Lehrstuhl für

INFORMATIK I

Exakte Algorithmen

Lecture 9.2 Reductions and the $W[t]$ Hierarchy

> Based on: [Parameterized Algorithms: §13]
(slides by Thomas Bläsius)

How to obtain lower bounds?

"I can't find an efficient algorithm, I guess I'm just too dumb."

How to obtain lower bounds?

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, because no such algorithm is possible!"

How to obtain lower bounds?

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, because no such algorithm is possible!"

Problem

- difficult to show absence of "nice" algorithms

How to obtain lower bounds?

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, because no such algorithm is possible!"

Problem

- difficult to show absence of "nice" algorithms

Solution

- argue that having an efficient algorithm \Rightarrow some well studied diffcult problem can be solved efficiently

[^0]
How to obtain lower bounds?

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, because no such algorithm is possible!"

Problem

- difficult to show absence of "nice" algorithms

Solution

- argue that having an efficient algorithm \Rightarrow some well studied diffcult problem can be solved efficiently
- Tool: reduction between problems

Polynomial Reduction

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance $/$ of \mathcal{L} to an instance I^{\prime} of \mathcal{L}^{\prime} so that
- I is a YES-instance $\Leftrightarrow I^{\prime}$ is a YES-instance

Polynomial Reduction

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance $/$ of \mathcal{L} to an instance I^{\prime} of \mathcal{L}^{\prime} so that
- I is a YES-instance $\Leftrightarrow I^{\prime}$ is a YES-instance
- the mapping can be computed in polynomial time

Polynomial Reduction

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance $/$ of \mathcal{L} to an instance I^{\prime} of \mathcal{L}^{\prime} so that
- I is a YES-instance $\Leftrightarrow I^{\prime}$ is a YES-instance
- the mapping can be computed in polynomial time

Implications

- polynomial time algorithm for $\mathcal{L}^{\prime} \Rightarrow$ polynomial time algorithm for \mathcal{L}

Polynomial Reduction

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance $/$ of \mathcal{L} to an instance I^{\prime} of \mathcal{L}^{\prime} so that
- I is a YES-instance $\Leftrightarrow I^{\prime}$ is a YES-instance
- the mapping can be computed in polynomial time

Implications

- polynomial time algorithm for $\mathcal{L}^{\prime} \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(here, we use "efficient" ~ "polynomial")

Polynomial Reduction

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance $/$ of \mathcal{L} to an instance I^{\prime} of \mathcal{L}^{\prime} so that
- I is a YES-instance $\Leftrightarrow I^{\prime}$ is a YES-instance
- the mapping can be computed in polynomial time

Implications

- polynomial time algorithm for $\mathcal{L}^{\prime} \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(here, we use "efficient" ~ "polynomial")

Easy Example

- reduce Independent Set to Vertex Cover

Polynomial Reduction

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance $/$ of \mathcal{L} to an instance I^{\prime} of \mathcal{L}^{\prime} so that
- I is a YES-instance $\Leftrightarrow I^{\prime}$ is a YES-instance
- the mapping can be computed in polynomial time

Implications

- polynomial time algorithm for $\mathcal{L}^{\prime} \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(here, we use "efficient" ~ "polynomial")

Easy Example

- reduce Independent Set to Vertex Cover
- trivial reduction: G has IS of size $k \Leftrightarrow G$ has VC of size $n-k$

Polynomial Reduction

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance $/$ of \mathcal{L} to an instance I^{\prime} of \mathcal{L}^{\prime} so that
- I is a YES-instance $\Leftrightarrow I^{\prime}$ is a YES-instance
- the mapping can be computed in polynomial time

Implications

- polynomial time algorithm for $\mathcal{L}^{\prime} \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(here, we use "efficient" ~ "polynomial")

Easy Example

- reduce Independent Set to Vertex Cover
- trivial reduction: G has IS of size $k \Leftrightarrow G$ has VC of size $n-k$
- also: VC $\in P \Rightarrow I S \in P$

Polynomial Reduction

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance $/$ of \mathcal{L} to an instance I^{\prime} of \mathcal{L}^{\prime} so that
- I is a YES-instance $\Leftrightarrow I^{\prime}$ is a YES-instance
- the mapping can be computed in polynomial time

Implications

- polynomial time algorithm for $\mathcal{L}^{\prime} \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(here, we use "efficient" ~ "polynomial")

Easy Example

- reduce Independent Set to Vertex Cover
- trivial reduction: G has IS of size $k \Leftrightarrow G$ has VC of size $n-k$
- also: $V C \in P \Rightarrow I S \in P$
- what about VC $\in \mathrm{FPT} \Rightarrow \mathrm{IS} \in \mathrm{FPT}$?

