
Exakte Algorithmen

Lecture 9.2 Reductions and the W [t] Hierarchy

(slides by Thomas Bläsius)

Based on: [Parameterized Algorithms: §13]

Alexander Wolff Lehrstuhl für Informatik I

How to obtain lower bounds?

2

How to obtain lower bounds?

2

How to obtain lower bounds?

Problem
• difficult to show absence of “nice” algorithms

2

How to obtain lower bounds?

Problem
• difficult to show absence of “nice” algorithms

• argue that having an efficient algorithm⇒ some
well studied diffcult problem can be solved
efficiently

Solution

2

How to obtain lower bounds?

Problem
• difficult to show absence of “nice” algorithms

• argue that having an efficient algorithm⇒ some
well studied diffcult problem can be solved
efficiently

Solution

• Tool: reduction between problems

2

Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

3

Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

3

Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

3

Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial”)

3

Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial”)

Easy Example

• reduce INDEPENDENT SET to VERTEX COVER

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≥ 1

INDEPENDENT SET VERTEX COVER

3

Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial”)

Easy Example

• reduce INDEPENDENT SET to VERTEX COVER

• trivial reduction: G has IS of size k ⇔ G has VC of size n − k

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≥ 1

INDEPENDENT SET VERTEX COVER

3

Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial”)

Easy Example

• reduce INDEPENDENT SET to VERTEX COVER

• trivial reduction: G has IS of size k ⇔ G has VC of size n − k

• also: VC ∈ P ⇒ IS ∈ P

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≥ 1

INDEPENDENT SET VERTEX COVER

3

Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial”)

Easy Example

• reduce INDEPENDENT SET to VERTEX COVER

• trivial reduction: G has IS of size k ⇔ G has VC of size n − k

• what about VC ∈ FPT ⇒ IS ∈ FPT?

• also: VC ∈ P ⇒ IS ∈ P

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≥ 1

INDEPENDENT SET VERTEX COVER

3

Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial”)

Easy Example

• reduce INDEPENDENT SET to VERTEX COVER

• trivial reduction: G has IS of size k ⇔ G has VC of size n − k

• what about VC ∈ FPT ⇒ IS ∈ FPT?

• also: VC ∈ P ⇒ IS ∈ P

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≥ 1

INDEPENDENT SET VERTEX COVER

→ NO, the parameter depends on n

3

Polynomial Reduction

Reduction from Problem LLL to Problem L′L′L′

• map each instance I of L to an instance I ′ of L′ so that

• I is a YES-instance ⇔ I ′ is a YES-instance

• the mapping can be computed in polynomial time

Implications
• polynomial time algorithm for L′ ⇒ polynomial time algorithm for L

• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(here, we use “efficient” ∼ “polynomial”)

Easy Example

• reduce INDEPENDENT SET to VERTEX COVER

• trivial reduction: G has IS of size k ⇔ G has VC of size n − k

• what about VC ∈ FPT ⇒ IS ∈ FPT?

• also: VC ∈ P ⇒ IS ∈ P

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≥ 1

INDEPENDENT SET VERTEX COVER

→ NO, the parameter depends on n

• for “efficient” ∼ “FPT” we need a different
type of reduction

3

Parameterized Reductions

• map each instance (I , k) of L to an instance (I ′, k ′) of L′ so that

• (I , k) is a YES-instance ⇔ (I ′, k ′) is a YES-instance where k ′ ≤ g(k)

• the map must be computable in FPT-time (f (k) · |I |O(1))

(f and g must also be computable functions)

4
Reduction from Problem LLL to Problem L′L′L′

Parameterized Reductions

• map each instance (I , k) of L to an instance (I ′, k ′) of L′ so that

• (I , k) is a YES-instance ⇔ (I ′, k ′) is a YES-instance where k ′ ≤ g(k)

• the map must be computable in FPT-time (f (k) · |I |O(1))

(f and g must also be computable functions)
Implications
• FPT-algorithm for L′ ⇒ FPT algorithm for L

4
Reduction from Problem LLL to Problem L′L′L′

Parameterized Reductions

• map each instance (I , k) of L to an instance (I ′, k ′) of L′ so that

• (I , k) is a YES-instance ⇔ (I ′, k ′) is a YES-instance where k ′ ≤ g(k)

• the map must be computable in FPT-time (f (k) · |I |O(1))

(f and g must also be computable functions)
Implications
• FPT-algorithm for L′ ⇒ FPT algorithm for L
• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(now,“efficient” ∼ “FPT”)

4
Reduction from Problem LLL to Problem L′L′L′

Parameterized Reductions

• map each instance (I , k) of L to an instance (I ′, k ′) of L′ so that

• (I , k) is a YES-instance ⇔ (I ′, k ′) is a YES-instance where k ′ ≤ g(k)

• the map must be computable in FPT-time (f (k) · |I |O(1))

