

Exakte Algorithmen

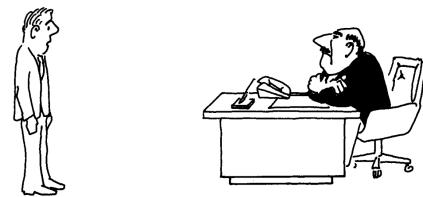
Lecture 9.2 Reductions and the W[t] Hierarchy

Based on: [Parameterized Algorithms: §13]

(slides by Thomas Bläsius)

Alexander Wolff

Lehrstuhl für Informatik I



"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, because no such algorithm is possible!"

"I can't find an efficient algorithm, I guess I'm just too dumb."

Problem

• difficult to show absence of "nice" algorithms

"I can't find an efficient algorithm, because no such algorithm is possible!"

"I can't find an efficient algorithm, I guess I'm just too dumb."

Problem

• difficult to show absence of "nice" algorithms

Solution

 argue that having an efficient algorithm⇒ some well studied diffcult problem can be solved efficiently

"I can't find an efficient algorithm, because no such algorithm is possible!"

"I can't find an efficient algorithm, but neither can all these famous people."

"I can't find an efficient algorithm, I guess I'm just too dumb."

Problem

• difficult to show absence of "nice" algorithms

Solution

- argue that having an efficient algorithm⇒ some well studied diffcult problem can be solved efficiently
- Tool: reduction between problems

"I can't find an efficient algorithm, because no such algorithm is possible!"



"I can't find an efficient algorithm, but neither can all these famous people."

Reduction from Problem ${\mathcal L}$ to Problem ${\mathcal L}'$

- \bullet map each instance I of $\mathcal L$ to an instance I' of $\mathcal L'$ so that
- *I* is a YES-instance \Leftrightarrow *I*^{\prime} is a YES-instance

Reduction from Problem ${\mathcal L}$ to Problem ${\mathcal L}'$

- \bullet map each instance I of $\mathcal L$ to an instance I' of $\mathcal L'$ so that
- *I* is a YES-instance \Leftrightarrow *I*^{\prime} is a YES-instance
- the mapping can be computed in polynomial time

Reduction from Problem ${\mathcal L}$ to Problem ${\mathcal L}'$

- \bullet map each instance I of $\mathcal L$ to an instance I' of $\mathcal L'$ so that
- *I* is a YES-instance \Leftrightarrow *I*^{\prime} is a YES-instance
- the mapping can be computed in polynomial time

Implications

 \bullet polynomial time algorithm for $\mathcal{L}' \Rightarrow$ polynomial time algorithm for \mathcal{L}

Reduction from Problem ${\mathcal L}$ to Problem ${\mathcal L}'$

- \bullet map each instance I of $\mathcal L$ to an instance I' of $\mathcal L'$ so that
- *I* is a YES-instance \Leftrightarrow *I*^{\prime} is a YES-instance
- the mapping can be computed in polynomial time

Implications

- \bullet polynomial time algorithm for $\mathcal{L}' \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(here, we use "efficient" \sim "polynomial")

Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

- \bullet map each instance I of $\mathcal L$ to an instance I' of $\mathcal L'$ so that
- *I* is a YES-instance \Leftrightarrow *I*^{\prime} is a YES-instance
- the mapping can be computed in polynomial time

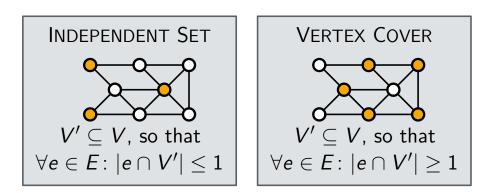
Implications

- \bullet polynomial time algorithm for $\mathcal{L}' \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(here, we use "efficient" \sim "polynomial")

Easy Example

 \bullet reduce INDEPENDENT SET to VERTEX COVER



Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

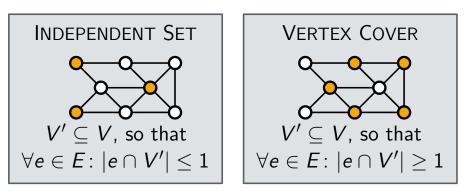
- \bullet map each instance I of $\mathcal L$ to an instance I' of $\mathcal L'$ so that
- *I* is a YES-instance \Leftrightarrow *I*['] is a YES-instance
- the mapping can be computed in polynomial time

Implications

- \bullet polynomial time algorithm for $\mathcal{L}' \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(here, we use "efficient" \sim "polynomial")

- \bullet reduce INDEPENDENT SET to VERTEX COVER
- trivial reduction: G has IS of size $k \Leftrightarrow G$ has VC of size n k



Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

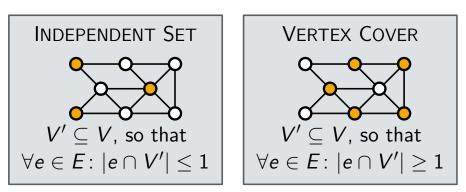
- \bullet map each instance I of $\mathcal L$ to an instance I' of $\mathcal L'$ so that
- *I* is a YES-instance \Leftrightarrow *I*['] is a YES-instance
- the mapping can be computed in polynomial time

Implications

- \bullet polynomial time algorithm for $\mathcal{L}' \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(here, we use "efficient" \sim "polynomial")

- \bullet reduce INDEPENDENT SET to VERTEX COVER
- trivial reduction: G has IS of size $k \Leftrightarrow G$ has VC of size n k
- $\bullet \text{ also: } \mathsf{VC} \in \mathsf{P} \Rightarrow \mathsf{IS} \in \mathsf{P}$



Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

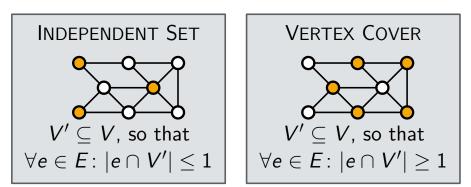
- \bullet map each instance I of $\mathcal L$ to an instance I' of $\mathcal L'$ so that
- *I* is a YES-instance \Leftrightarrow *I*['] is a YES-instance
- the mapping can be computed in polynomial time

Implications

- \bullet polynomial time algorithm for $\mathcal{L}' \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(here, we use "efficient" \sim "polynomial")

- reduce INDEPENDENT SET to VERTEX COVER
- trivial reduction: G has IS of size $k \Leftrightarrow G$ has VC of size n k
- \bullet also: VC \in P \Rightarrow IS \in P
- what about VC \in FPT \Rightarrow IS \in FPT?



Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

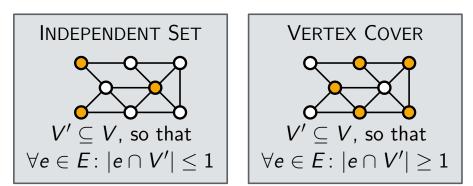
- \bullet map each instance I of $\mathcal L$ to an instance I' of $\mathcal L'$ so that
- *I* is a YES-instance \Leftrightarrow *I*['] is a YES-instance
- the mapping can be computed in polynomial time

Implications

- \bullet polynomial time algorithm for $\mathcal{L}' \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(here, we use "efficient" \sim "polynomial")

- reduce INDEPENDENT SET to VERTEX COVER
- trivial reduction: G has IS of size $k \Leftrightarrow G$ has VC of size n k
- \bullet also: VC \in P \Rightarrow IS \in P
- what about VC \in FPT \Rightarrow IS \in FPT? \rightarrow NO, the parameter depends on *n*



Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

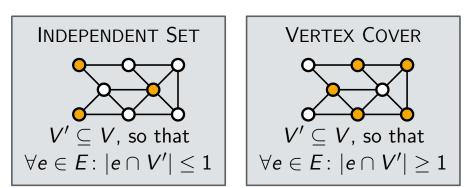
- \bullet map each instance I of $\mathcal L$ to an instance I' of $\mathcal L'$ so that
- *I* is a YES-instance \Leftrightarrow *I*['] is a YES-instance
- the mapping can be computed in polynomial time

Implications

- \bullet polynomial time algorithm for $\mathcal{L}' \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(here, we use "efficient" \sim "polynomial")

- reduce INDEPENDENT SET to VERTEX COVER
- trivial reduction: G has IS of size $k \Leftrightarrow G$ has VC of size n k
- \bullet also: VC \in P \Rightarrow IS \in P
- what about VC \in FPT \Rightarrow IS \in FPT? \rightarrow NO, the parameter depends on *n*
- \bullet for "efficient" \sim "FPT" we need a different type of reduction



Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

- map each instance (I, k) of \mathcal{L} to an instance (I', k') of \mathcal{L}' so that
- (1, k) is a YES-instance \Leftrightarrow (1', k') is a YES-instance where $k' \leq g(k)$
- the map must be computable in FPT-time $(f(k) \cdot |I|^{O(1)})$

(f and g must also be computable functions)

Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

- map each instance (I, k) of \mathcal{L} to an instance (I', k') of \mathcal{L}' so that
- (1, k) is a YES-instance \Leftrightarrow (1', k') is a YES-instance where $k' \leq g(k)$
- the map must be computable in FPT-time $(f(k) \cdot |I|^{O(1)})$

Implications

(f and g must also be computable functions)

 \bullet FPT-algorithm for $\mathcal{L}' \Rightarrow$ FPT algorithm for \mathcal{L}

Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

- map each instance (I, k) of \mathcal{L} to an instance (I', k') of \mathcal{L}' so that
- (1, k) is a YES-instance \Leftrightarrow (1', k') is a YES-instance where $k' \leq g(k)$
- the map must be computable in FPT-time $(f(k) \cdot |I|^{O(1)})$

Implications

(f and g must also be computable functions)

- \bullet FPT-algorithm for $\mathcal{L}' \Rightarrow$ FPT algorithm for \mathcal{L}
- \bullet solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

```
(now, "efficient" \sim "FPT" )
```

Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

- map each instance (I, k) of \mathcal{L} to an instance (I', k') of \mathcal{L}' so that
- (1, k) is a YES-instance \Leftrightarrow (1', k') is a YES-instance where $k' \leq g(k)$
- the map must be computable in FPT-time $(f(k) \cdot |I|^{O(1)})$

Implications

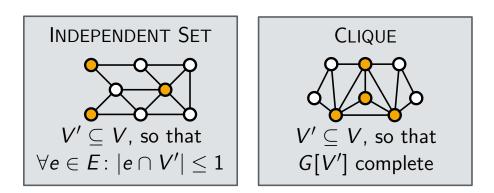
(f and g must also be computable functions)

- \bullet FPT-algorithm for $\mathcal{L}' \Rightarrow$ FPT algorithm for \mathcal{L}
- \bullet solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(now, "efficient" \sim "FPT")

Easy Example

• reduce INDEPENDENT SET to CLIQUE



Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

- map each instance (I, k) of \mathcal{L} to an instance (I', k') of \mathcal{L}' so that
- (1, k) is a YES-instance \Leftrightarrow (1', k') is a YES-instance where $k' \leq g(k)$
- the map must be computable in FPT-time $(f(k) \cdot |I|^{O(1)})$

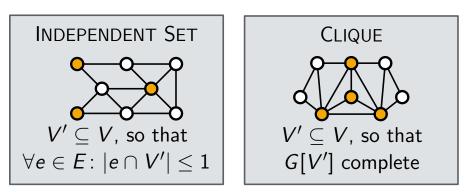
Implications

(f and g must also be computable functions)

- \bullet FPT-algorithm for $\mathcal{L}' \Rightarrow$ FPT algorithm for \mathcal{L}
- \bullet solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(now, "efficient" \sim "FPT")

- reduce INDEPENDENT SET to CLIQUE
- G has a size k IS \Leftrightarrow edge-complement of G has a size k Clique.



Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

- map each instance (I, k) of \mathcal{L} to an instance (I', k') of \mathcal{L}' so that
- (1, k) is a YES-instance \Leftrightarrow (1', k') is a YES-instance where $k' \leq g(k)$
- the map must be computable in FPT-time $(f(k) \cdot |I|^{O(1)})$

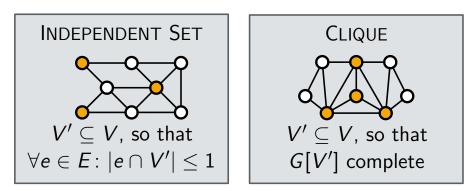
Implications

(f and g must also be computable functions)

- \bullet FPT-algorithm for $\mathcal{L}' \Rightarrow$ FPT algorithm for \mathcal{L}
- \bullet solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

```
(now, "efficient" \sim "FPT" )
```

- reduce INDEPENDENT SET to CLIQUE
- G has a size k IS \Leftrightarrow edge-complement of G has a size k Clique.
- \bullet also: CLIQUE $\in \mathsf{FPT} \Rightarrow \mathsf{IS} \in \mathsf{FPT}$



Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

- map each instance (I, k) of \mathcal{L} to an instance (I', k') of \mathcal{L}' so that
- (1, k) is a YES-instance \Leftrightarrow (1', k') is a YES-instance where $k' \leq g(k)$
- the map must be computable in FPT-time $(f(k) \cdot |I|^{O(1)})$

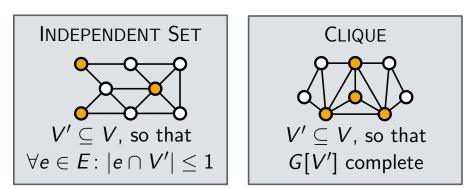
Implications

(f and g must also be computable functions)

- \bullet FPT-algorithm for $\mathcal{L}' \Rightarrow$ FPT algorithm for \mathcal{L}
- \bullet solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(now, "efficient" \sim "FPT")

- reduce INDEPENDENT SET to CLIQUE
- G has a size k IS \Leftrightarrow edge-complement of G has a size k Clique.
- \bullet also: CLIQUE $\in \mathsf{FPT} \Rightarrow \mathsf{IS} \in \mathsf{FPT}$
- reverse reduction also applies: $\mathsf{CLIQUE} \in \mathsf{FPT} \Leftrightarrow \mathsf{IS} \in \mathsf{FPT}$



Reduction from Problem \mathcal{L} to Problem \mathcal{L}'

- map each instance (I, k) of \mathcal{L} to an instance (I', k') of \mathcal{L}' so that
- (1, k) is a YES-instance \Leftrightarrow (1', k') is a YES-instance where $k' \leq g(k)$
- the map must be computable in FPT-time $(f(k) \cdot |I|^{O(1)})$

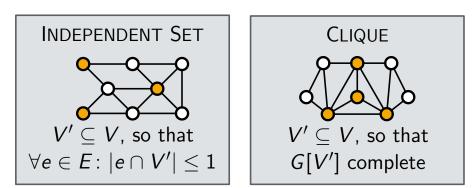
Implications

(f and g must also be computable functions)

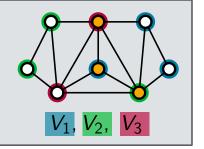
- \bullet FPT-algorithm for $\mathcal{L}' \Rightarrow$ FPT algorithm for \mathcal{L}
- \bullet solving my problem \mathcal{L}' efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently

(now, "efficient" \sim "FPT")

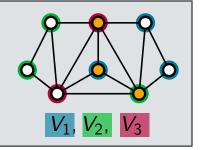
- reduce INDEPENDENT SET to CLIQUE
- G has a size k IS \Leftrightarrow edge-complement of G has a size k Clique.
- \bullet also: CLIQUE $\in \mathsf{FPT} \Rightarrow \mathsf{IS} \in \mathsf{FPT}$
- reverse reduction also applies: $\mathsf{CLIQUE} \in \mathsf{FPT} \Leftrightarrow \mathsf{IS} \in \mathsf{FPT}$
- expectation: CLIQUE, IS \notin FPT

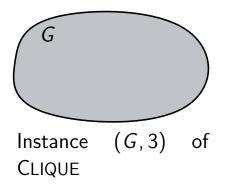


Problem: MULTICOLORED CLIQUE Given: Graph G = (V, E), parameter k, and partition (V_1, \ldots, V_k) of V. Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.

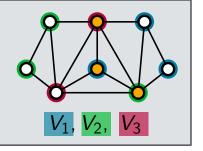


Problem: MULTICOLORED CLIQUE Given: Graph G = (V, E), parameter k, and partition (V_1, \ldots, V_k) of V. Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.

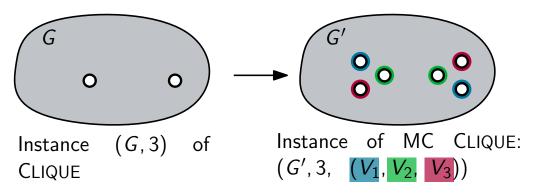




Problem: MULTICOLORED CLIQUE Given: Graph G = (V, E), parameter k, and partition (V_1, \ldots, V_k) of V. Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.

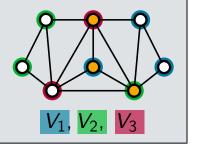


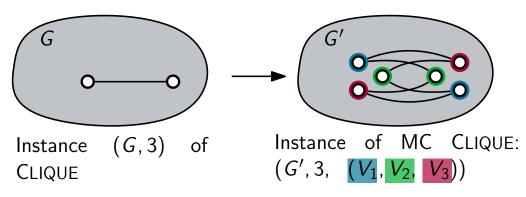
Reduction: from CLIQUE to MULTICOLORED CLIQUE



• copy each $v \in V$ to v^1, \ldots, v^k , and set $v^i \in V_i$

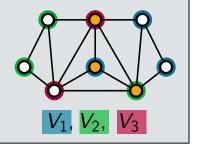
Problem: MULTICOLORED CLIQUE Given: Graph G = (V, E), parameter k, and partition (V_1, \ldots, V_k) of V. Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.

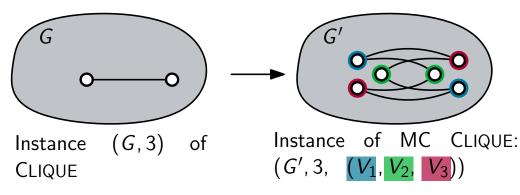




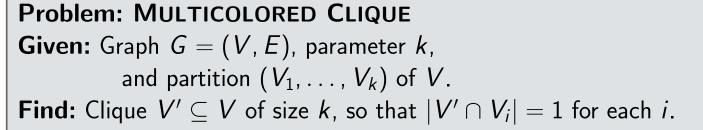
- copy each $v \in V$ to v^1, \ldots, v^k , and set $v^i \in V_i$
- for each $uv \in E$ connect u^i with v^j for each $i \neq j$
- k = k'

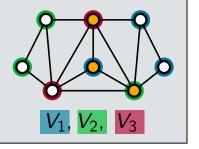
Problem: MULTICOLORED CLIQUE Given: Graph G = (V, E), parameter k, and partition (V_1, \ldots, V_k) of V. Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.