Polynomial Reduction

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance $/$ of \mathcal{L} to an instance I^{\prime} of \mathcal{L}^{\prime} so that
- I is a YES-instance $\Leftrightarrow I^{\prime}$ is a YES-instance
- the mapping can be computed in polynomial time

Implications

- polynomial time algorithm for $\mathcal{L}^{\prime} \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(here, we use "efficient" ~ "polynomial")

Easy Example

- reduce Independent Set to Vertex Cover
- trivial reduction: G has IS of size $k \Leftrightarrow G$ has VC of size $n-k$
- also: $V C \in P \Rightarrow I S \in P$
- what about $\mathrm{VC} \in \mathrm{FPT} \Rightarrow \mathrm{IS} \in \mathrm{FPT}$?
$\rightarrow \mathrm{NO}$, the parameter depends on n

Polynomial Reduction

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance $/$ of \mathcal{L} to an instance I^{\prime} of \mathcal{L}^{\prime} so that
- I is a YES-instance $\Leftrightarrow I^{\prime}$ is a YES-instance
- the mapping can be computed in polynomial time

Implications

- polynomial time algorithm for $\mathcal{L}^{\prime} \Rightarrow$ polynomial time algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(here, we use "efficient" ~ "polynomial")

Easy Example

- reduce Independent Set to Vertex Cover
- trivial reduction: G has IS of size $k \Leftrightarrow G$ has VC of size $n-k$
- also: $V C \in P \Rightarrow I S \in P$
- what about VC $\in \mathrm{FPT} \Rightarrow \mathrm{IS} \in \mathrm{FPT}$?
\rightarrow NO, the parameter depends on n
- for "efficient" ~ "FPT" we need a different type of reduction

VERTEX COVER

$\forall e \in E:\left|e \cap V^{\prime}\right| \geq 1$

Parameterized Reductions

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance (I, k) of \mathcal{L} to an instance $\left(I^{\prime}, k^{\prime}\right)$ of \mathcal{L}^{\prime} so that
- (I, k) is a $Y E S$-instance $\Leftrightarrow\left(I^{\prime}, k^{\prime}\right)$ is a YES-instance where $k^{\prime} \leq g(k)$
- the map must be computable in FPT-time $\left(f(k) \cdot\left|\left|\left.\right|^{O(1)}\right)\right.\right.$
(f and g must also be computable functions)

Parameterized Reductions

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance (I, k) of \mathcal{L} to an instance $\left(I^{\prime}, k^{\prime}\right)$ of \mathcal{L}^{\prime} so that
- (I, k) is a YES-instance $\Leftrightarrow\left(I^{\prime}, k^{\prime}\right)$ is a YES-instance where $k^{\prime} \leq g(k)$
- the map must be computable in FPT-time $\left(f(k) \cdot|I|^{O(1)}\right)$

Implications

(f and g must also be computable functions)

- FPT-algorithm for $\mathcal{L}^{\prime} \Rightarrow$ FPT algorithm for \mathcal{L}

Parameterized Reductions

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance (I, k) of \mathcal{L} to an instance $\left(I^{\prime}, k^{\prime}\right)$ of \mathcal{L}^{\prime} so that
- (I, k) is a YES-instance $\Leftrightarrow\left(I^{\prime}, k^{\prime}\right)$ is a YES-instance where $k^{\prime} \leq g(k)$
- the map must be computable in FPT-time $\left(f(k) \cdot|\||^{O(1)}\right)$

Implications

(f and g must also be computable functions)

- FPT-algorithm for $\mathcal{L}^{\prime} \Rightarrow$ FPT algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(now, "efficient" ~"FPT")

Parameterized Reductions

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance (I, k) of \mathcal{L} to an instance $\left(I^{\prime}, k^{\prime}\right)$ of \mathcal{L}^{\prime} so that
- (I, k) is a YES-instance $\Leftrightarrow\left(I^{\prime}, k^{\prime}\right)$ is a YES-instance where $k^{\prime} \leq g(k)$
- the map must be computable in FPT-time $\left(f(k) \cdot\left|\left|\left.\right|^{O(1)}\right)\right.\right.$

Implications

(f and g must also be computable functions)

- FPT-algorithm for $\mathcal{L}^{\prime} \Rightarrow$ FPT algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(now, "efficient" ~"FPT")

Easy Example

- reduce Independent Set to Clique

Parameterized Reductions

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance (I, k) of \mathcal{L} to an instance $\left(I^{\prime}, k^{\prime}\right)$ of \mathcal{L}^{\prime} so that
- (I, k) is a YES-instance $\Leftrightarrow\left(I^{\prime}, k^{\prime}\right)$ is a YES-instance where $k^{\prime} \leq g(k)$
- the map must be computable in FPT-time $\left(f(k) \cdot\left|\left|\left.\right|^{O(1)}\right)\right.\right.$

Implications

(f and g must also be computable functions)

- FPT-algorithm for $\mathcal{L}^{\prime} \Rightarrow$ FPT algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(now, "efficient" ~"FPT")

Easy Example

- reduce Independent SET to CLIQUE
- G has a size $k I S \Leftrightarrow$ edge-complement of G has a size k Clique.

