k') of \mathcal{L}' so that
- (I, k) is a YES-instance $\Leftrightarrow (I', k')$ is a YES-instance where $k' \leq g(k)$
- the map must be computable in FPT-time $(f(k) \cdot |I|^{O(1)})$

Implications

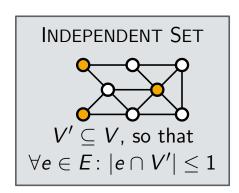
(f and g must also be computable functions)

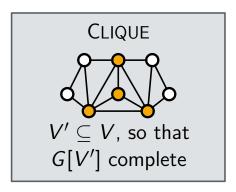
- ullet FPT-algorithm for $\mathcal{L}' \Rightarrow$ FPT algorithm for \mathcal{L}
- ullet solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(now, "efficient" \sim "FPT")

Easy Example

- reduce INDEPENDENT SET to CLIQUE
- G has a size k IS \Leftrightarrow edge-complement of G has a size k Clique.
- also: CLIQUE \in FPT \Rightarrow IS \in FPT
- reverse reduction also applies: $CLIQUE \in FPT \Leftrightarrow IS \in FPT$
- expectation: CLIQUE, IS ∉ FPT





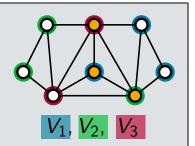
Colored Cliques

Problem: MULTICOLORED CLIQUE

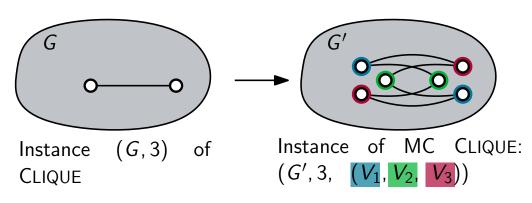
Given: Graph G = (V, E), parameter k,

and partition (V_1, \ldots, V_k) of V.

Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.



Reduction: from CLIQUE to MULTICOLORED CLIQUE



- ullet copy each $v \in V$ to v^1, \dots, v^k , and set $v^i \in V_i$
- for each $uv \in E$ connect u^i with v^j for each $i \neq j$
- $\bullet k = k'$

G has a size k clique \Rightarrow G' has a size k colored clique

- Let v_1, \ldots, v_k be a clique in G
- then v_1^1, \ldots, v_k^k is a clique in G'
- all these vertices have distinct colors

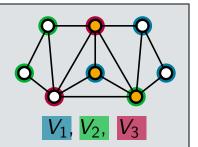
Colored Cliques

Problem: MULTICOLORED CLIQUE

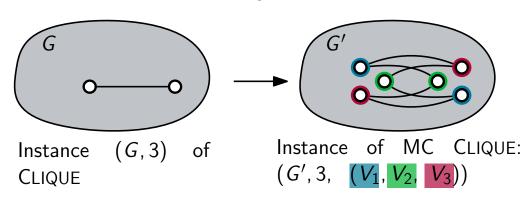
Given: Graph G = (V, E), parameter k,

and partition (V_1, \ldots, V_k) of V.

Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.



Reduction: from CLIQUE to MULTICOLORED CLIQUE



- ullet copy each $v \in V$ to v^1, \ldots, v^k , and set $v^i \in V_i$
- for each $uv \in E$ connect u^i with v^j for each $i \neq j$
- \bullet k = k'

G' has a size k colored clique $\Rightarrow G$ has a size k clique

- ullet Let $v^1_{\pi(1)},\ldots,v^k_{\pi(k)}$ be a colored clique in G with $\pi\colon\{1,\ldots,k\} o\{1,\ldots n\}$
- π is injective (the colored clique does not contain two copies of the same vertex)
- ullet thus, $v_{\pi(1)},\ldots,v_{\pi(k)}$ are k distinct nodes that form a clique in G

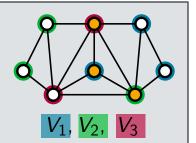
Colored Cliques

Problem: MULTICOLORED CLIQUE

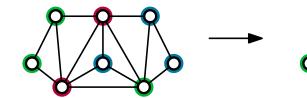
Given: Graph G = (V, E), parameter k,

and partition (V_1, \ldots, V_k) of V.

Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.