(f and g must also be computable functions)
Implications
• FPT-algorithm for L′ ⇒ FPT algorithm for L
• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(now,“efficient” ∼ “FPT”)

Easy Example
• reduce INDEPENDENT SET to CLIQUE

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET CLIQUE

V ′ ⊆ V , so that
G [V ′] complete

4
Reduction from Problem LLL to Problem L′L′L′

Parameterized Reductions

• map each instance (I , k) of L to an instance (I ′, k ′) of L′ so that

• (I , k) is a YES-instance ⇔ (I ′, k ′) is a YES-instance where k ′ ≤ g(k)

• the map must be computable in FPT-time (f (k) · |I |O(1))

(f and g must also be computable functions)
Implications
• FPT-algorithm for L′ ⇒ FPT algorithm for L
• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(now,“efficient” ∼ “FPT”)

Easy Example
• reduce INDEPENDENT SET to CLIQUE

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET CLIQUE

V ′ ⊆ V , so that
G [V ′] complete

• G has a size k IS ⇔ edge-complement of G has a size k Clique.

4
Reduction from Problem LLL to Problem L′L′L′

Parameterized Reductions

• map each instance (I , k) of L to an instance (I ′, k ′) of L′ so that

• (I , k) is a YES-instance ⇔ (I ′, k ′) is a YES-instance where k ′ ≤ g(k)

• the map must be computable in FPT-time (f (k) · |I |O(1))

(f and g must also be computable functions)
Implications
• FPT-algorithm for L′ ⇒ FPT algorithm for L
• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(now,“efficient” ∼ “FPT”)

Easy Example
• reduce INDEPENDENT SET to CLIQUE

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET CLIQUE

V ′ ⊆ V , so that
G [V ′] complete

• G has a size k IS ⇔ edge-complement of G has a size k Clique.

• also: CLIQUE ∈ FPT ⇒ IS ∈ FPT

4
Reduction from Problem LLL to Problem L′L′L′

Parameterized Reductions

• map each instance (I , k) of L to an instance (I ′, k ′) of L′ so that

• (I , k) is a YES-instance ⇔ (I ′, k ′) is a YES-instance where k ′ ≤ g(k)

• the map must be computable in FPT-time (f (k) · |I |O(1))

(f and g must also be computable functions)
Implications
• FPT-algorithm for L′ ⇒ FPT algorithm for L
• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(now,“efficient” ∼ “FPT”)

Easy Example
• reduce INDEPENDENT SET to CLIQUE

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET CLIQUE

V ′ ⊆ V , so that
G [V ′] complete

• G has a size k IS ⇔ edge-complement of G has a size k Clique.

• also: CLIQUE ∈ FPT ⇒ IS ∈ FPT

• reverse reduction also applies:
CLIQUE ∈ FPT ⇔ IS ∈ FPT

4
Reduction from Problem LLL to Problem L′L′L′

Parameterized Reductions

• map each instance (I , k) of L to an instance (I ′, k ′) of L′ so that

• (I , k) is a YES-instance ⇔ (I ′, k ′) is a YES-instance where k ′ ≤ g(k)

• the map must be computable in FPT-time (f (k) · |I |O(1))

(f and g must also be computable functions)
Implications
• FPT-algorithm for L′ ⇒ FPT algorithm for L
• solving my problem L′ efficiently ⇒ solving “difficult” problem L efficiently

(now,“efficient” ∼ “FPT”)

Easy Example
• reduce INDEPENDENT SET to CLIQUE

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET CLIQUE

V ′ ⊆ V , so that
G [V ′] complete

• G has a size k IS ⇔ edge-complement of G has a size k Clique.

• also: CLIQUE ∈ FPT ⇒ IS ∈ FPT

• reverse reduction also applies:
CLIQUE ∈ FPT ⇔ IS ∈ FPT

• expectation: CLIQUE, IS /∈ FPT

4
Reduction from Problem LLL to Problem L′L′L′

Colored Cliques

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

5

Colored Cliques

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from CLIQUE to MULTICOLORED CLIQUE

G

Instance (G , 3) of
CLIQUE

5

Colored Cliques

G ′

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from CLIQUE to MULTICOLORED CLIQUE

G

Instance (G , 3) of
CLIQUE

Instance of MC CLIQUE:
(G ′, 3, (V1,V2, V3))

• copy each v ∈ V to v 1, . . . , v k ,
and set v i ∈ Vi

5

Colored Cliques

G ′

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from CLIQUE to MULTICOLORED CLIQUE

G

Instance (G , 3) of
CLIQUE

Instance of MC CLIQUE:
(G ′, 3, (V1,V2, V3))

• copy each v ∈ V to v 1, . . . , v k ,
and set v i ∈ Vi

• for each uv ∈ E connect ui with v j

for each i 6= j

• k = k ′

5

Colored Cliques

G ′

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from CLIQUE to MULTICOLORED CLIQUE