Parameterized Reductions

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance (I, k) of \mathcal{L} to an instance $\left(I^{\prime}, k^{\prime}\right)$ of \mathcal{L}^{\prime} so that
- (I, k) is a YES-instance $\Leftrightarrow\left(I^{\prime}, k^{\prime}\right)$ is a YES-instance where $k^{\prime} \leq g(k)$
- the map must be computable in FPT-time $\left(f(k) \cdot\left|\left|\left.\right|^{O(1)}\right)\right.\right.$

Implications

(f and g must also be computable functions)

- FPT-algorithm for $\mathcal{L}^{\prime} \Rightarrow$ FPT algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(now, "efficient" ~"FPT")

Easy Example

- reduce IndEPENDENT SET to CLIQUE
- G has a size $k I S \Leftrightarrow$ edge-complement of G has a size k Clique.
- also: CLIQUE \in FPT $\Rightarrow \mathrm{IS} \in \mathrm{FPT}$

Parameterized Reductions

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance (I, k) of \mathcal{L} to an instance $\left(I^{\prime}, k^{\prime}\right)$ of \mathcal{L}^{\prime} so that
- (I, k) is a $Y E S$-instance $\Leftrightarrow\left(I^{\prime}, k^{\prime}\right)$ is a YES-instance where $k^{\prime} \leq g(k)$
- the map must be computable in FPT-time $\left(f(k) \cdot\left|\left|\left.\right|^{O(1)}\right)\right.\right.$

Implications

(f and g must also be computable functions)

- FPT-algorithm for $\mathcal{L}^{\prime} \Rightarrow$ FPT algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(now, "efficient" ~"FPT")

Easy Example

- reduce IndEPENDENT SET to CLIQUE
- G has a size $k \mathrm{IS} \Leftrightarrow$ edge-complement of G has a size k Clique.
- also: CLIQUE \in FPT $\Rightarrow \mathrm{IS} \in \mathrm{FPT}$
- reverse reduction also applies:

CLIQUE $\in \mathrm{FPT} \Leftrightarrow \mathrm{IS} \in \mathrm{FPT}$

Parameterized Reductions

Reduction from Problem \mathcal{L} to Problem \mathcal{L}^{\prime}

- map each instance (I, k) of \mathcal{L} to an instance $\left(I^{\prime}, k^{\prime}\right)$ of \mathcal{L}^{\prime} so that
- (I, k) is a YES-instance $\Leftrightarrow\left(I^{\prime}, k^{\prime}\right)$ is a YES-instance where $k^{\prime} \leq g(k)$
- the map must be computable in FPT-time $\left(f(k) \cdot|I|^{O(1)}\right)$

Implications

(f and g must also be computable functions)

- FPT-algorithm for $\mathcal{L}^{\prime} \Rightarrow$ FPT algorithm for \mathcal{L}
- solving my problem \mathcal{L}^{\prime} efficiently \Rightarrow solving "difficult" problem \mathcal{L} efficiently
(now, "efficient" ~"FPT")

Easy Example

- reduce Independent SET to CLIQUE
- G has a size $k \mathrm{IS} \Leftrightarrow$ edge-complement of G has a size k Clique.
- also: CLIQUE \in FPT $\Rightarrow \mathrm{IS} \in \mathrm{FPT}$
- reverse reduction also applies:

CLIQUE $\in \mathrm{FPT} \Leftrightarrow \mathrm{IS} \in \mathrm{FPT}$

- expectation: CLIQUE, IS \notin FPT

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Clique to Multicolored Clique

Clique

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Clique to Multicolored Clique

- copy each $v \in V$ to v^{1}, \ldots, v^{k}, and set $v^{i} \in V_{i}$

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Clique to Multicolored Clique

- copy each $v \in V$ to v^{1}, \ldots, v^{k}, and set $v^{i} \in V_{i}$
- for each $u v \in E$ connect u^{i} with v^{j} for each $i \neq j$
- $k=k^{\prime}$

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Clique to Multicolored Clique

- copy each $v \in V$ to v^{1}, \ldots, v^{k}, and set $v^{i} \in V_{i}$
- for each $u v \in E$ connect u^{i} with v^{j} for each $i \neq j$
- $k=k^{\prime}$
G has a size k clique $\Rightarrow G^{\prime}$ has a size k colored clique
- Let v_{1}, \ldots, v_{k} be a clique in G
- then $v_{1}^{1}, \ldots, v_{k}^{k}$ is a clique in G^{\prime}

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Clique to Multicolored Clique

- copy each $v \in V$ to v^{1}, \ldots, v^{k}, and set $v^{i} \in V_{i}$
- for each $u v \in E$ connect u^{i} with v^{j} for each $i \neq j$
- $k=k^{\prime}$
G has a size k clique $\Rightarrow G^{\prime}$ has a size k colored clique
- Let v_{1}, \ldots, v_{k} be a clique in G
- then $v_{1}^{1}, \ldots, v_{k}^{k}$ is a clique in G^{\prime}
- all these vertices have distinct colors

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Clique to Multicolored Clique