Reduction: from MULTICOLORED CLIQUE to CLIQUE



Instance of MC CLIQUE: $(G, 3, (V_1, V_2, V_3))$



Instance (G', 3) of CLIQUE

delete edges within each color class

 $\bullet k' = k$

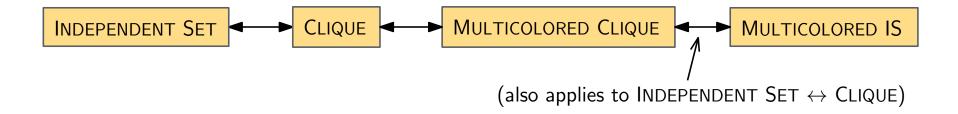
G has a colored size k clique \Rightarrow G' has a size k clique

- the colored clique does not use any edges inside a color class
- \bullet thus, G' contains a size k clique

G' has a size k clique $\Rightarrow G$ has a colored size k clique

- \bullet in G', no monochromatic vertices are adjacent
- thus, each clique must be a colored clique

FPT-Reductions so far



DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

- enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class

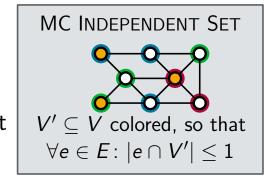
avoid simultaneous selection of designated node pairs

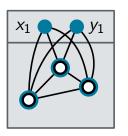
One element in each color class

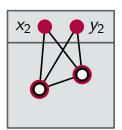
• vertex x_i adjacent to all vertices in V_i and no others

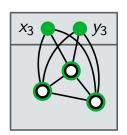
(forces the selection of at least one of $V_i \cup \{x_i\}$)

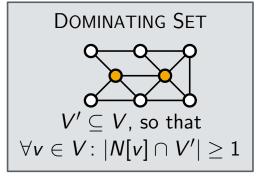
- Problem: can still choose x_i
- Solution: create a copy y_i of x_i (picking both x_i and y_i is too costly to form a size k DS)
- make V_i into a clique as to allow any vertex from V_i to dominate it and both x_i and y_i .











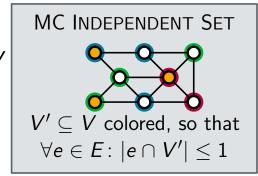
DOMINATING SET

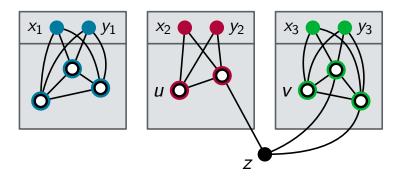
Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

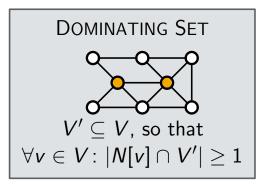
- enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class
 - avoid simultaneous selection of designated node pairs

Avoid selecting both u and v

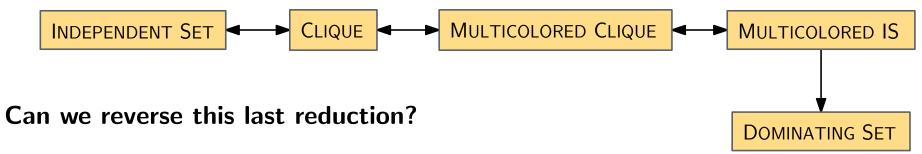
- Idea: insert a vertex z that is dominated unless both u and v are picked
 - -z is not adjacent to u and not adjacent to v but is adjacent to all other vertices in the color classes of u and v







FPT-Reductions so far



- it is not known ... but seems very unlikely
- DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET $(DS \in FPT \Rightarrow IS \in FPT$, but not the other way around)
- we need a refined notion of "hardness"

Similar to the complexity class P

- usually, one focuses on: NP-hardness
- but there are also **intermediate** problems (assuming $P \neq NP$)
- however, no natural hierarchy of NP-intermediate problems (candidates: prime factorization, graph isomorphism)

And now? What about FPT?

- define natural hierarchy of complexity classes
- establish prototypical problem for each level

WEIGHTED CIRCUIT SATISFIABILITY

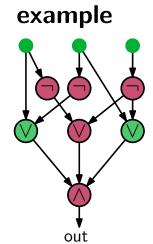
Boolean Circuits

- directed acyclic graph (DAG) with the following node types:
 - sources (in-degree 0) are input nodes
 - **NEGATION** nodes have in-degree 1
 - **AND** resp. **OR**-nodes have in-degree ≥ 2
 - one sink (out-degree 0) is the **output node**
- an assignment of 0 or 1 to each input node propagates through the other nodes, providing an output value. (in the natural way)
- an assignment **statisfying** when the output value is 1
- the weight of an assignment is the number of 1s used

Problem: WEIGHTED CIRCUIT SATISFIABILITY (WCS)

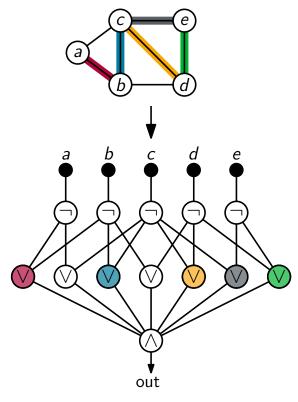
Given a boolean circuit and a parameter k