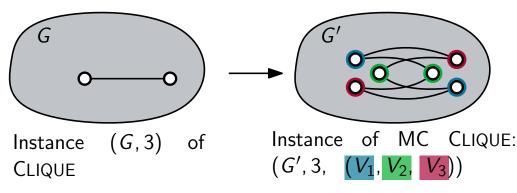




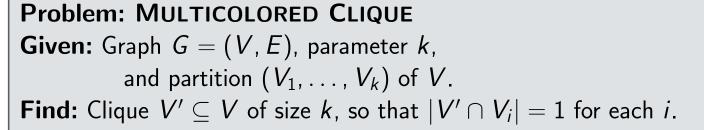
- copy each $v \in V$ to v^1, \ldots, v^k , and set $v^i \in V_i$
- for each $uv \in E$ connect u^i with v^j for each $i \neq j$
- k = k'
- G has a size k clique \Rightarrow G' has a size k colored clique
- Let v_1, \ldots, v_k be a clique in G
- then v_1^1, \ldots, v_k^k is a clique in G'

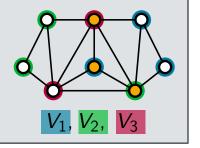




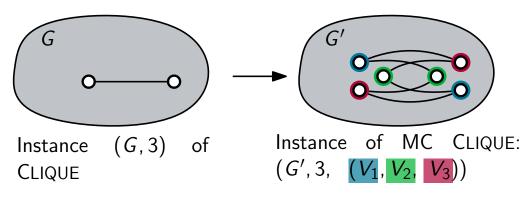


- copy each $v \in V$ to v^1, \ldots, v^k , and set $v^i \in V_i$
- for each $uv \in E$ connect u^i with v^j for each $i \neq j$
- k = k'
- G has a size k clique \Rightarrow G' has a size k colored clique
- Let v_1, \ldots, v_k be a clique in G
- then v_1^1, \ldots, v_k^k is a clique in G'
- all these vertices have distinct colors





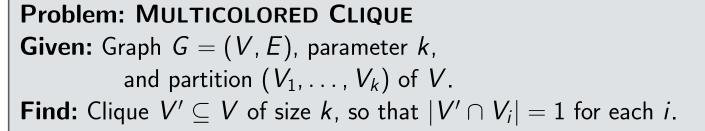
Reduction: from CLIQUE to MULTICOLORED CLIQUE

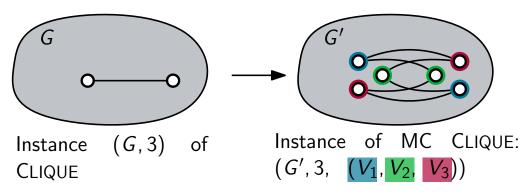


- copy each $v \in V$ to v^1, \ldots, v^k , and set $v^i \in V_i$
- for each $uv \in E$ connect u^i with v^j for each $i \neq j$
- k = k'

G' has a size k colored clique \Rightarrow G has a size k clique

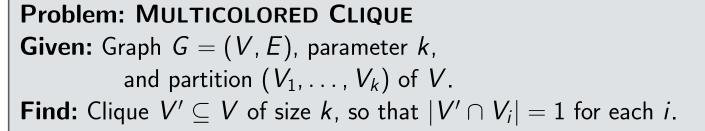
• Let $v_{\pi(1)}^1, \ldots, v_{\pi(k)}^k$ be a colored clique in G with $\pi \colon \{1, \ldots, k\} \to \{1, \ldots, n\}$

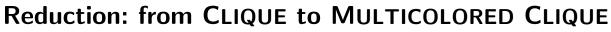


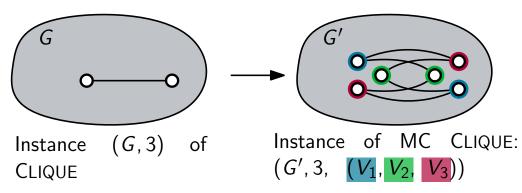


- copy each $v \in V$ to v^1, \ldots, v^k , and set $v^i \in V_i$
- for each $uv \in E$ connect u^i with v^j for each $i \neq j$
- k = k'
- G' has a size k colored clique \Rightarrow G has a size k clique
- Let $v_{\pi(1)}^1, \ldots, v_{\pi(k)}^k$ be a colored clique in G with $\pi \colon \{1, \ldots, k\} \to \{1, \ldots, n\}$
- π is injective

(the colored clique does not contain two copies of the same vertex)



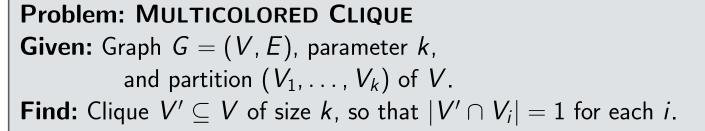


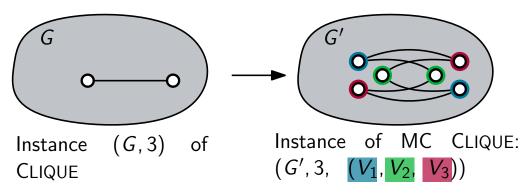


- copy each $v \in V$ to v^1, \ldots, v^k , and set $v^i \in V_i$
- for each $uv \in E$ connect u^i with v^j for each $i \neq j$
- k = k'
- G' has a size k colored clique \Rightarrow G has a size k clique
- Let $v_{\pi(1)}^1, \ldots, v_{\pi(k)}^k$ be a colored clique in G with $\pi: \{1, \ldots, k\} \to \{1, \ldots, n\}$
- π is injective

(the colored clique does not contain two copies of the same vertex)

• thus, $v_{\pi(1)}, \ldots, v_{\pi(k)}$ are k distinct nodes that form a clique in G

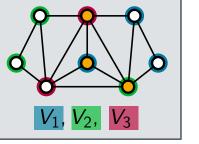




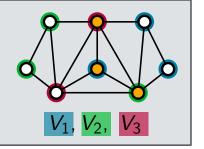
- copy each $v \in V$ to v^1, \ldots, v^k , and set $v^i \in V_i$
- for each $uv \in E$ connect u^i with v^j for each $i \neq j$
- k = k'
- G' has a size k colored clique \Rightarrow G has a size k clique
- Let $v_{\pi(1)}^1, \ldots, v_{\pi(k)}^k$ be a colored clique in G with $\pi: \{1, \ldots, k\} \to \{1, \ldots, n\}$
- π is injective

(the colored clique does not contain two copies of the same vertex)

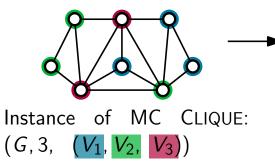
• thus, $v_{\pi(1)}, \ldots, v_{\pi(k)}$ are k distinct nodes that form a clique in G



Problem: MULTICOLORED CLIQUE Given: Graph G = (V, E), parameter k, and partition (V_1, \ldots, V_k) of V. Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.

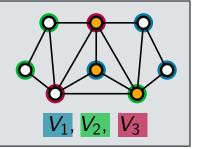


Reduction: from MULTICOLORED CLIQUE to CLIQUE

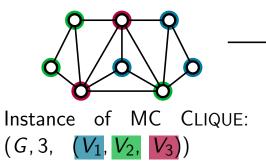


Problem: MULTICOLORED CLIQUE Given: Graph G = (V, E), parameter k, and partition (V_1, \ldots, V_k) of V. Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.

CLIQUE



Reduction: from MULTICOLORED CLIQUE to CLIQUE



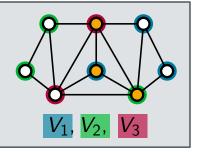
Instance (G', 3) of

• delete edges within each color class

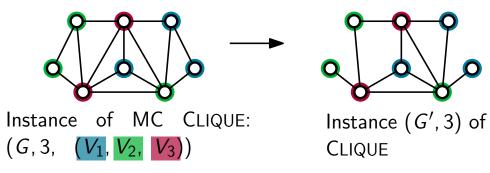
•
$$k' = k$$

Colored Cliques

Problem: MULTICOLORED CLIQUE Given: Graph G = (V, E), parameter k, and partition (V_1, \ldots, V_k) of V. Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.



Reduction: from MULTICOLORED CLIQUE to CLIQUE



delete edges within each color class

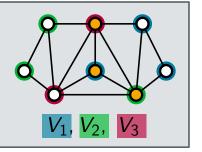
•
$$k' = k$$

G has a colored size k clique \Rightarrow G' has a size k clique

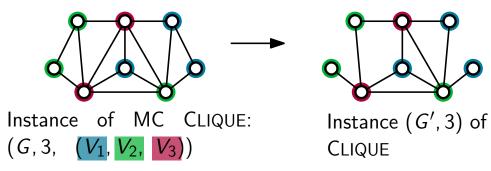
- the colored clique does not use any edges inside a color class
- thus, G' contains a size k clique

Colored Cliques

Problem: MULTICOLORED CLIQUE Given: Graph G = (V, E), parameter k, and partition (V_1, \ldots, V_k) of V. Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.