- copy each $v \in V$ to v^{1}, \ldots, v^{k}, and set $v^{i} \in V_{i}$
- for each $u v \in E$ connect u^{i} with v^{j} for each $i \neq j$
- $k=k^{\prime}$
\boldsymbol{G}^{\prime} has a size \boldsymbol{k} colored clique $\Rightarrow \boldsymbol{G}$ has a size \boldsymbol{k} clique
- Let $v_{\pi(1)}^{1}, \ldots, v_{\pi(k)}^{k}$ be a colored clique in G with $\pi:\{1, \ldots, k\} \rightarrow\{1, \ldots n\}$

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Clique to Multicolored Clique

- copy each $v \in V$ to v^{1}, \ldots, v^{k}, and set $v^{i} \in V_{i}$
- for each $u v \in E$ connect u^{i} with v^{j} for each $i \neq j$
- $k=k^{\prime}$
\boldsymbol{G}^{\prime} has a size \boldsymbol{k} colored clique $\Rightarrow \boldsymbol{G}$ has a size \boldsymbol{k} clique
- Let $v_{\pi(1)}^{1}, \ldots, v_{\pi(k)}^{k}$ be a colored clique in G with $\pi:\{1, \ldots, k\} \rightarrow\{1, \ldots n\}$
- π is injective
(the colored clique does not contain two copies of the same vertex)

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Clique to Multicolored Clique

- copy each $v \in V$ to v^{1}, \ldots, v^{k}, and set $v^{i} \in V_{i}$
- for each $u v \in E$ connect u^{i} with v^{j} for each $i \neq j$
- $k=k^{\prime}$
\boldsymbol{G}^{\prime} has a size \boldsymbol{k} colored clique $\Rightarrow \boldsymbol{G}$ has a size \boldsymbol{k} clique
- Let $v_{\pi(1)}^{1}, \ldots, v_{\pi(k)}^{k}$ be a colored clique in G with $\pi:\{1, \ldots, k\} \rightarrow\{1, \ldots n\}$
- π is injective
(the colored clique does not contain two copies of the same vertex)
- thus, $v_{\pi(1)}, \ldots, v_{\pi(k)}$ are k distinct nodes that form a clique in G

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Clique to Multicolored Clique

- copy each $v \in V$ to v^{1}, \ldots, v^{k}, and set $v^{i} \in V_{i}$
- for each $u v \in E$ connect u^{i} with v^{j} for each $i \neq j$
- $k=k^{\prime}$
\boldsymbol{G}^{\prime} has a size \boldsymbol{k} colored clique $\Rightarrow \boldsymbol{G}$ has a size \boldsymbol{k} clique
- Let $v_{\pi(1)}^{1}, \ldots, v_{\pi(k)}^{k}$ be a colored clique in G with $\pi:\{1, \ldots, k\} \rightarrow\{1, \ldots n\}$
- π is injective
(the colored clique does not contain two copies of the same vertex)
- thus, $v_{\pi(1)}, \ldots, v_{\pi(k)}$ are k distinct nodes that form a clique in G

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Multicolored Clique to Clique

Instance of MC Clique:
$\left(G, 3,\left(V_{1}, V_{2}, V_{3}\right)\right)$

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Multicolored Clique to Clique

Instance of MC CLIQUE:
$\left(G, 3, \quad\left(V_{1}, V_{2}, V_{3}\right)\right)$

- delete edges within each color class
- $k^{\prime}=k$

Instance $\left(G^{\prime}, 3\right)$ of
Clique

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Multicolored Clique to Clique

Instance of MC Clique:
$\left(G, 3,\left(V_{1}, V_{2}, V_{3}\right)\right)$

- delete edges within each color class
- $k^{\prime}=k$

Instance $\left(G^{\prime}, 3\right)$ of
Clique
G has a colored size k clique $\Rightarrow \boldsymbol{G}^{\prime}$ has a size k clique

- the colored clique does not use any edges inside a color class
- thus, G^{\prime} contains a size k clique

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Multicolored Clique to Clique

Instance of MC Clique:
$\left(G, 3,\left(V_{1}, V_{2}, V_{3}\right)\right)$

- $k^{\prime}=k$

Instance $\left(G^{\prime}, 3\right)$ of
Clique
G has a colored size k clique $\Rightarrow G^{\prime}$ has a size k clique

- the colored clique does not use any edges inside a color class
- thus, G^{\prime} contains a size k clique
\boldsymbol{G}^{\prime} has a size \boldsymbol{k} clique $\Rightarrow G$ has a colored size \boldsymbol{k} clique
- in G^{\prime}, no monochromatic vertices are adjacent
- thus, each clique must be a colored clique

Colored Cliques

Problem: Multicolored Clique

Given: Graph $G=(V, E)$, parameter k, and partition $\left(V_{1}, \ldots, V_{k}\right)$ of V.
Find: Clique $V^{\prime} \subseteq V$ of size k, so that $\left|V^{\prime} \cap V_{i}\right|=1$ for each i.