G

Instance (G , 3) of
CLIQUE

Instance of MC CLIQUE:
(G ′, 3, (V1,V2, V3))

• copy each v ∈ V to v 1, . . . , v k ,
and set v i ∈ Vi

• for each uv ∈ E connect ui with v j

for each i 6= j

• k = k ′

GGG has a size kkk clique ⇒⇒⇒ G ′G ′G ′ has a size kkk colored clique
• Let v1, . . . , vk be a clique in G

• then v 1
1 , . . . , v kk is a clique in G ′

5

Colored Cliques

G ′

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from CLIQUE to MULTICOLORED CLIQUE

G

Instance (G , 3) of
CLIQUE

Instance of MC CLIQUE:
(G ′, 3, (V1,V2, V3))

• copy each v ∈ V to v 1, . . . , v k ,
and set v i ∈ Vi

• for each uv ∈ E connect ui with v j

for each i 6= j

• k = k ′

GGG has a size kkk clique ⇒⇒⇒ G ′G ′G ′ has a size kkk colored clique
• Let v1, . . . , vk be a clique in G

• then v 1
1 , . . . , v kk is a clique in G ′

• all these vertices have distinct colors

5

Colored Cliques

G ′

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from CLIQUE to MULTICOLORED CLIQUE

G

Instance (G , 3) of
CLIQUE

Instance of MC CLIQUE:
(G ′, 3, (V1,V2, V3))

• copy each v ∈ V to v 1, . . . , v k ,
and set v i ∈ Vi

• for each uv ∈ E connect ui with v j

for each i 6= j

• k = k ′

G ′G ′G ′ has a size kkk colored clique ⇒⇒⇒ GGG has a size kkk clique
• Let v 1

π(1), . . . , v kπ(k) be a colored clique in G with π : {1, . . . , k} → {1, . . . n}

5

Colored Cliques

G ′

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from CLIQUE to MULTICOLORED CLIQUE

G

Instance (G , 3) of
CLIQUE

Instance of MC CLIQUE:
(G ′, 3, (V1,V2, V3))

• copy each v ∈ V to v 1, . . . , v k ,
and set v i ∈ Vi

• for each uv ∈ E connect ui with v j

for each i 6= j

• k = k ′

G ′G ′G ′ has a size kkk colored clique ⇒⇒⇒ GGG has a size kkk clique
• Let v 1

π(1), . . . , v kπ(k) be a colored clique in G with π : {1, . . . , k} → {1, . . . n}

• π is injective
(the colored clique does not contain two copies of the same vertex)

5

Colored Cliques

G ′

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from CLIQUE to MULTICOLORED CLIQUE

G

Instance (G , 3) of
CLIQUE

Instance of MC CLIQUE:
(G ′, 3, (V1,V2, V3))

• copy each v ∈ V to v 1, . . . , v k ,
and set v i ∈ Vi

• for each uv ∈ E connect ui with v j

for each i 6= j

• k = k ′

G ′G ′G ′ has a size kkk colored clique ⇒⇒⇒ GGG has a size kkk clique
• Let v 1

π(1), . . . , v kπ(k) be a colored clique in G with π : {1, . . . , k} → {1, . . . n}

• π is injective
(the colored clique does not contain two copies of the same vertex)

• thus, vπ(1), . . . , vπ(k) are k distinct nodes that form a clique in G

5

Colored Cliques

G ′

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from CLIQUE to MULTICOLORED CLIQUE

G

Instance (G , 3) of
CLIQUE

Instance of MC CLIQUE:
(G ′, 3, (V1,V2, V3))

• copy each v ∈ V to v 1, . . . , v k ,
and set v i ∈ Vi

• for each uv ∈ E connect ui with v j

for each i 6= j

• k = k ′

G ′G ′G ′ has a size kkk colored clique ⇒⇒⇒ GGG has a size kkk clique
• Let v 1

π(1), . . . , v kπ(k) be a colored clique in G with π : {1, . . . , k} → {1, . . . n}

• π is injective
(the colored clique does not contain two copies of the same vertex)

• thus, vπ(1), . . . , vπ(k) are k distinct nodes that form a clique in G

5

�

Colored Cliques

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from MULTICOLORED CLIQUE to CLIQUE

Instance of MC CLIQUE:
(G , 3, (V1,V2, V3))

5

Colored Cliques

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from MULTICOLORED CLIQUE to CLIQUE

Instance of MC CLIQUE:
(G , 3, (V1,V2, V3))

Instance (G ′, 3) of
CLIQUE

• delete edges within each color class

• k ′ = k

5

Colored Cliques

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from MULTICOLORED CLIQUE to CLIQUE

Instance of MC CLIQUE:
(G , 3, (V1,V2, V3))

Instance (G ′, 3) of
CLIQUE

• delete edges within each color class

• k ′ = k

GGG has a colored size kkk clique ⇒⇒⇒ G ′G ′G ′ has a size kkk clique
• the colored clique does not use any edges inside a color class
• thus, G ′ contains a size k clique