Reduction: from MULTICOLORED CLIQUE to CLIQUE



delete edges within each color class

•
$$k' = k$$

G has a colored size k clique \Rightarrow G' has a size k clique

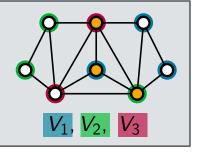
- the colored clique does not use any edges inside a color class
- thus, G' contains a size k clique

G' has a size k clique \Rightarrow G has a colored size k clique

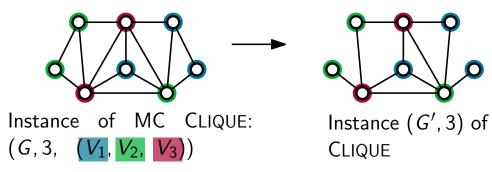
- in G', no monochromatic vertices are adjacent
- thus, each clique must be a colored clique

Colored Cliques

Problem: MULTICOLORED CLIQUE Given: Graph G = (V, E), parameter k, and partition (V_1, \ldots, V_k) of V. Find: Clique $V' \subseteq V$ of size k, so that $|V' \cap V_i| = 1$ for each i.



Reduction: from MULTICOLORED CLIQUE to CLIQUE



• delete edges within each color class

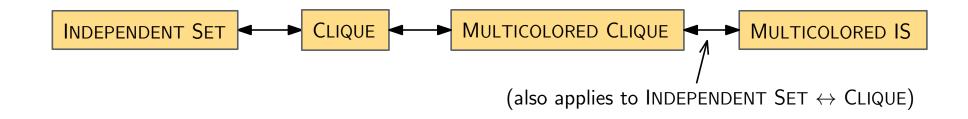
•
$$k' = k$$

G has a colored size k clique \Rightarrow G' has a size k clique

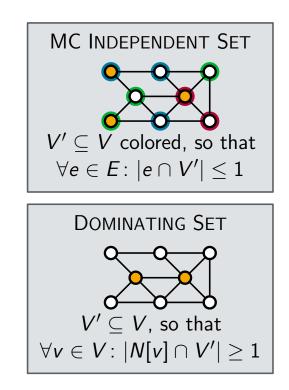
- the colored clique does not use any edges inside a color class
- thus, G' contains a size k clique

G' has a size k clique \Rightarrow G has a colored size k clique

- in G', no monochromatic vertices are adjacent
- thus, each clique must be a colored clique

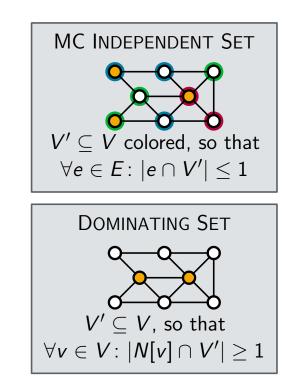


Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET



Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

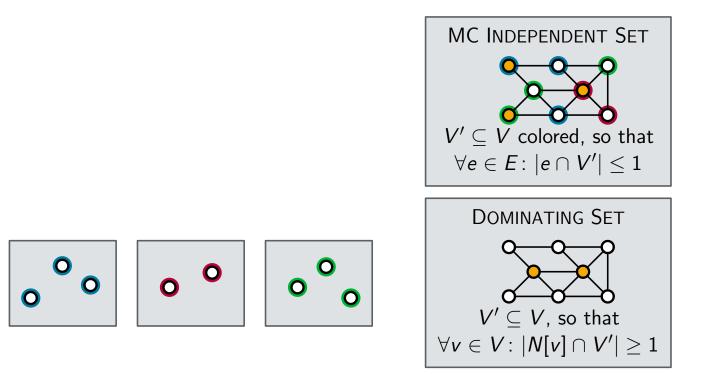
- \bullet enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class
 - avoid simultaneous selection of designated node pairs



Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

- \bullet enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class
 - avoid simultaneous selection of designated node pairs

One element in each color class



Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

- \bullet enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class
 - avoid simultaneous selection of designated node pairs

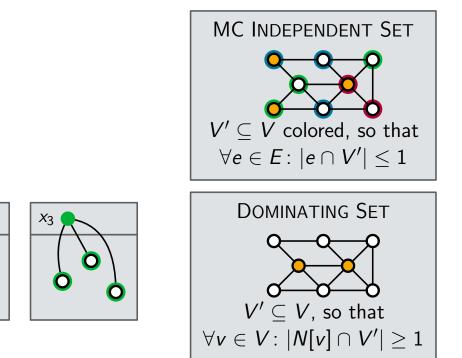
One element in each color class

• vertex x_i adjacent to all vertices in V_i and no others

(forces the selection of at least one of $V_i \cup \{x_i\}$)

 X_2

 \mathbf{O}



Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

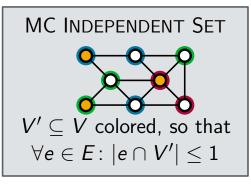
- \bullet enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class
 - avoid simultaneous selection of designated node pairs

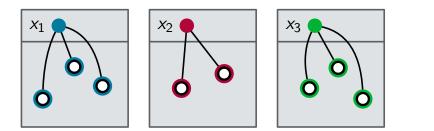
One element in each color class

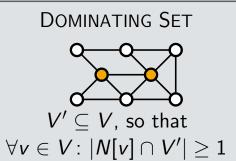
• vertex x_i adjacent to all vertices in V_i and no others

```
(forces the selection of at least one of V_i \cup \{x_i\})
```

• Problem: can still choose x_i







Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

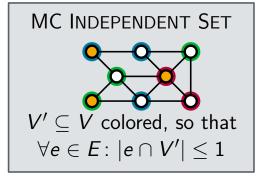
- \bullet enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class
 - avoid simultaneous selection of designated node pairs

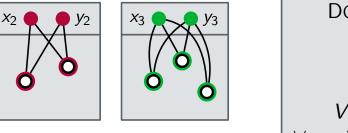
One element in each color class

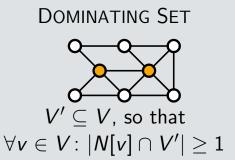
• vertex x_i adjacent to all vertices in V_i and no others

```
(forces the selection of at least one of V_i \cup \{x_i\})
```

- Problem: can still choose x_i
- Solution: create a copy y_i of x_i (picking both x_i and y_i is too costly to form a size k DS)







Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

- \bullet enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class
 - avoid simultaneous selection of designated node pairs

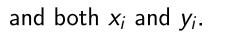
One element in each color class

• vertex x_i adjacent to all vertices in V_i and no others

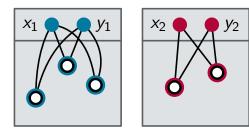
```
(forces the selection of at least one of V_i \cup \{x_i\})
```

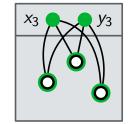
- Problem: can still choose x_i
- Solution: create a copy y_i of x_i (picking both x_i and y_i is too costly to form a size k DS)

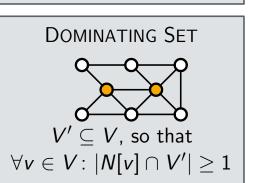
MC INDEPENDENT SET $V' \subseteq V$ colored, so that $\forall e \in E : |e \cap V'| \leq 1$



to allow any vertex from V_i to dominate it







Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

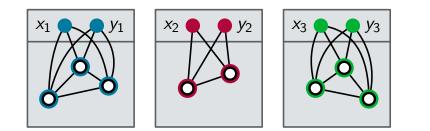
- \bullet enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class
 - avoid simultaneous selection of designated node pairs

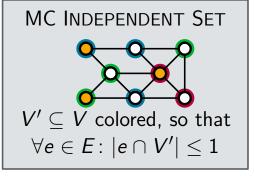
One element in each color class

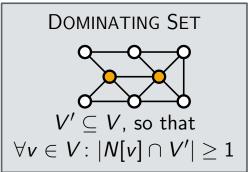
• vertex x_i adjacent to all vertices in V_i and no others

```
(forces the selection of at least one of V_i \cup \{x_i\})
```

- Problem: can still choose x_i
- Solution: create a copy y_i of x_i (picking both x_i and y_i is too costly to form a size k DS)
- make V_i into a clique as to allow any vertex from V_i to dominate it and both x_i and y_i .







Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

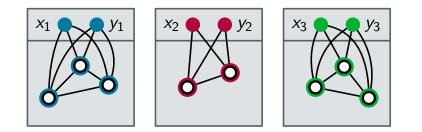
- \bullet enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class
 - avoid simultaneous selection of designated node pairs

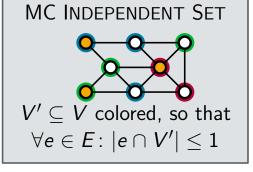
One element in each color class

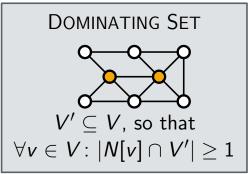
• vertex x_i adjacent to all vertices in V_i and no others

```
(forces the selection of at least one of V_i \cup \{x_i\})
```

- Problem: can still choose x_i
- Solution: create a copy y_i of x_i (picking both x_i and y_i is too costly to form a size k DS)
- make V_i into a clique as to allow any vertex from V_i to dominate it and both x_i and y_i .