Reduction: from Multicolored Clique to Clique

Instance of MC Clique:
$\left(G, 3,\left(V_{1}, V_{2}, V_{3}\right)\right)$

- $k^{\prime}=k$

Instance $\left(G^{\prime}, 3\right)$ of
Clique
G has a colored size k clique $\Rightarrow G^{\prime}$ has a size k clique

- the colored clique does not use any edges inside a color class
- thus, G^{\prime} contains a size k clique
\boldsymbol{G}^{\prime} has a size \boldsymbol{k} clique $\Rightarrow G$ has a colored size \boldsymbol{k} clique
- in G^{\prime}, no monochromatic vertices are adjacent
- thus, each clique must be a colored clique

FPT-Reductions so far

FPT-Reductions so far

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

MC Independent Set

$V^{\prime} \subseteq V$ colored, so that
$\forall e \in E:\left|e \cap V^{\prime}\right| \leq 1$
DOMINATING SET

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

- enforce the following properties on the DOMINATING SET instance
- select exactly one element from each color class
- avoid simultaneous selection of designated node pairs

MC Independent Set

$V^{\prime} \subseteq V$ colored, so that
$\forall e \in E:\left|e \cap V^{\prime}\right| \leq 1$

Dominating Set

$\forall v \in V:\left|N[v] \cap V^{\prime}\right| \geq 1$

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

- enforce the following properties on the DOMINATING SET instance
- select exactly one element from each color class
- avoid simultaneous selection of designated node pairs

One element in each color class

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

- enforce the following properties on the DOMINATING SET instance
- select exactly one element from each color class
- avoid simultaneous selection of designated node pairs

One element in each color class

- vertex x_{i} adjacent to all vertices in V_{i} and no others
(forces the selection of at least one of $V_{i} \cup\left\{x_{i}\right\}$)
MC Independent Set

$V^{\prime} \subseteq V$ colored, so that
$\forall e \in E:\left|e \cap V^{\prime}\right| \leq 1$

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

- enforce the following properties on the DOMINATING SET instance
- select exactly one element from each color class
- avoid simultaneous selection of designated node pairs

One element in each color class

- vertex x_{i} adjacent to all vertices in V_{i} and no others
(forces the selection of at least one of $V_{i} \cup\left\{x_{i}\right\}$)
- Problem: can still choose x_{i}

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

- enforce the following properties on the DOMINATING SET instance
- select exactly one element from each color class
- avoid simultaneous selection of designated node pairs

One element in each color class

- vertex x_{i} adjacent to all vertices in V_{i} and no others
(forces the selection of at least one of $V_{i} \cup\left\{x_{i}\right\}$)
- Problem: can still choose x_{i}
- Solution: create a copy y_{i} of x_{i}
(picking both x_{i} and y_{i} is too costly to form a size k DS)

MC Independent Set

$V^{\prime} \subseteq V$ colored, so that
$\forall e \in E:\left|e \cap V^{\prime}\right| \leq 1$

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

- enforce the following properties on the DOMINATING SET instance
- select exactly one element from each color class
- avoid simultaneous selection of designated node pairs

One element in each color class

- vertex x_{i} adjacent to all vertices in V_{i} and no others
(forces the selection of at least one of $V_{i} \cup\left\{x_{i}\right\}$)
- Problem: can still choose x_{i}
- Solution: create a copy y_{i} of x_{i}
(picking both x_{i} and y_{i} is too costly to form a size $k \mathrm{DS}$)
-

and both x_{i} and y_{i}. to allow any vertex from V_{i} to dominate it

MC Independent Set

$V^{\prime} \subseteq V$ colored, so that $\forall e \in E:\left|e \cap V^{\prime}\right| \leq 1$

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

- enforce the following properties on the DOMINATING SET instance
- select exactly one element from each color class
- avoid simultaneous selection of designated node pairs

One element in each color class

- vertex x_{i} adjacent to all vertices in V_{i} and no others
(forces the selection of at least one of $V_{i} \cup\left\{x_{i}\right\}$)
- Problem: can still choose x_{i}
- Solution: create a copy y_{i} of x_{i}
(picking both x_{i} and y_{i} is too costly to form a size $k \mathrm{DS}$)
- make V_{i} into a clique as to allow any vertex from V_{i} to dominate it and both x_{i} and y_{i}.

MC Independent Set

$V^{\prime} \subseteq V$ colored, so that $\forall e \in E:\left|e \cap V^{\prime}\right| \leq 1$

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

- enforce the following properties on the DOMINATING SET instance
- select exactly one element from each color class
- avoid simultaneous selection of designated node pairs

One element in each color class

- vertex x_{i} adjacent to all vertices in V_{i} and no others
(forces the selection of at least one of $V_{i} \cup\left\{x_{i}\right\}$)
- Problem: can still choose x_{i}
- Solution: create a copy y_{i} of x_{i}
(picking both x_{i} and y_{i} is too costly to form a size $k \mathrm{DS}$)
- make V_{i} into a clique as to allow any vertex from V_{i} to dominate it and both x_{i} and y_{i}.