5

Colored Cliques

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from MULTICOLORED CLIQUE to CLIQUE

Instance of MC CLIQUE:
(G , 3, (V1,V2, V3))

Instance (G ′, 3) of
CLIQUE

• delete edges within each color class

• k ′ = k

GGG has a colored size kkk clique ⇒⇒⇒ G ′G ′G ′ has a size kkk clique

G ′G ′G ′ has a size kkk clique ⇒⇒⇒ GGG has a colored size kkk clique

• the colored clique does not use any edges inside a color class
• thus, G ′ contains a size k clique

• in G ′, no monochromatic vertices are adjacent
• thus, each clique must be a colored clique

5

Colored Cliques

Problem: MULTICOLORED CLIQUE

Given: Graph G = (V ,E), parameter k ,
and partition (V1, . . . ,Vk) of V .

Find: Clique V ′ ⊆ V of size k , so that |V ′ ∩ Vi | = 1 for each i . V1,V2, V3

Reduction: from MULTICOLORED CLIQUE to CLIQUE

Instance of MC CLIQUE:
(G , 3, (V1,V2, V3))

Instance (G ′, 3) of
CLIQUE

• delete edges within each color class

• k ′ = k

GGG has a colored size kkk clique ⇒⇒⇒ G ′G ′G ′ has a size kkk clique

G ′G ′G ′ has a size kkk clique ⇒⇒⇒ GGG has a colored size kkk clique

• the colored clique does not use any edges inside a color class
• thus, G ′ contains a size k clique

• in G ′, no monochromatic vertices are adjacent
• thus, each clique must be a colored clique

5

�

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE
6

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

(also applies to INDEPENDENT SET ↔ CLIQUE)

6

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET7

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET
• enforce the following properties on the DOMINATING SET instance

•– select exactly one element from each color class

•– avoid simultaneous selection of designated node pairs

7

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET
• enforce the following properties on the DOMINATING SET instance

•– select exactly one element from each color class

•– avoid simultaneous selection of designated node pairs

One element in each color class

7

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET
• enforce the following properties on the DOMINATING SET instance

•– select exactly one element from each color class

•– avoid simultaneous selection of designated node pairs

One element in each color class
• vertex xi adjacent to all vertices in Vi and no others

x1 x2 x3

(forces the selection of at least one of Vi ∪ {xi})

7

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET
• enforce the following properties on the DOMINATING SET instance

•– select exactly one element from each color class

•– avoid simultaneous selection of designated node pairs

One element in each color class
• vertex xi adjacent to all vertices in Vi and no others

• Problem: can still choose xi

x1 x2 x3

(forces the selection of at least one of Vi ∪ {xi})

7

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET
• enforce the following properties on the DOMINATING SET instance

•– select exactly one element from each color class

•– avoid simultaneous selection of designated node pairs

One element in each color class
• vertex xi adjacent to all vertices in Vi and no others

• Problem: can still choose xi

x1 x2 x3

(forces the selection of at least one of Vi ∪ {xi})

• Solution: create a copy yi of xi

y1 y2 y3

(picking both xi and yi is too costly to form a size k DS)

7

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET
• enforce the following properties on the DOMINATING SET instance

•– select exactly one element from each color class

•– avoid simultaneous selection of designated node pairs

One element in each color class
• vertex xi adjacent to all vertices in Vi and no others

• Problem: can still choose xi

x1 x2 x3

(forces the selection of at least one of Vi ∪ {xi})

• Solution: create a copy yi of xi

y1 y2 y3

(picking both xi and yi is too costly to form a size k DS)

• make Vi into a clique as to allow any vertex from Vi to dominate it
and both xi and yi .

7

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET
• enforce the following properties on the DOMINATING SET instance

•– select exactly one element from each color class

•– avoid simultaneous selection of designated node pairs

One element in each color class
• vertex xi adjacent to all vertices in Vi and no others

• Problem: can still choose xi

x1 x2 x3

(forces the selection of at least one of Vi ∪ {xi})

• Solution: create a copy yi of xi

y1 y2 y3

(picking both xi and yi is too costly to form a size k DS)

• make Vi into a clique as to allow any vertex from Vi to dominate it
and both xi and yi .

7

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET
• enforce the following properties on the DOMINATING SET instance

•– select exactly one element from each color class

•– avoid simultaneous selection of designated node pairs

One element in each color class
• vertex xi adjacent to all vertices in Vi and no others

• Problem: can still choose xi

x1 x2 x3

(forces the selection of at least one of Vi ∪ {xi})

• Solution: create a copy yi of xi

y1 y2 y3

(picking both xi and yi is too costly to form a size k DS)

• make Vi into a clique as to allow any vertex from Vi to dominate it
and both xi and yi .