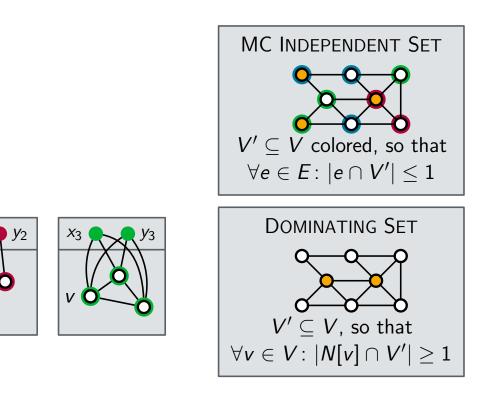


Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

*x*₂

- enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class
 - avoid simultaneous selection of designated node pairs

Avoid selecting both *u* and *v*



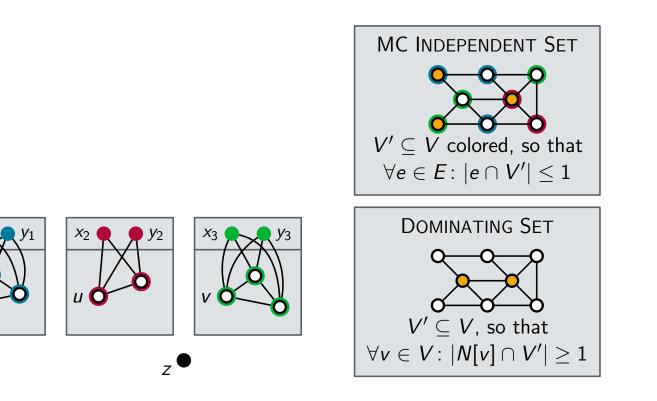
Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

- enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class

- avoid simultaneous selection of designated node pairs

Avoid selecting both *u* and *v*

• Idea: insert a vertex z that is dominated unless both u and v are picked

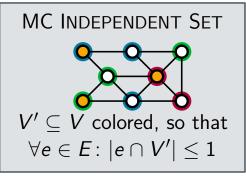


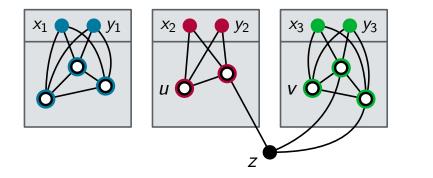
Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

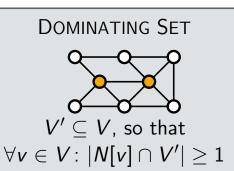
- enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class
 - avoid simultaneous selection of designated node pairs

Avoid selecting both *u* and *v*

- Idea: insert a vertex z that is dominated unless both u and v are picked
 - z is not adjacent to u and not adjacent to v
 but is adjacent to all other vertices in the color classes of u and v







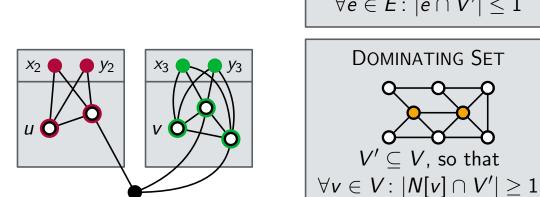
DOMINATING SET

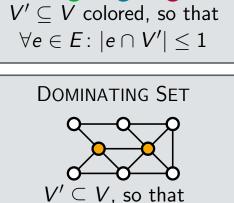
Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET

- enforce the following properties on the DOMINATING SET instance
 - select exactly one element from each color class
 - avoid simultaneous selection of designated node pairs

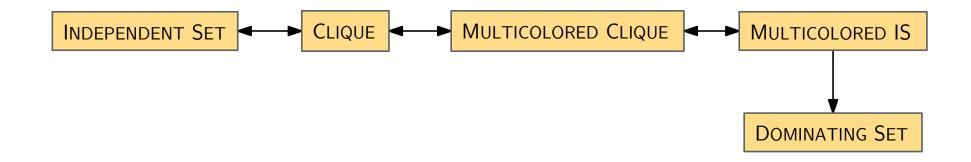
Avoid selecting both *u* and *v*

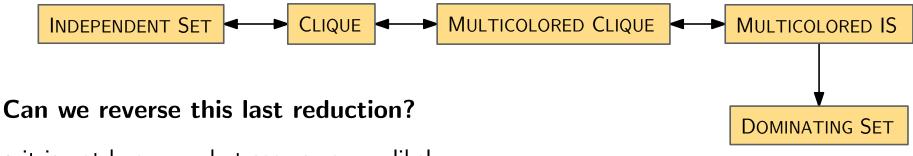
- Idea: insert a vertex z that is dominated unless both u and v are picked
 - -z is not adjacent to u and not adjacent to vbut is adjacent to all other vertices in the color classes of u and v



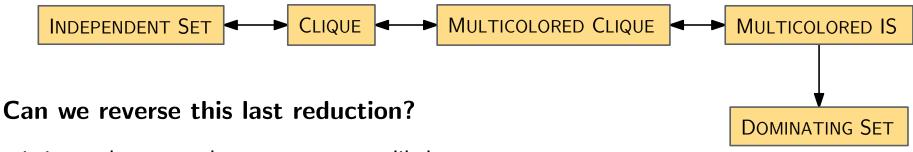


MC INDEPENDENT SET

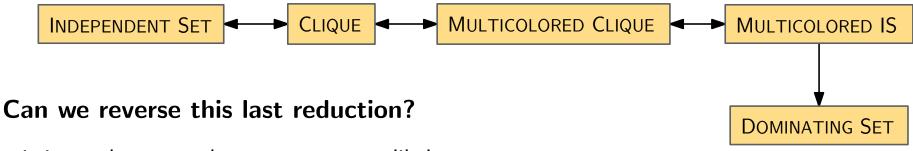




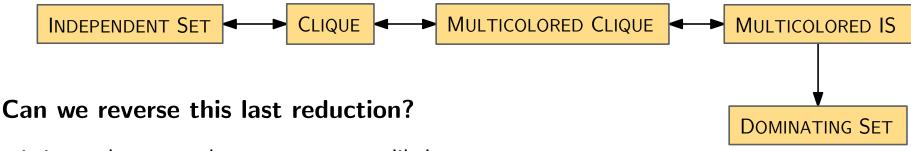
• it is not known ... but seems very unlikely



- it is not known ... but seems very unlikely
- DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET $(DS \in FPT \Rightarrow IS \in FPT, but not the other way around)$

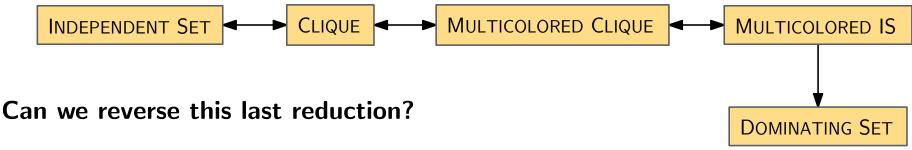


- it is not known ... but seems very unlikely
- DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET $(DS \in FPT \Rightarrow IS \in FPT, but not the other way around)$
- we need a refined notion of "hardness"



- it is not known ... but seems very unlikely
- DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET $(DS \in FPT \Rightarrow IS \in FPT, but not the other way around)$
- we need a refined notion of "hardness"

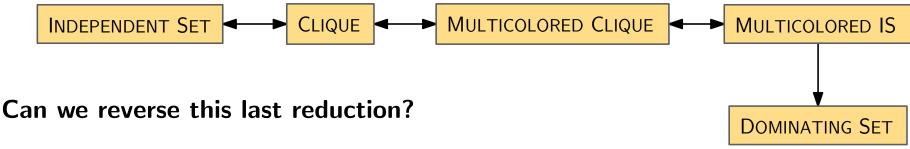
Similar to the complexity class P



- \bullet it is not known ... but seems very unlikely
- DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET $(DS \in FPT \Rightarrow IS \in FPT, but not the other way around)$
- we need a refined notion of "hardness"

Similar to the complexity class P

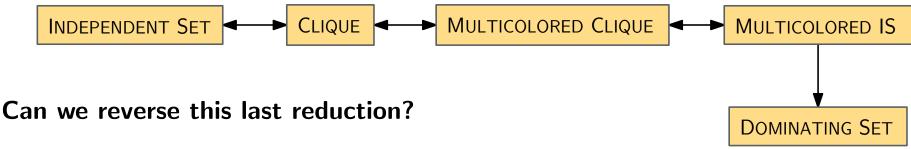
- usually, one focuses on: NP-hardness
- but there are also **intermediate** problems (assuming $P \neq NP$)



- it is not known ... but seems very unlikely
- DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET ($DS \in FPT \Rightarrow IS \in FPT$, but not the other way around)
- we need a refined notion of "hardness"

Similar to the complexity class P

- usually, one focuses on: NP-hardness
- but there are also **intermediate** problems (assuming $P \neq NP$)
- however, no natural hierarchy of NP-intermediate problems (candidates: prime factorization, graph isomorphism)



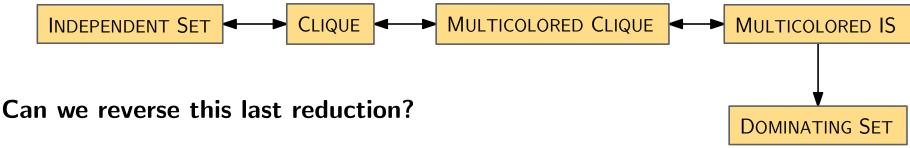
- it is not known ... but seems very unlikely
- DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET ($DS \in FPT \Rightarrow IS \in FPT$, but not the other way around)
- we need a refined notion of "hardness"

Similar to the complexity class P

- usually, one focuses on: NP-hardness
- but there are also **intermediate** problems (assuming $P \neq NP$)
- however, no natural hierarchy of NP-intermediate problems (candidates: prime factorization, graph isomorphism)

And now? What about FPT?