MC Independent Set

$V^{\prime} \subseteq V$ colored, so that $\forall e \in E:\left|e \cap V^{\prime}\right| \leq 1$

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

- enforce the following properties on the DOMINATING SET instance
- select exactly one element from each color class
- avoid simultaneous selection of designated node pairs

Avoid selecting both u and v

MC Independent Set

$V^{\prime} \subseteq V$ colored, so that
$\forall e \in E:\left|e \cap V^{\prime}\right| \leq 1$

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

- enforce the following properties on the DOMINATING SET instance
- select exactly one element from each color class
- avoid simultaneous selection of designated node pairs

Avoid selecting both \boldsymbol{u} and \boldsymbol{v}

- Idea: insert a vertex z that is dominated unless both u and v are picked

MC Independent Set

$V^{\prime} \subseteq V$ colored, so that
$\forall e \in E:\left|e \cap V^{\prime}\right| \leq 1$

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

- enforce the following properties on the DOMINATING SET instance
- select exactly one element from each color class
- avoid simultaneous selection of designated node pairs

Avoid selecting both \boldsymbol{u} and \boldsymbol{v}

- Idea: insert a vertex z that is dominated unless both u and v are picked
$-z$ is not adjacent to u and not adjacent to v but is adjacent to all other vertices in the color classes of u and v

MC Independent Set

$V^{\prime} \subseteq V$ colored, so that
$\forall e \in E:\left|e \cap V^{\prime}\right| \leq 1$

Dominating Set

Reduce Multicolored Independent Set to Dominating Set

- enforce the following properties on the DOMINATING SET instance
- select exactly one element from each color class
- avoid simultaneous selection of designated node pairs

Avoid selecting both \boldsymbol{u} and \boldsymbol{v}

- Idea: insert a vertex z that is dominated unless both u and v are picked
$-z$ is not adjacent to u and not adjacent to v but is adjacent to all other vertices in the color classes of u and v

MC Independent Set

$V^{\prime} \subseteq V$ colored, so that
$\forall e \in E:\left|e \cap V^{\prime}\right| \leq 1$

FPT-Reductions so far

FPT-Reductions so far

- it is not known ... but seems very unlikely

FPT-Reductions so far

- it is not known ... but seems very unlikely
- Dominating SeT is (probably) more difficult than Clique oder INDEPENDENT SET ($\mathrm{DS} \in \mathrm{FPT} \Rightarrow \mathrm{IS} \in \mathrm{FPT}$, but not the other way around)

FPT-Reductions so far

- it is not known ... but seems very unlikely
- Dominating SeT is (probably) more difficult than CLIQUE oder INDEPENDENT SET (DS $\in \mathrm{FPT} \Rightarrow \mathrm{IS} \in \mathrm{FPT}$, but not the other way around)
- we need a refined notion of "hardness"

FPT-Reductions so far

- it is not known ... but seems very unlikely
- Dominating SeT is (probably) more difficult than Clique oder INDEPENDENT SET (DS $\in \mathrm{FPT} \Rightarrow \mathrm{IS} \in \mathrm{FPT}$, but not the other way around)
- we need a refined notion of "hardness"

Similar to the complexity class \mathbf{P}

FPT-Reductions so far

- it is not known ... but seems very unlikely
- Dominating SeT is (probably) more difficult than Clique oder Independent Set (DS $\in \mathrm{FPT} \Rightarrow \mathrm{IS} \in \mathrm{FPT}$, but not the other way around)
- we need a refined notion of "hardness"

Similar to the complexity class \mathbf{P}

- usually, one focuses on: NP-hardness
- but there are also intermediate problems (assuming $P \neq N P$)

FPT-Reductions so far

- it is not known ... but seems very unlikely
- Dominating SeT is (probably) more difficult than Clique oder Independent Set (DS $\in \mathrm{FPT} \Rightarrow \mathrm{IS} \in \mathrm{FPT}$, but not the other way around)
- we need a refined notion of "hardness"

Similar to the complexity class P

- usually, one focuses on: NP-hardness
- but there are also intermediate problems (assuming $P \neq N P$)
- however, no natural hierarchy of NP-intermediate problems
(candidates: prime factorization, graph isomorphism)

FPT-Reductions so far

- it is not known ... but seems very unlikely
- Dominating SeT is (probably) more difficult than Clique oder Independent Set (DS $\in \mathrm{FPT} \Rightarrow \mathrm{IS} \in \mathrm{FPT}$, but not the other way around)
- we need a refined notion of "hardness"

Similar to the complexity class P

- usually, one focuses on: NP-hardness
- but there are also intermediate problems (assuming $P \neq N P$)
- however, no natural hierarchy of NP-intermediate problems
(candidates: prime factorization, graph isomorphism)

And now? What about FPT?

- define natural hierarchy of complexity classes

FPT-Reductions so far

- it is not known ... but seems very unlikely
- Dominating SeT is (probably) more difficult than Clique oder Independent Set (DS $\in \mathrm{FPT} \Rightarrow \mathrm{IS} \in \mathrm{FPT}$, but not the other way around)
- we need a refined notion of "hardness"

Similar to the complexity class P

- usually, one focuses on: NP-hardness
- but there are also intermediate problems (assuming $P \neq N P$)
- however, no natural hierarchy of NP-intermediate problems
(candidates: prime factorization, graph isomorphism)

And now? What about FPT?