7

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET
• enforce the following properties on the DOMINATING SET instance

•– select exactly one element from each color class

•– avoid simultaneous selection of designated node pairs

x1 x2 x3y1 y2 y3

Avoid selecting both uuu and vvv

vu

7

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET
• enforce the following properties on the DOMINATING SET instance

•– select exactly one element from each color class

•– avoid simultaneous selection of designated node pairs

x1 x2 x3y1 y2 y3

Avoid selecting both uuu and vvv
• Idea: insert a vertex z that is dominated unless both u and v are picked

vu

z

7

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET
• enforce the following properties on the DOMINATING SET instance

•– select exactly one element from each color class

•– avoid simultaneous selection of designated node pairs

x1 x2 x3y1 y2 y3

Avoid selecting both uuu and vvv
• Idea: insert a vertex z that is dominated unless both u and v are picked

vu

•– z is not adjacent to u and not adjacent to v

• but is adjacent to all other vertices in the color classes of u and v

z

7

DOMINATING SET

V ′ ⊆ V colored, so that
∀e ∈ E : |e ∩ V ′| ≤ 1

MC INDEPENDENT SET

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

Reduce MULTICOLORED INDEPENDENT SET to DOMINATING SET
• enforce the following properties on the DOMINATING SET instance

•– select exactly one element from each color class

•– avoid simultaneous selection of designated node pairs

x1 x2 x3y1 y2 y3

Avoid selecting both uuu and vvv
• Idea: insert a vertex z that is dominated unless both u and v are picked

vu

•– z is not adjacent to u and not adjacent to v

• but is adjacent to all other vertices in the color classes of u and v

z

7

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SET

8

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SET
Can we reverse this last reduction?

• it is not known ... but seems very unlikely

8

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SET
Can we reverse this last reduction?

• it is not known ... but seems very unlikely

• DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET

(DS ∈ FPT ⇒ IS ∈ FPT, but not the other way around)

8

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SET
Can we reverse this last reduction?

• it is not known ... but seems very unlikely

• DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET

(DS ∈ FPT ⇒ IS ∈ FPT, but not the other way around)

• we need a refined notion of “hardness”

8

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SET
Can we reverse this last reduction?

• it is not known ... but seems very unlikely

• DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET

(DS ∈ FPT ⇒ IS ∈ FPT, but not the other way around)

• we need a refined notion of “hardness”

Similar to the complexity class P

8

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SET
Can we reverse this last reduction?

• it is not known ... but seems very unlikely

• DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET

(DS ∈ FPT ⇒ IS ∈ FPT, but not the other way around)

• we need a refined notion of “hardness”

Similar to the complexity class P

• usually, one focuses on: NP-hardness

• but there are also intermediate problems (assuming P 6= NP)

8

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SET
Can we reverse this last reduction?

• it is not known ... but seems very unlikely

• DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET

(DS ∈ FPT ⇒ IS ∈ FPT, but not the other way around)

• we need a refined notion of “hardness”

Similar to the complexity class P

• usually, one focuses on: NP-hardness

• but there are also intermediate problems (assuming P 6= NP)

• however, no natural hierarchy of NP-intermediate problems
(candidates: prime factorization, graph isomorphism)

8

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SET
Can we reverse this last reduction?

• it is not known ... but seems very unlikely

• DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET

(DS ∈ FPT ⇒ IS ∈ FPT, but not the other way around)

• we need a refined notion of “hardness”

Similar to the complexity class P

• usually, one focuses on: NP-hardness

• but there are also intermediate problems (assuming P 6= NP)

• however, no natural hierarchy of NP-intermediate problems
(candidates: prime factorization, graph isomorphism)

And now? What about FPT?
• define natural hierarchy of complexity classes

8

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SET
Can we reverse this last reduction?

• it is not known ... but seems very unlikely

• DOMINATING SET is (probably) more difficult than CLIQUE oder INDEPENDENT SET

(DS ∈ FPT ⇒ IS ∈ FPT, but not the other way around)

• we need a refined notion of “hardness”

Similar to the complexity class P

• usually, one focuses on: NP-hardness

• but there are also intermediate problems (assuming P 6= NP)

• however, no natural hierarchy of NP-intermediate problems
(candidates: prime factorization, graph isomorphism)

And now? What about FPT?
• define natural hierarchy of complexity classes

• establish prototypical problem for each level

8

WEIGHTED CIRCUIT SATISFIABILITY

Boolean Circuits

• directed acyclic graph (DAG) with the following node types:

∧

¬¬¬

∨∨∨

out

example

9

WEIGHTED CIRCUIT SATISFIABILITY

Boolean Circuits

• directed acyclic graph (DAG) with the following node types:

•– sources (in-degree 0) are input nodes

∧

¬¬¬

∨∨∨

out

example

9

WEIGHTED CIRCUIT SATISFIABILITY

Boolean Circuits

• directed acyclic graph (DAG) with the following node types:

•– sources (in-degree 0) are input nodes

•– NEGATION nodes have in-degree 1 ¬

∧

¬¬¬

∨∨∨

out

example

9

WEIGHTED CIRCUIT SATISFIABILITY

Boolean Circuits

• directed acyclic graph (DAG) with the following node types:

•– sources (in-degree 0) are input nodes

•– NEGATION nodes have in-degree 1

•– AND- resp. OR-nodes have in-degree ≥ 2 ∨

¬

∧

∧

¬¬¬

∨∨∨

out

example

9

WEIGHTED CIRCUIT SATISFIABILITY

Boolean Circuits

• directed acyclic graph (DAG) with the following node types:

•– sources (in-degree 0) are input nodes

•– NEGATION nodes have in-degree 1

•– AND- resp. OR-nodes have in-degree ≥ 2

•– one sink (out-degree 0) is the output node out

∨

¬

∧

∧

¬¬¬

∨∨∨

out

example

9

WEIGHTED CIRCUIT SATISFIABILITY

Boolean Circuits

• directed acyclic graph (DAG) with the following node types:

•– sources (in-degree 0) are input nodes

•– NEGATION nodes have in-degree 1

•– AND- resp. OR-nodes have in-degree ≥ 2

•– one sink (out-degree 0) is the output node out

• an assignment of 0 or 1 to each input node propogates through the other nodes, providing
an output value. (in the natural way)

• an assignment statisfying when the output value is 1

∨

¬

∧

∧

¬¬¬

∨∨∨

out

example

9

WEIGHTED CIRCUIT SATISFIABILITY

Boolean Circuits

• directed acyclic graph (DAG) with the following node types:

•– sources (in-degree 0) are input nodes

•– NEGATION nodes have in-degree 1

•– AND- resp. OR-nodes have in-degree ≥ 2

•– one sink (out-degree 0) is the output node out

• an assignment of 0 or 1 to each input node propogates through the other nodes, providing
an output value. (in the natural way)

• an assignment statisfying when the output value is 1

∨

¬

∧

∧

¬¬¬

∨∨∨

out

example

¬¬ ¬

∨∨∨

∧

9

WEIGHTED CIRCUIT SATISFIABILITY

Boolean Circuits

• directed acyclic graph (DAG) with the following node types:

•– sources (in-degree 0) are input nodes

•– NEGATION nodes have in-degree 1

•– AND- resp. OR-nodes have in-degree ≥ 2

•– one sink (out-degree 0) is the output node out

• an assignment of 0 or 1 to each input node propogates through the other nodes, providing
an output value. (in the natural way)

• an assignment statisfying when the output value is 1

∨

¬

∧

∧

¬¬¬

∨∨∨

out

example

¬¬¬

∨ ∨∨

∧

9

WEIGHTED CIRCUIT SATISFIABILITY

Boolean Circuits

• directed acyclic graph (DAG) with the following node types:

•– sources (in-degree 0) are input nodes

•– NEGATION nodes have in-degree 1

•– AND- resp. OR-nodes have in-degree ≥ 2

•– one sink (out-degree 0) is the output node out

• an assignment of 0 or 1 to each input node propogates through the other nodes, providing
an output value. (in the natural way)

• an assignment statisfying when the output value is 1

∨

¬

∧

∧

¬¬¬

∨∨∨

out

example

¬¬¬

∨ ∨∨

∧

• the weight of an assignment is the number of 1s used

9

WEIGHTED CIRCUIT SATISFIABILITY

Boolean Circuits

• directed acyclic graph (DAG) with the following node types:

•– sources (in-degree 0) are input nodes

•– NEGATION nodes have in-degree 1

•– AND- resp. OR-nodes have in-degree ≥ 2

•– one sink (out-degree 0) is the output node out

• an assignment of 0 or 1 to each input node propogates through the other nodes, providing
an output value. (in the natural way)

• an assignment statisfying when the output value is 1

∨

¬

∧

∧

¬¬¬

∨∨∨

out

example

¬¬¬

∨ ∨∨

∧

Problem: WEIGHTED CIRCUIT SATISFIABILITY (WCS)
Given a boolean circuit and a parameter k
Find: A weight k satisfying assignment