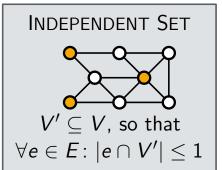
Find: A weight k satisfying assignment



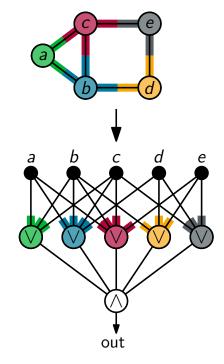
Reductions visualized

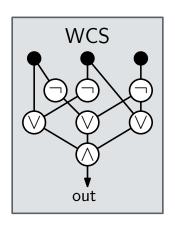
INDEPENDENT SET → WCS

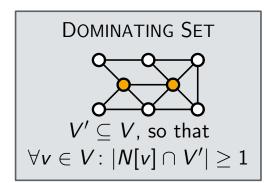




DOMINATING SET → WCS

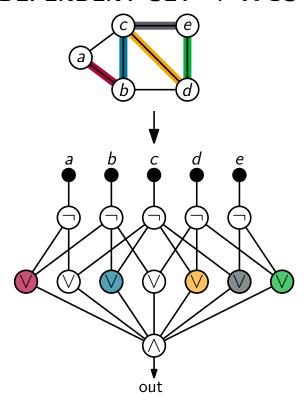




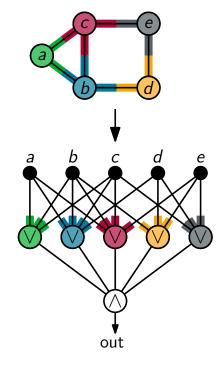


Reductions visualized

INDEPENDENT SET → WCS



DOMINATING SET → **WCS**



Observations

- the circuits have constant depth
- ullet the circuit for DS contains more nodes with in-degree >2
- is DS harder (in terms of FPT) than IS?

Weft

Definition

The **Weft** of a boolean circuit is the maximum number of nodes with in-degree > 2 on a directed path.

Problem

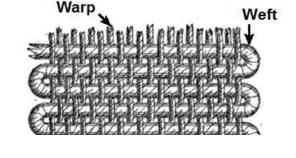
WCS[t] is WCS limited to circuits with constant depth and weft at most t.

Definition

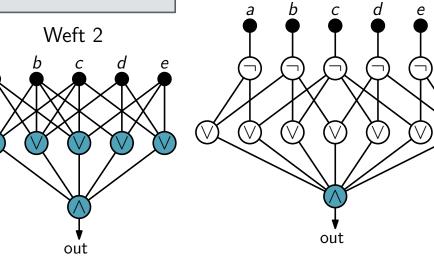
The class W[t] contains all problems with a paramterized reduction to WCS[t].

We have seen

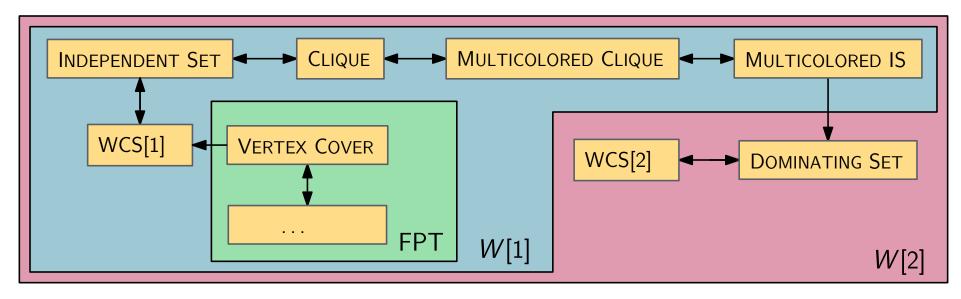
- INDEPENDENT SET $\in W[1] \subseteq W[2]$
- Dominating Set $\in W[2]$



Weft 1



FPT-Reductions so far



Further reductions

- one can also reduce WCS[1] to INDEPENDENT SET
- and WCS[2] to DOMINATING SET
- so, all problems in W[1] reduce to IS \rightsquigarrow IS is W[1]-complete
- \bullet similarly DS is W[2]-complete
- note: $W[1] \subseteq W[2]$
- also: $\mathsf{FPT} \subseteq W[1] \subseteq W[2]$

why?

Summary

The W-Hierarchy

- Complexity Classes $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots$
- W[t] defined via a prototypical complete problem WCS[t]: $\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L} \text{ can be reduced to WCS}[t]$ (by FPT-reduction)
- Inclusions expected to be strict

Is my W[t]-completeness proof useless if W[t] = FPT?

• finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all problems in the class.

How do I show that my problem is hard?

- reduce a known hard problem to your problem
- ullet reducing from MC INDEPENDENT SET or MC CLIQUE provides W[1]-hardness
- ullet reducing from DOMINATING SET or SET COVER provides W[2]-hardness