

Visualisation of graphs

Organisational matters

Jonathan Klawitter · Summer semester 2020

Organisational

Lectures

pre-recorded

Exercise sheets

- one per week
- Thursday to Thursday
- ~ 20 points
- submit solutions online
- we recommend LaTeX and ipe
- we provide a template

Tutorials

by Myroslav Kryven pre-recorded solutions WueCampus website Please enrole

Chat

- Chat Is1-vg @ info rocket.chat
- https://go.uniwue.de/chat-vg
- Ask questions, discuss, ...

Evaluation

- \blacksquare Oral exam, \sim 20 min
- \ge 50% of points on exercise sheets \Rightarrow 0.3 bonus

Feedback is welcomed

Books

G. Di Battista, P. Eades, R. Tamassia, I. Tollis: Graph Drawing: Algorithms for the Visualization of Graphs Prentice Hall, 1998

[DG, Ch. 5]

M. Kaufmann, D. Wagner: Drawing Graphs: Methods and Models Springer, 2001

[PGD, Ch. 4]

T. Nishizeki, Md. S. Rahman: Planar Graph Drawing World Scientific, 2004

R. Tamassia: Handbook of Graph Drawing and Visualization CRC Press, 2013 http://cs.brown.edu/people/rtamassi/gdhandbook/

What is this course about?

Learning objectives

- Overview of graph visualisation.
- Improved knowledge of modeling and solving problems via graph algorithms.

Visualisation problem:

Given a graph G, visualise it with a drawing Γ .

Here:

Reducing the visualisation problem to its algorithmic core.

graph class \Rightarrow layout style \Rightarrow algorithm \Rightarrow analysis

- modelingdata structures
- proofs
 divide & conquer, incremental
 combinatorial optimization (flows, ILPs)
 force-based algorithm

What is this course about?

Requirements

Builds on topics from ADS and AGT:

- Basic graph theory
 - Graphs, vertices, edges
 - Degree, neighbourhood, adjacent, incident
 - Connectivity, trees, cycles, paths

...

- Basic algorithm analysis
 - \blacksquare asymptotic runtime, Big- ${\cal O}$
 - computational complexity, NP-completeness
 - flows, LPs

• • • •

What is this course about?

Topics

- Drawing trees and series-parallel graphs
- Straight-line drawings of planar graphs
- Orthogonal grid drawings
- Upward planarity
- Hierarchical layouts of directed graphs
- Force-based algorithm
- Contact representation
- Crossing lemma

. . .