• the weight of an assignment is the number of 1s used

9

Reductions visualized

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET

INDEPENDENT SET →→→ WCS

∧

¬¬¬
∨∨∨

out

WCS

b

a

c

d

e
10

Reductions visualized

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET

INDEPENDENT SET →→→ WCS

∧

¬¬¬
∨∨∨

out

WCS

b

a

c

d

e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

a b c d e

∧

out

10

Reductions visualized

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET

INDEPENDENT SET →→→ WCS

∧

¬¬¬
∨∨∨

out

WCS

b

a

c

d

e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

a b c d e

∧

out

∨ ∨ ∨ ∨ ∨

10

Reductions visualized

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET

INDEPENDENT SET →→→ WCS

∧

¬¬¬
∨∨∨

out

WCS

b

a

c

d

e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

a b c d e

∧

out

∨ ∨ ∨ ∨ ∨

DOMINATING SET →→→ WCS

b

a

c

d

e
10

Reductions visualized

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET

INDEPENDENT SET →→→ WCS

∧

¬¬¬
∨∨∨

out

WCS

b

a

c

d

e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

a b c d e

∧

out

∨ ∨ ∨ ∨ ∨

DOMINATING SET →→→ WCS

b

a

c

d

e

a b c d e

∨ ∨ ∨ ∨ ∨

∧

out

10

Reductions visualized

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET

INDEPENDENT SET →→→ WCS

∧

¬¬¬
∨∨∨

out

WCS

b

a

c

d

e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

a b c d e

∧

out

∨ ∨ ∨ ∨ ∨

DOMINATING SET →→→ WCS

b

a

c

d

e

a b c d e

∨ ∨ ∨ ∨ ∨

∧

out

a

c

b d

e

∨ ∨ ∨ ∨ ∨

10

Reductions visualized

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET

INDEPENDENT SET →→→ WCS

∧

¬¬¬
∨∨∨

out

WCS

b

a

c

d

e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

a b c d e

∧

out

∨ ∨ ∨ ∨ ∨

DOMINATING SET →→→ WCS

b

a

c

d

e

a b c d e

∨ ∨ ∨ ∨ ∨

∧

out

a

c

b d

e

∨ ∨ ∨ ∨ ∨

Observations
• the circuits have constant depth

10

Reductions visualized

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET

INDEPENDENT SET →→→ WCS

∧

¬¬¬
∨∨∨

out

WCS

b

a

c

d

e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

a b c d e

∧

out

∨ ∨ ∨ ∨ ∨

DOMINATING SET →→→ WCS

b

a

c

d

e

a b c d e

∨ ∨ ∨ ∨ ∨

∧

out

a

c

b d

e

∨ ∨ ∨ ∨ ∨

Observations
• the circuits have constant depth

• the circuit for DS contains more nodes with in-degree > 2

10

Reductions visualized

V ′ ⊆ V , so that
∀v ∈ V : |N[v] ∩ V ′| ≥ 1

DOMINATING SET

V ′ ⊆ V , so that
∀e ∈ E : |e ∩ V ′| ≤ 1

INDEPENDENT SET

INDEPENDENT SET →→→ WCS

∧

¬¬¬
∨∨∨

out

WCS

b

a

c

d

e

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

a b c d e

∧

out

∨ ∨ ∨ ∨ ∨

DOMINATING SET →→→ WCS

b

a

c

d

e

a b c d e

∨ ∨ ∨ ∨ ∨

∧

out

a

c

b d

e

∨ ∨ ∨ ∨ ∨

Observations
• the circuits have constant depth

• the circuit for DS contains more nodes with in-degree > 2

• is DS harder (in terms of FPT) than IS?

10

Weft

a

∨ ∨ ∨ ∨ ∨

∧

out

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

a

∧

out

Definition
The Weft of a boolean circuit is the maximum number of nodes with in-degree > 2 on a
directed path.

b c d e

b c d e

11

Weft

a

∨ ∨ ∨ ∨ ∨

∧

out

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

a

∧

out

Definition
The Weft of a boolean circuit is the maximum number of nodes with in-degree > 2 on a
directed path.

Weft 1

Weft 2
b c d e

b c d e

11

Weft

a

∨ ∨ ∨ ∨ ∨

∧

out

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

a

∧

out

Definition
The Weft of a boolean circuit is the maximum number of nodes with in-degree > 2 on a
directed path.

Weft 1

Weft 2
b c d e

b c d e

Problem
WCS[t][t][t] is WCS limited to circuits with constant depth and weft
at most t.

11

Weft

a

∨ ∨ ∨ ∨ ∨

∧

out

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨ ∨

a

∧

out

Definition
The Weft of a boolean circuit is the maximum number of nodes with in-degree > 2 on a
directed path.

Weft 1

Weft 2
b c d e

b c d e

Problem
WCS[t][t][t] is WCS limited to circuits with constant depth and weft
at most t.

Definition
The class W [t]W [t]W [t] contains all problems with a paramterized
reduction to WCS[t].

We have seen

• DOMINATING SET ∈ W [2]

• INDEPENDENT SET ∈ W [1] ⊆ W [2]

11

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SETWCS[2]
WCS[1]

12

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SETWCS[2]
WCS[1]

Further reductions

• one can also reduce WCS[1] to INDEPENDENT SET

12

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SETWCS[2]
WCS[1]

Further reductions

• one can also reduce WCS[1] to INDEPENDENT SET

• and WCS[2] to DOMINATING SET

12

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SETWCS[2]
WCS[1]

Further reductions

• one can also reduce WCS[1] to INDEPENDENT SET

• and WCS[2] to DOMINATING SET

• so, all problems in W [1] reduce to IS
 IS is W [1]-complete

12

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SETWCS[2]
WCS[1]

Further reductions

• one can also reduce WCS[1] to INDEPENDENT SET

• and WCS[2] to DOMINATING SET

• so, all problems in W [1] reduce to IS
 IS is W [1]-complete

• similarly DS is W [2]-complete

12

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SETWCS[2]
WCS[1]

Further reductions

• one can also reduce WCS[1] to INDEPENDENT SET

• and WCS[2] to DOMINATING SET

• so, all problems in W [1] reduce to IS
 IS is W [1]-complete

• similarly DS is W [2]-complete

W [2]W [1]

• note: W [1] ⊆ W [2]

12

why?