- define natural hierarchy of complexity classes
- establish prototypical problem for each level

Weighted Circuit Satisfiability

Boolean Circuits

- directed acyclic graph (DAG) with the following node types:

Weighted Circuit Satisfiability

Boolean Circuits

- directed acyclic graph (DAG) with the following node types:
- sources (in-degree 0) are input nodes

Weighted Circuit Satisfiability

Boolean Circuits

- directed acyclic graph (DAG) with the following node types:
- sources (in-degree 0) are input nodes
- NEGATION nodes have in-degree 1

Weighted Circuit Satisfiability

Boolean Circuits

- directed acyclic graph (DAG) with the following node types:
- sources (in-degree 0) are input nodes
- NEGATION nodes have in-degree 1
- AND- resp. OR-nodes have in-degree ≥ 2

Weighted Circuit Satisfiability

Boolean Circuits

- directed acyclic graph (DAG) with the following node types:
- sources (in-degree 0) are input nodes
- NEGATION nodes have in-degree 1
- AND- resp. OR-nodes have in-degree ≥ 2
- one sink (out-degree 0) is the output node

Weighted Circuit Satisfiability

Boolean Circuits

- directed acyclic graph (DAG) with the following node types:
- sources (in-degree 0) are input nodes
- NEGATION nodes have in-degree 1
- AND- resp. OR-nodes have in-degree ≥ 2
- one sink (out-degree 0) is the output node
- an assignment of 0 or 1 to each input node propogates through the other nodes, providing an output value.
(in the natural way)
- an assignment statisfying when the output value is 1

Weighted Circuit Satisfiability

Boolean Circuits

- directed acyclic graph (DAG) with the following node types:
- sources (in-degree 0) are input nodes
- NEGATION nodes have in-degree 1
- AND- resp. OR-nodes have in-degree ≥ 2
- one sink (out-degree 0) is the output node
- an assignment of 0 or 1 to each input node propogates through the other nodes, providing an output value.
(in the natural way)
- an assignment statisfying when the output value is 1

Weighted Circuit Satisfiability

Boolean Circuits

- directed acyclic graph (DAG) with the following node types:
- sources (in-degree 0) are input nodes
- NEGATION nodes have in-degree 1
- AND- resp. OR-nodes have in-degree ≥ 2
- one sink (out-degree 0) is the output node
- an assignment of 0 or 1 to each input node propogates through the other nodes, providing an output value.
(in the natural way)
- an assignment statisfying when the output value is 1

Weighted Circuit Satisfiability

Boolean Circuits

- directed acyclic graph (DAG) with the following node types:
- sources (in-degree 0) are input nodes
- NEGATION nodes have in-degree 1
- AND- resp. OR-nodes have in-degree ≥ 2
- one sink (out-degree 0) is the output node
- an assignment of 0 or 1 to each input node propogates through the other nodes, providing an output value.
(in the natural way)
- an assignment statisfying when the output value is 1
- the weight of an assignment is the number of $1 s$ used

Weighted Circuit Satisfiability

Boolean Circuits

- directed acyclic graph (DAG) with the following node types:
- sources (in-degree 0) are input nodes
- NEGATION nodes have in-degree 1
- AND- resp. OR-nodes have in-degree ≥ 2
- one sink (out-degree 0) is the output node
- an assignment of 0 or 1 to each input node propogates through the other nodes, providing an output value.
(in the natural way)
- an assignment statisfying when the output value is 1
- the weight of an assignment is the number of 1 s used

Problem: Weighted Circuit Satisfiability (WCS)

Given a boolean circuit and a parameter k
Find: A weight k satisfying assignment

Reductions visualized

Independent Set \rightarrow WCS

INDEPENDENT SET

Reductions visualized

Independent Set \rightarrow WCS

Reductions visualized

Reductions visualized

Dominating Set \rightarrow WCS

$\forall v \in V:\left|N[v] \cap V^{\prime}\right| \geq 1$

Reductions visualized

Reductions visualized

Reductions visualized

INDEPENDENT SET \rightarrow WCS

Observations

- the circuits have constant depth

Dominating Set \rightarrow WCS

Reductions visualized

Independent Set \rightarrow WCS

Dominating Set \rightarrow WCS

Observations

- the circuits have constant depth
- the circuit for DS contains more nodes with in-degree >2

Reductions visualized

INDEPENDENT SET \rightarrow WCS

Dominating Set \rightarrow WCS

Observations

- the circuits have constant depth
- the circuit for DS contains more nodes with in-degree >2
- is DS harder (in terms of FPT) than IS?

Weft

Definition

The Weft of a boolean circuit is the maximum number of nodes with in-degree >2 on a directed path.

Weft

Definition

The Weft of a boolean circuit is the maximum number of nodes with in-degree >2 on a directed path.

Weft 1

Weft 2

Weft

Definition

The Weft of a boolean circuit is the maximum number of nodes with in-degree >2 on a directed path.

Problem

WCS[t] is WCS limited to circuits with constant depth and weft at most t.

