

Visualisation of graphs

Introduction The graph visualisation problem

Jonathan Klawitter · Summer semester 2020

Graphs and their representations

What is a graph?

graph
$$G = (V, E)$$
vertices $V = \{v_1, v_2, \dots, v_n\}$
edge $E = \{e_1, e_2, \dots, e_m\}$

Representation?

Set notation

```
V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}

E = \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \{v_9, v_{10}\}\}
```

Adjacency list

v_1 :	v_2 , v_8	v_6 :	v_4 , v_8 , v_9
v_2 :	v_1 , v_3	v_7 :	v_8 , v_9
v_3 :	v_2 , v_5 , v_9 , v_{10}	v8:	v_1 , v_5 , v_6 , v_7 , v_9 , $v_1($
v_{4} :	v_5 , v_6 , v_9	<i>v</i> g:	v3, v4, v6, v7, v8, v10
v_5 :	v_3 , v_4 , v_8	v_{10} :	v_3 , v_8 , v_9

Why draw graphs?

. . .

Graphs are a mathematical representation of real physical and abstract networks.

Abstract networks

- Social networks
- Communication networks
- Phylogenetic networks
- Metabolic networks
- Class/Object Relation
 Digraphs (UML)

Physical networks

- Metro systems
- Road networks
- Power grids

. . .

- Telecommunication networks
- Integrated circuits

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

People think visually – complex graphs are hard to grasp without good visualisations!

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

- People think visually complex graphs are hard to grasp without good visualisations!
- Visualisations help with the communication and exploration of networks.
- Some graphs are too big to draw them by hand.

We need algorithms that draw graphs automatically to make networks more accessible to humans.

What are we interested in?

■ Jacques Bertin defined visualising variables (1967)

The layout problem?

Here restricted to the standard representation, so-called node-link diagrams.

Graph visualisation problem in: Graph G = (V, E)out: nice drawing Γ of G $\Gamma: V \to \mathbb{R}^2$, vertex $v \mapsto$ point $\Gamma(v)$ $\Gamma: E \to$ curves in \mathbb{R}^2 , edge $\{u, v\} \mapsto$ simple, open curve $\Gamma(\{u, v\})$ with endpoints $\Gamma(u)$ und $\Gamma(v)$

But what is a **nice** drawing?

Examples

See slides (and video) with more examples.

1. Drawing conventions and requirements, e.g.,

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimised, e.g.

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimised, e.g.
- crossing/bend minimisation
- edge length uniformity
- minimising total edge length/drawing area
- angular resolution
- symmetry/structure
- 3. Local Constraints, e.g.

 \rightarrow lead to NP-hard optimization problems \rightarrow such criteria are often inversely related

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimised, e.g.
- crossing/bend minimisation
- edge length uniformity
- minimising total edge length/drawing area
- angular resolution
- symmetry/structure
- 3. Local Constraints, e.g.
- restrictions on neighbouring vertices (e.g., "upward").
 restrictions on groups of vertices/edges (e.g., "clustered").

 \rightarrow lead to NP-hard optimization problems \rightarrow such criteria are often inversely related

Graph visualisation problem

in: Graph G = (V, E)

Out: Drawing Γ of G such that

drawing conventions are met,

- aesthetic criteria are optimised, and
 - some additional constraints are satisfied.

- Many algorithmically interesting questions arise.
- Rendering problem downstream is ignored.