• define natural hierarchy of complexity classes



- it is not known ... but seems very unlikely
- DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET ($DS \in FPT \Rightarrow IS \in FPT$, but not the other way around)
- we need a refined notion of "hardness"

Similar to the complexity class P

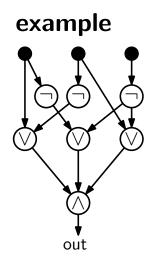
- usually, one focuses on: NP-hardness
- but there are also **intermediate** problems (assuming $P \neq NP$)
- however, no natural hierarchy of NP-intermediate problems (candidates: prime factorization, graph isomorphism)

And now? What about FPT?

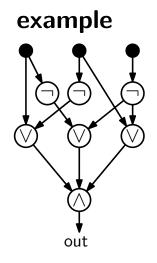
- define natural hierarchy of complexity classes
- establish prototypical problem for each level

Boolean Circuits

• directed acyclic graph (DAG) with the following node types:

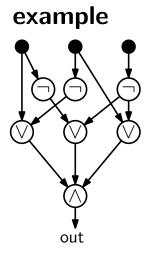


- directed acyclic graph (DAG) with the following node types:
 - sources (in-degree 0) are **input nodes**

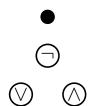


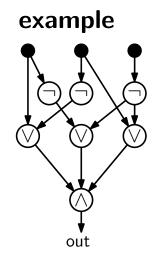
Boolean Circuits

- directed acyclic graph (DAG) with the following node types:
 - sources (in-degree 0) are **input nodes**
 - **NEGATION** nodes have in-degree 1

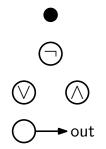


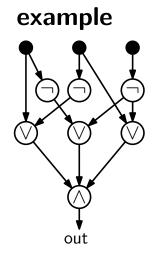
- directed acyclic graph (DAG) with the following node types:
 - sources (in-degree 0) are **input nodes**
 - **NEGATION** nodes have in-degree 1
 - **AND** resp. **OR**-nodes have in-degree ≥ 2



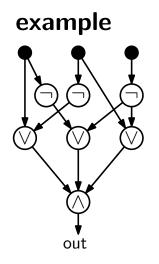


- directed acyclic graph (DAG) with the following node types:
 - sources (in-degree 0) are **input nodes**
 - **NEGATION** nodes have in-degree 1
 - **AND** resp. **OR**-nodes have in-degree ≥ 2
 - one sink (out-degree 0) is the **output node**

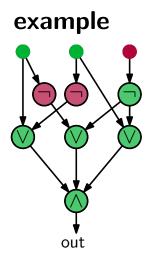




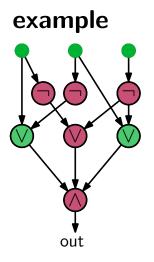
- directed acyclic graph (DAG) with the following node types:
 - sources (in-degree 0) are **input nodes**
 - **NEGATION** nodes have in-degree 1
 - **AND** resp. **OR**-nodes have in-degree ≥ 2
 - one sink (out-degree 0) is the **output node**
- an assignment of 0 or 1 to each input node propogates through the other nodes, providing an output value. (in the natural way)
- \bullet an assignment ${\it statisfying}$ when the output value is 1



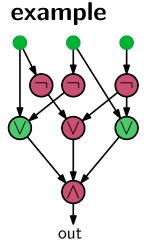
- directed acyclic graph (DAG) with the following node types:
 - sources (in-degree 0) are **input nodes**
 - **NEGATION** nodes have in-degree 1
 - **AND** resp. **OR**-nodes have in-degree ≥ 2
 - one sink (out-degree 0) is the **output node**
- an assignment of 0 or 1 to each input node propogates through the other nodes, providing an output value. (in the natural way)
- \bullet an assignment ${\it statisfying}$ when the output value is 1



- directed acyclic graph (DAG) with the following node types:
 - sources (in-degree 0) are **input nodes**
 - **NEGATION** nodes have in-degree 1
 - **AND** resp. **OR**-nodes have in-degree ≥ 2
 - one sink (out-degree 0) is the **output node**
- an assignment of 0 or 1 to each input node propogates through the other nodes, providing an output value. (in the natural way)
- \bullet an assignment ${\bf statisfying}$ when the output value is 1



- \bullet directed acyclic graph (DAG) with the following node types:
 - sources (in-degree 0) are **input nodes**
 - **NEGATION** nodes have in-degree 1
 - **AND** resp. **OR**-nodes have in-degree ≥ 2
 - one sink (out-degree 0) is the **output node**
- an assignment of 0 or 1 to each input node propogates through the other nodes, providing an output value. (in the natural way)
- \bullet an assignment ${\it statisfying}$ when the output value is 1
- the weight of an assignment is the number of 1s used



Weighted Circuit Satisfiability

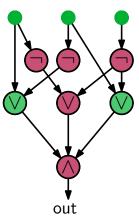
Boolean Circuits

- directed acyclic graph (DAG) with the following node types:
 - sources (in-degree 0) are **input nodes**
 - **NEGATION** nodes have in-degree 1
 - **AND** resp. **OR**-nodes have in-degree ≥ 2
 - one sink (out-degree 0) is the **output node**
- an assignment of 0 or 1 to each input node propogates through the other nodes, providing an output value. (in the natural way)
- \bullet an assignment ${\it statisfying}$ when the output value is 1
- the weight of an assignment is the number of 1s used

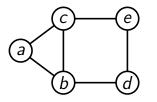
Problem: WEIGHTED CIRCUIT SATISFIABILITY (WCS)Given a boolean circuit and a parameter kFind: A weight k satisfying assignment