FPT-Reductions so far

CLIQUEINDEPENDENT SET MULTICOLORED CLIQUE MULTICOLORED IS

DOMINATING SETWCS[2]
WCS[1]

Further reductions

• one can also reduce WCS[1] to INDEPENDENT SET

• and WCS[2] to DOMINATING SET

• so, all problems in W [1] reduce to IS
 IS is W [1]-complete

• similarly DS is W [2]-complete

W [2]W [1]

• note: W [1] ⊆ W [2]

• also: FPT ⊆ W [1] ⊆ W [2]

FPT
. . .

VERTEX COVER

12

why?

why?

Summary

The W-Hierarchy
• Complexity Classes FPT ⊆ W [1] ⊆ W [2] ⊆ W [3] ⊆ · · ·

• W [t] defined via a prototypical complete problem WCS[t]:
L ∈ W [t]⇔ L can be reduced to WCS[t] (by FPT-reduction)

13

Summary

The W-Hierarchy
• Complexity Classes FPT ⊆ W [1] ⊆ W [2] ⊆ W [3] ⊆ · · ·

• W [t] defined via a prototypical complete problem WCS[t]:
L ∈ W [t]⇔ L can be reduced to WCS[t] (by FPT-reduction)

• Inclusions expected to be strict

13

Summary

Is my W [t]W [t]W [t]-completeness proof useless if W [t]W [t]W [t] = FPT?

The W-Hierarchy
• Complexity Classes FPT ⊆ W [1] ⊆ W [2] ⊆ W [3] ⊆ · · ·

• W [t] defined via a prototypical complete problem WCS[t]:
L ∈ W [t]⇔ L can be reduced to WCS[t] (by FPT-reduction)

• Inclusions expected to be strict

13

Summary

Is my W [t]W [t]W [t]-completeness proof useless if W [t]W [t]W [t] = FPT?

The W-Hierarchy
• Complexity Classes FPT ⊆ W [1] ⊆ W [2] ⊆ W [3] ⊆ · · ·

• W [t] defined via a prototypical complete problem WCS[t]:
L ∈ W [t]⇔ L can be reduced to WCS[t] (by FPT-reduction)

• Inclusions expected to be strict

• finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all
problems in the class.

13

Summary

Is my W [t]W [t]W [t]-completeness proof useless if W [t]W [t]W [t] = FPT?

The W-Hierarchy
• Complexity Classes FPT ⊆ W [1] ⊆ W [2] ⊆ W [3] ⊆ · · ·

• W [t] defined via a prototypical complete problem WCS[t]:
L ∈ W [t]⇔ L can be reduced to WCS[t] (by FPT-reduction)

• Inclusions expected to be strict

• finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all
problems in the class.

How do I show that my problem is hard?
• reduce a known hard problem to your problem

13

Summary

Is my W [t]W [t]W [t]-completeness proof useless if W [t]W [t]W [t] = FPT?

The W-Hierarchy
• Complexity Classes FPT ⊆ W [1] ⊆ W [2] ⊆ W [3] ⊆ · · ·

• W [t] defined via a prototypical complete problem WCS[t]:
L ∈ W [t]⇔ L can be reduced to WCS[t] (by FPT-reduction)

• Inclusions expected to be strict

• finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all
problems in the class.

How do I show that my problem is hard?
• reduce a known hard problem to your problem

• reducing from MC INDEPENDENT SET or MC CLIQUE provides W [1]-hardness

13

Summary

Is my W [t]W [t]W [t]-completeness proof useless if W [t]W [t]W [t] = FPT?

The W-Hierarchy
• Complexity Classes FPT ⊆ W [1] ⊆ W [2] ⊆ W [3] ⊆ · · ·

• W [t] defined via a prototypical complete problem WCS[t]:
L ∈ W [t]⇔ L can be reduced to WCS[t] (by FPT-reduction)

• Inclusions expected to be strict

• finding an FPT-algorithm for a complete problem would provide an FPT-algorithm for all
problems in the class.

How do I show that my problem is hard?
• reduce a known hard problem to your problem

• reducing from MC INDEPENDENT SET or MC CLIQUE provides W [1]-hardness

• reducing from DOMINATING SET or SET COVER provides W [2]-hardness

13

	Titel

