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How to obtain lower bounds?

Problem
• difficult to show absence of “nice” algorithms

• argue that having an efficient algorithm⇒ some
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Solution
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2



Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

3



Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

3



Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

3



Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial” )

3



Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial” )

Easy Example

• reduce INDEPENDENT SET to VERTEX COVER

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≥ 1

INDEPENDENT SET VERTEX COVER

3



Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial” )

Easy Example

• reduce INDEPENDENT SET to VERTEX COVER

• trivial reduction: G has IS of size k ⇔ G has VC of size n − k

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≥ 1

INDEPENDENT SET VERTEX COVER

3



Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial” )

Easy Example

• reduce INDEPENDENT SET to VERTEX COVER

• trivial reduction: G has IS of size k ⇔ G has VC of size n − k

• also: VC ∈ P ⇒ IS ∈ P

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≥ 1

INDEPENDENT SET VERTEX COVER

3



Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial” )

Easy Example

• reduce INDEPENDENT SET to VERTEX COVER

• trivial reduction: G has IS of size k ⇔ G has VC of size n − k

• what about VC ∈ FPT ⇒ IS ∈ FPT?

• also: VC ∈ P ⇒ IS ∈ P

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≥ 1

INDEPENDENT SET VERTEX COVER

3



Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial” )

Easy Example

• reduce INDEPENDENT SET to VERTEX COVER

• trivial reduction: G has IS of size k ⇔ G has VC of size n − k

• what about VC ∈ FPT ⇒ IS ∈ FPT?

• also: VC ∈ P ⇒ IS ∈ P

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≥ 1

INDEPENDENT SET VERTEX COVER

→ NO, the parameter depends on n

3



Polynomial Reduction
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• map each instance I of L to an instance I ′ of L′ so that
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• the mapping can be computed in polynomial time
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• trivial reduction: G has IS of size k ⇔ G has VC of size n − k

• what about VC ∈ FPT ⇒ IS ∈ FPT?

• also: VC ∈ P ⇒ IS ∈ P
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INDEPENDENT SET VERTEX COVER
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• for “efficient” ∼ “FPT” we need a different
type of reduction
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Parameterized Reductions

• map each instance (I , k) of L to an instance (I ′, k ′) of L′ so that

• (I , k) is a YES-instance ⇔ (I ′, k ′) is a YES-instance where k ′ ≤ g(k)

• the map must be computable in FPT-time (f (k) · |I |O(1))

(f and g must also be computable functions)
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Colored Cliques

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E ), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3
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FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE
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FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

(also applies to INDEPENDENT SET ↔ CLIQUE)
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DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v ] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET7



DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1
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Problem
WCS[t][t][t] is WCS limited to circuits with constant depth and weft
at most t.

Definition
The class W [t]W [t]W [t] contains all problems with a paramterized
reduction to WCS[t].

We have seen

• DOMINATING SET ∈ W [2]

• INDEPENDENT SET ∈ W [1] ⊆ W [2]
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• similarly DS is W [2]-complete

W [2]W [1]
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