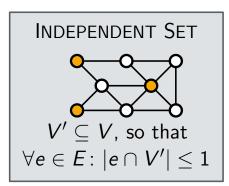
⊂ ⊘ ⊘ ⊖→out

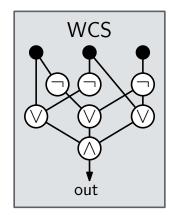
example



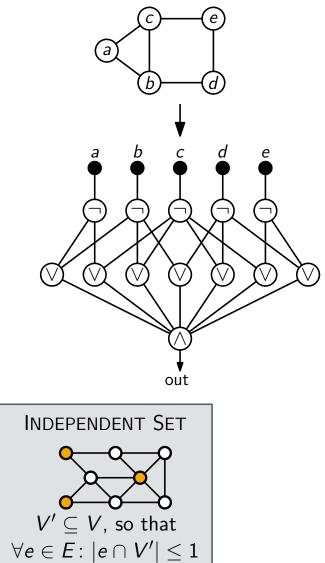
Independent Set \rightarrow WCS

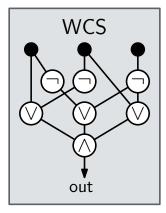


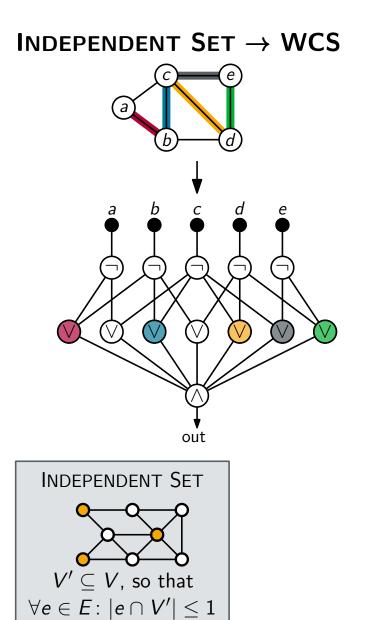


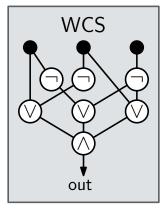


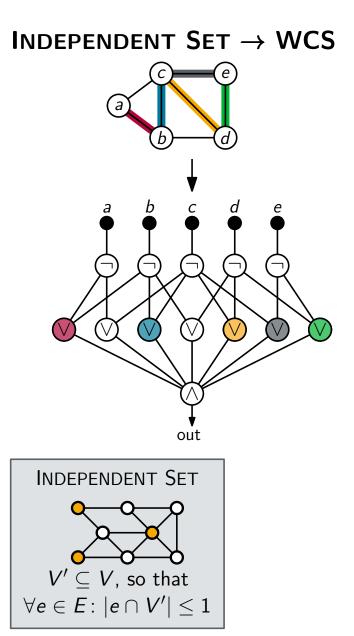
Independent Set \rightarrow WCS

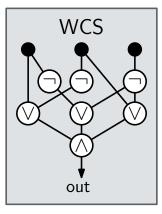




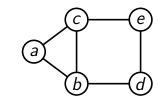


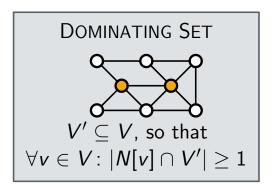


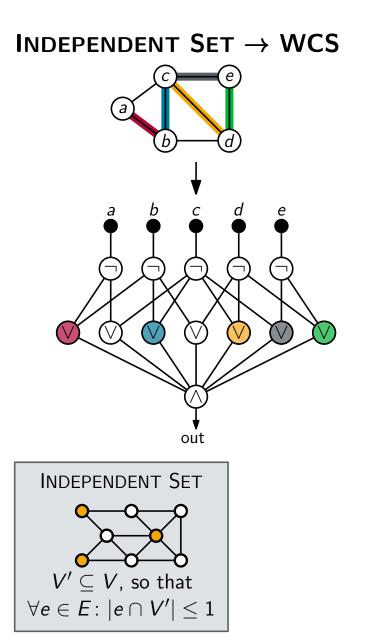


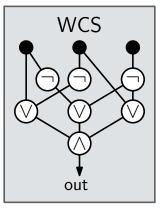


Dominating Set \rightarrow WCS

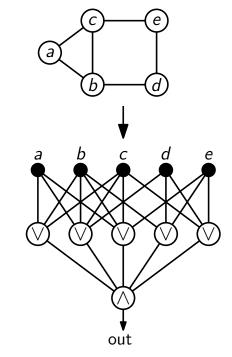


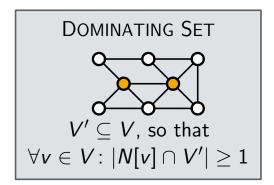


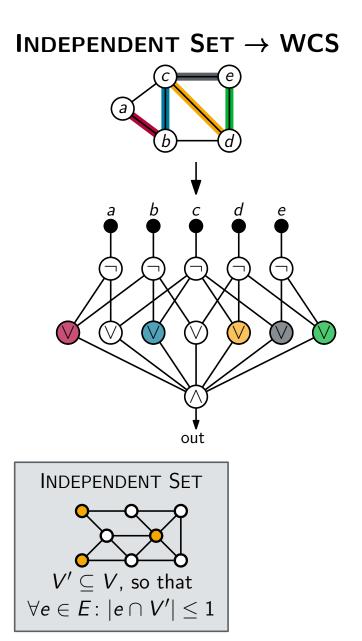


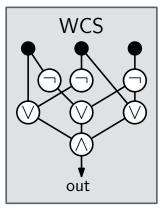


Dominating Set \rightarrow WCS

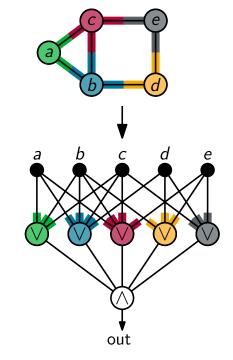


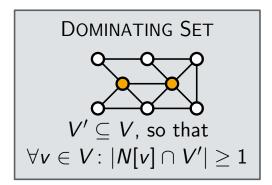


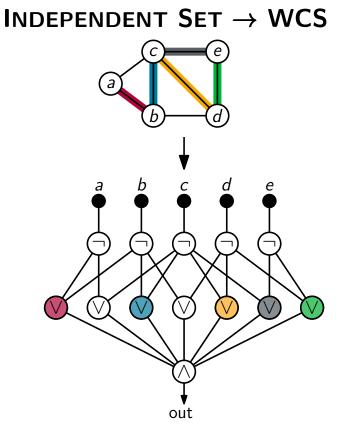




Dominating Set \rightarrow WCS

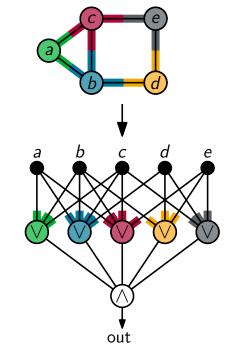


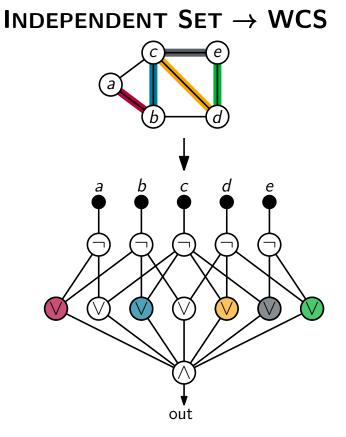




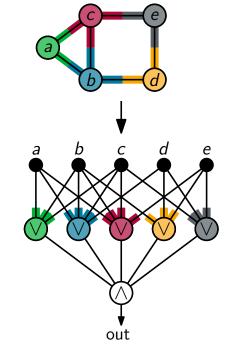
Observations

• the circuits have constant depth



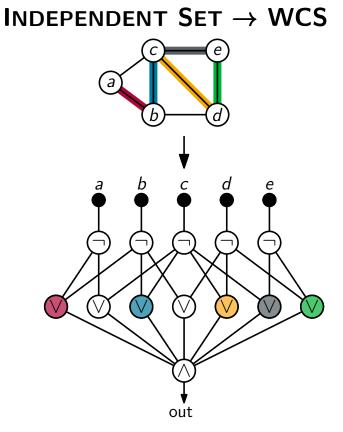


Dominating Set \rightarrow WCS



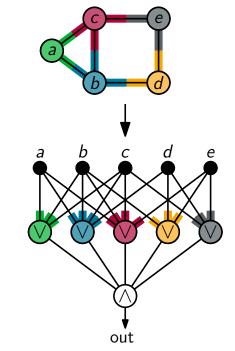
Observations

- the circuits have constant depth
- \bullet the circuit for DS contains more nodes with in-degree >2



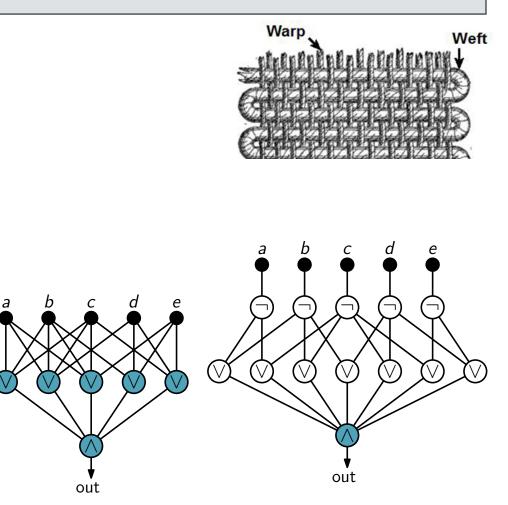
Observations

- the circuits have constant depth
- \bullet the circuit for DS contains more nodes with in-degree >2
- is DS harder (in terms of FPT) than IS?



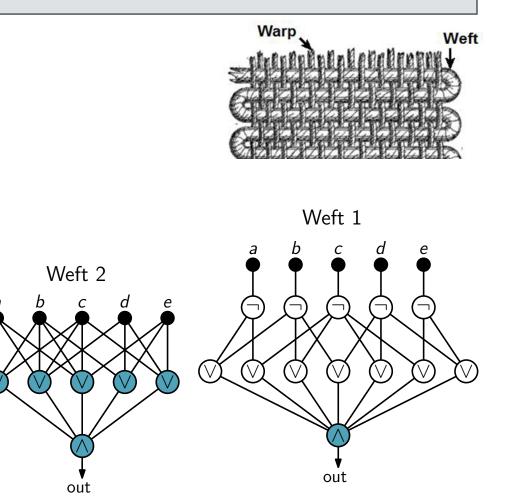
Definition

The **Weft** of a boolean circuit is the maximum number of nodes with in-degree > 2 on a directed path.



Definition

The **Weft** of a boolean circuit is the maximum number of nodes with in-degree > 2 on a directed path.

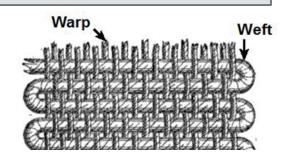


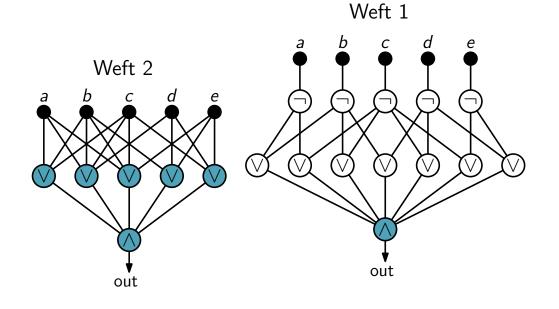
Definition

The **Weft** of a boolean circuit is the maximum number of nodes with in-degree > 2 on a directed path.

Problem

WCS[*t*] is WCS limited to circuits with constant depth and weft at most *t*.





Definition

The **Weft** of a boolean circuit is the maximum number of nodes with in-degree > 2 on a directed path.