Weft 1

Weft 2

Weft

Definition

The Weft of a boolean circuit is the maximum number of nodes with in-degree >2 on a directed path.
Problem
WCS $[t]$ is WCS limited to circuits with constant depth and weft
at most t.

Definition

The class $W[t]$ contains all problems with a paramterized reduction to WCS[t].

We have seen

- Independent $\operatorname{Set} \in W[1] \subseteq W[2]$
- Dominating Set $\in W[2]$

Weft 1

FPT-Reductions so far

FPT-Reductions so far

Further reductions

- one can also reduce WCS[1] to INDEPENDENT SET

FPT-Reductions so far

Further reductions

- one can also reduce WCS[1] to INDEPENDENT SET
- and WCS[2] to Dominating Set

FPT-Reductions so far

Further reductions

- one can also reduce WCS[1] to INDEPENDENT SET
- and WCS[2] to DOMINATING SET
- so, all problems in $W[1]$ reduce to $I S$
$\rightsquigarrow I S$ is W [1]-complete

FPT-Reductions so far

Further reductions

- one can also reduce WCS[1] to INDEPENDENT SET
- and WCS[2] to DOMINATING SET
- so, all problems in $W[1]$ reduce to $I S$
$\rightsquigarrow I S$ is W [1]-complete
- similarly DS is W[2]-complete

FPT-Reductions so far

Further reductions

- one can also reduce WCS[1] to INDEPENDENT SET
- and WCS[2] to DOMINATING SET
- so, all problems in $W[1]$ reduce to $I S$

$$
\rightsquigarrow I S \text { is } W[1] \text {-complete }
$$

- similarly DS is W [2]-complete
- note: $W[1] \subseteq W[2]$

FPT-Reductions so far

Further reductions

- one can also reduce WCS[1] to Independent Set
- and WCS[2] to DOMINATING SET
- so, all problems in $W[1]$ reduce to IS

$$
\rightsquigarrow I S \text { is } W[1] \text {-complete }
$$

- similarly DS is W [2]-complete
- note: $W[1] \subseteq W[2]$

```
why?
```


Summary

The W-Hierarchy

- Complexity Classes $\mathrm{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots$
- $W[t]$ defined via a prototypical complete problem WCS $[t]$:
$\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to $\operatorname{WCS}[t]$

Summary

The W-Hierarchy

- Complexity Classes $F P T \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots$
- $W[t]$ defined via a prototypical complete problem WCS[t]:
$\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to $\operatorname{WCS}[t]$
(by FPT-reduction)
- Inclusions expected to be strict

Summary

The W-Hierarchy

- Complexity Classes $\operatorname{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \ldots$
- $W[t]$ defined via a prototypical complete problem $\operatorname{WCS}[t]$:
$\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to $\operatorname{WCS}[t]$
(by FPT-reduction)
- Inclusions expected to be strict

Is my $W[t]$-completeness proof useless if $W[t]=\mathrm{FPT}$?

Summary

The W-Hierarchy

- Complexity Classes $F P T \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots$
- $W[t]$ defined via a prototypical complete problem $\operatorname{WCS}[t]$:
$\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to $\operatorname{WCS}[t]$
- Inclusions expected to be strict

Is my $\mathbf{W}[t]$-completeness proof useless if $W[t]=$ FPT?

- finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all problems in the class.

Summary

The W-Hierarchy

- Complexity Classes $\mathrm{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots$
- $W[t]$ defined via a prototypical complete problem $\operatorname{WCS}[t]$:
$\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to $\operatorname{WCS}[t]$
- Inclusions expected to be strict

Is my $W[t]$-completeness proof useless if $W[t]=$ FPT?

- finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all problems in the class.

How do I show that my problem is hard?

- reduce a known hard problem to your problem

Summary

The W-Hierarchy

- Complexity Classes $\operatorname{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \ldots$
- $W[t]$ defined via a prototypical complete problem $\operatorname{WCS}[t]$:
$\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to $\operatorname{WCS}[t]$
- Inclusions expected to be strict

Is my $W[t]$-completeness proof useless if $W[t]=$ FPT?

- finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all problems in the class.

How do I show that my problem is hard?

- reduce a known hard problem to your problem
- reducing from MC Independent Set or MC Clique provides W [1]-hardness

Summary

The W-Hierarchy

- Complexity Classes $\operatorname{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \ldots$
- $W[t]$ defined via a prototypical complete problem $\operatorname{WCS}[t]$:
$\mathcal{L} \in W[t] \Leftrightarrow \mathcal{L}$ can be reduced to $\operatorname{WCS}[t]$
- Inclusions expected to be strict

Is my $W[t]$-completeness proof useless if $W[t]=$ FPT?

- finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all problems in the class.

How do I show that my problem is hard?

- reduce a known hard problem to your problem
- reducing from MC Independent Set or MC Clique provides W [1]-hardness
- reducing from Dominating Set or Set Cover provides W [2]-hardness

[^0]: "I can't find an efficient algorithm, but neither can all these famous people."

