Visualization of graphs

The Crossing Lemma

And its applications

Jonathan Klawitter • Summer semester 2020

Crossing number and topological graphs

Definition.

For a graph G, the crossing number $\operatorname{cr}(G)$ is the smallest number of crossings in a drawing of G (in the plane).

Example.
$\operatorname{cr}\left(K_{3,3}\right)=1$

In a crossing minimal drawing of G
■ no edge is self-intersecting,

- edges with common endpoints do not intersect,
■ two edges intersect at most once,
■ and wlog, at most two edges intersect at the same point.

Such a drawing is called a topological drawing of G.

Computing the crossing number

■ Computing $\operatorname{cr}(G)$ is NP-hard. [Garey, Johnson '83]
■ $\operatorname{cr}(G)$ often unknown, only conjectures exist

- for K_{n} it is only known for up to ~ 12 vertices
- In pratice, $\operatorname{cr}(G)$ is often not computed directly but rather drawings of G are optimised with
- force-based methods (next lecture),
- multidimensional scaling,
- heuristics, ...

■ $\operatorname{cr}(G)$ is a measure of how f far G is from being planar

- Planarization, where we replace crossings with dummy vertices, also uses only heuristics

Other crossing numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)

■ One-sided crossing minimization...

- Fixed Linear Crossing Number
- In book embeddings

■ Crossings of edge bundles
■ On other surfaces, like on donuts

- Weighted crossings

- Crossing minimization is NP-hard for most of the variants

Rectilinear crossing number

Definition.

For a graph G, the rectilinear (straight-line) crossing number $\overline{c r}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Even more...
Lemma 1. [Bienstock, Dean '93]
For $k \geq 4$, there exists a graph G_{k} with $\operatorname{cr}\left(G_{k}\right)=4$ and $\overline{\operatorname{cr}}\left(G_{k}\right) \geq k$.

- Each straight-line drawing of G_{1} has at least one crossing of the following types:
- From G_{1} to G_{k} do

Separation. $\operatorname{cr}\left(K_{8}\right)=18$, but $\overline{\operatorname{cr}}\left(K_{8}\right)=19$.

First lower bounds on $\operatorname{cr}(G)$

Lemma 2.

For a graph G with n vertices and m edges,

$$
\operatorname{cr}(G) \geq m-3 n+6
$$

Proof.

- Consider a drawing of G with $\operatorname{cr}(G)$ crossings.

■ Obtain a graph H by turning crossings into dummy vertices.

- H has $n+\operatorname{cr}(G)$ vertices and $m+2 \operatorname{cr}(G)$ edges.
- H is planar, so

$$
m+2 \operatorname{cr}(G) \leq 3(n+\operatorname{cr}(G))-6
$$

The Crossing Lemma

- 1973 Erdös and Guy conjectured that $\operatorname{cr}(G) \in \Omega\left(\frac{m^{3}}{n^{2}}\right)$.

■ In 1982 Leighton and, indepedently, Ajtai, Chávtal, Newborn and Szemerédi showed that

$$
\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^{3}}{n^{2}} .
$$

- Bound is asymptotically sharp.
- Result stayed hardly known until Székely in 1997 demonstrated its usefulness.
■ We look at a proof "from THE BOOK" by Chazelle, Sharir and Welz.
- Factor $\frac{1}{64}$ was later (with intermediate steps) improved to $\frac{1}{29}$ by Ackerman in 2013.

The Crossing Lemma

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4 n$,

$$
\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^{3}}{n^{2}} .
$$

Proof.

\square Consider a minimal embedding of G.

- Let p be a number in $(0,1)$.
- Keep every vertex of G independently with probability p.
- Let G_{p} be the remaining graph.
- Let n_{p}, m_{p}, X_{p} be the random variables counting the number of vertices/edges/crossings of G_{p}.
\square By Lem 2, $\mathbb{E}\left(X_{p}-m_{p}+3 n_{p}\right) \geq 0$.
$\square \mathbb{E}\left(n_{p}\right)=p n$ and $\mathbb{E}\left(m_{p}\right)=p^{2} m$
- $\mathbb{E}\left(X_{p}\right)=p^{4} \operatorname{cr}(G)$
$\square 0 \leq \mathbb{E}\left(X_{p}\right)-\mathbb{E}\left(m_{p}\right)+3 \mathbb{E}\left(n_{p}\right)$ $=p^{4} \operatorname{cr}(G)-p^{2} m+3 p m$
$\square \operatorname{cr}(G) \geq \frac{p^{2} m-3 p n}{p^{4}}=\frac{m}{p^{2}}-\frac{3 n}{p^{3}}$
\square Set $p=\frac{4 n}{m}$.
$\square \operatorname{cr}(G) \geq \frac{1}{64}\left[\frac{4 m}{(n / m)^{2}}-\frac{3 n}{(n / m)^{3}}\right]=\frac{1}{64} \frac{m^{3}}{n^{2}}$

Application 1: Point-line incidences

\square For points $P \subset \mathbb{R}^{2}$ and lines \mathcal{L}, $I(P, \mathcal{L})=$ number of point-line incidences in (P, \mathcal{L}).

■ Define $I(n, k)=\max _{|P|=n,|\mathcal{L}|=k} I(P, \mathcal{L})$.
\square For example: $I(4,4)=9$

Theorem 1.
[Szemerédi, Trotter '83, Székely '97] $I(n, k) \leq c\left(n^{2 / 3} k^{2 / 3}+n+k\right)$.

Proof.

G

$$
\operatorname{cr}(G) \leq k^{2}
$$

■ points on $l=1+\#$ edges on l

- $I(n, k)-k \leq m$

■ Crossing Lemma: $\frac{1}{64} \frac{m^{3}}{n^{2}} \leq \operatorname{cr}(G)$

- $c^{\prime}(I(n, k)-k)^{3} / n^{2} \leq \operatorname{cr}(G) \leq k^{2}$
- if $m \nsupseteq 4 n$, then $I(n, k)-k \leq 4 n$

Application 2: Unit distances

For points $P \subset \mathbb{R}^{2}$ define
$\square U(P)=$ number of pairs in P at unit distance and
$\square U(n)=\max _{|P|=n} U(P)$.

Theorem 2.
 [Spencer, Szemerédi, Trotter '84, Székely '97] $U(n)<6.7 n^{4 / 3}$

Proof.

Literature

- [Aigner, Ziegler] Proofs from THE BOOK

■ [Schaefer '20] The Graph Crossing Number and its Variants: A Survey
■ Terrence Tao blog post "The crossing number inequality" from 2007
■ [Garey, Johnson '83] Crossing number is NP-complete
■ [Bienstock, Dean '93] Bounds for rectilinear crossing numbers
■ [Székely '97] Crossing Numbers and Hard Erdös Problems in Discrete Geometry
■ Documentary/Biography "N Is a Number: A Portrait of Paul Erdös"