Problem

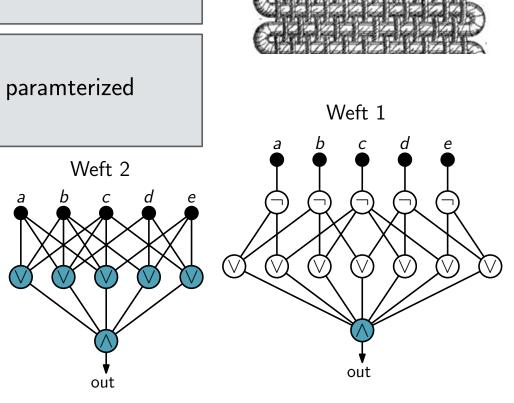
WCS[*t*] is WCS limited to circuits with constant depth and weft at most *t*.

Definition

The class W[t] contains all problems with a paramterized reduction to WCS[t].

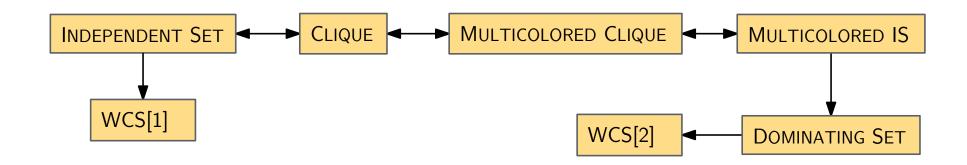
We have seen

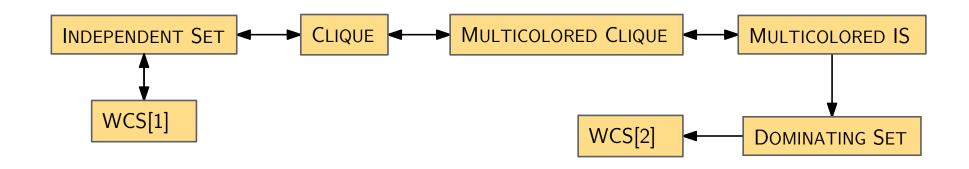
- Independent Set $\in W[1] \subseteq W[2]$
- Dominating Set $\in W[2]$



War

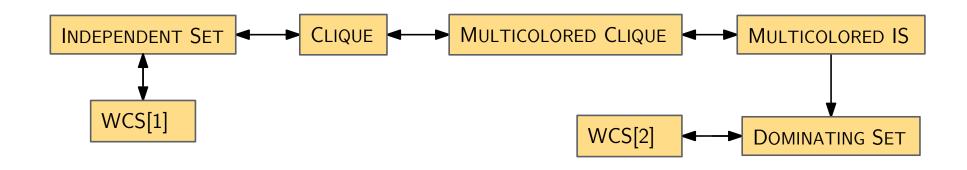
Weft



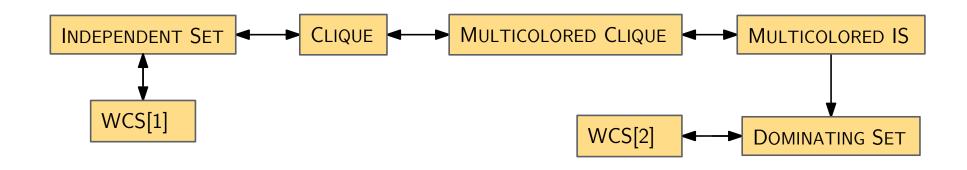


Further reductions

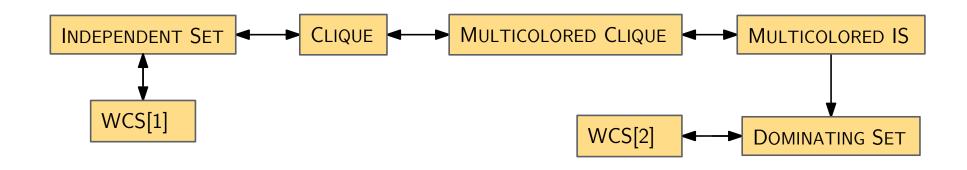
 \bullet one can also reduce WCS[1] to INDEPENDENT SET



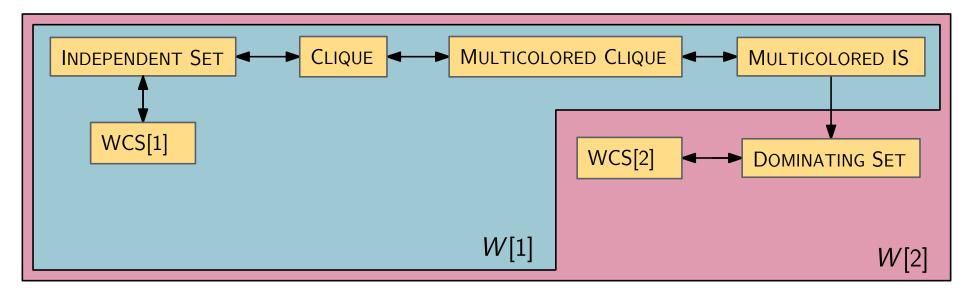
- \bullet one can also reduce WCS[1] to INDEPENDENT SET
- \bullet and WCS[2] to DOMINATING SET



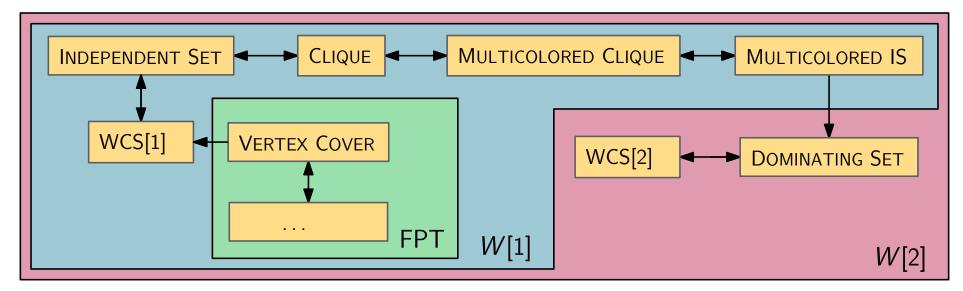
- \bullet one can also reduce WCS[1] to INDEPENDENT SET
- \bullet and WCS[2] to DOMINATING SET
- so, all problems in W[1] reduce to IS \rightsquigarrow IS is W[1]-complete



- \bullet one can also reduce WCS[1] to INDEPENDENT SET
- \bullet and WCS[2] to DOMINATING SET
- so, all problems in W[1] reduce to IS ~> IS is W[1]-complete
- similarly DS is W[2]-complete



- \bullet one can also reduce WCS[1] to INDEPENDENT SET
- \bullet and WCS[2] to DOMINATING SET
- so, all problems in W[1] reduce to IS ~> IS is W[1]-complete
- similarly DS is W[2]-complete
- ullet note: $W[1]\subseteq W[2]$



Further reductions

- \bullet one can also reduce WCS[1] to INDEPENDENT SET
- \bullet and WCS[2] to DOMINATING SET
- so, all problems in W[1] reduce to IS ~> IS is W[1]-complete
- similarly DS is W[2]-complete
- note: $W[1] \subseteq W[2]$
- ullet also: FPT \subseteq $W[1] \subseteq$ W[2]

why?

The W-Hierarchy

- Complexity Classes $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots$
- W[t] defined via a prototypical complete problem WCS[t]: $\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to WCS[t]

(by FPT-reduction)

The W-Hierarchy

- Complexity Classes $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots$
- W[t] defined via a prototypical complete problem WCS[t]: $\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to WCS[t]

(by FPT-reduction)

• Inclusions **expected** to be strict

The W-Hierarchy

- Complexity Classes $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots$
- W[t] defined via a prototypical complete problem WCS[t]: $\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to WCS[t]

(by FPT-reduction)

• Inclusions **expected** to be strict

Is my W[t]-completeness proof useless if W[t] = FPT?

The W-Hierarchy

- Complexity Classes $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots$
- W[t] defined via a prototypical complete problem WCS[t]: $\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to WCS[t]

(by FPT-reduction)

• Inclusions **expected** to be strict

Is my W[t]-completeness proof useless if W[t] = FPT?

• finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all problems in the class.

The W-Hierarchy

- Complexity Classes $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots$
- W[t] defined via a prototypical complete problem WCS[t]: $\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to WCS[t]

(by FPT-reduction)

• Inclusions **expected** to be strict

Is my W[t]-completeness proof useless if W[t] = FPT?

• finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all problems in the class.

How do I show that my problem is hard?

• reduce a known hard problem to your problem

The W-Hierarchy

- Complexity Classes $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots$
- W[t] defined via a prototypical complete problem WCS[t]: $\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to WCS[t]

(by FPT-reduction)

• Inclusions **expected** to be strict

Is my W[t]-completeness proof useless if W[t] = FPT?

• finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all problems in the class.

How do I show that my problem is hard?

- reduce a known hard problem to your problem
- reducing from MC INDEPENDENT SET or MC CLIQUE provides W[1]-hardness

The W-Hierarchy

- Complexity Classes $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots$
- W[t] defined via a prototypical complete problem WCS[t]: $\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to WCS[t]

(by FPT-reduction)

• Inclusions **expected** to be strict

Is my W[t]-completeness proof useless if W[t] = FPT?

• finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all problems in the class.

How do I show that my problem is hard?

- reduce a known hard problem to your problem
- reducing from MC INDEPENDENT SET or MC CLIQUE provides W[1]-hardness
- reducing from DOMINATING SET or SET COVER provides W[2]-hardness