
Problem X (don't pick as seminar topic)
Did you know that . . . ?

. . . this problem was originally
named Brace Yourself?
Amazing name, isn’t it?

When writing text, people sometimes rely on braces to inject ad-
ditional details to certain statements. Due to human defectiveness,
braces (especially closing ones are prone to be missing. A differ-
ent race – the compilers – heavily relies on braces to be balanced
and well nested. To prevent misapprehensions and ensure proper
interaction between humans and compilers, all humans’ texts need to be verified prior to passing
them on to the compilers.

The pairs of characters (), { }, [], and < > are used as control symbols in source code and
each define a control block. An opening brace (i.e., one of ({[<) marks the start of a control
block, the corresponding closing brace (i.e., the matching brace)}]>) marks the end of the
control block. Control blocks can encapsulate other control blocks, but no two control blocks
may intersect each other. A text may also contain string literals, which are character sequences
delimited by a pair of quotation marks ". Quotation marks cancel out control characters, which
means that after the first quotation mark no character is interpreted as control character until the
next quotation mark. Write a source code check that tests if all string literals and control blocks
are valid and closed.

Input

The input consists of:
• One or more lines (separated by \n) made up of whitespace, numbers, alphabetic charac-

ters, and all other printable ASCII characters. More precisely, the set of allowed characters
is the ASCII range 0x20-0x7e, as well as 0x09 (tab) and 0x0a (newline).

The total number of characters in the input is at most 1 048 576 (= 1MiB).

Output

Output correct if all control blocks and strings are valid and closed or incorrect if not.

Sample Input 1 Sample Output 1

{ [< "this is a > string" >]
this is not a string } ()

correct

Sample Input 2 Sample Output 2

{ [< "this is a > string "]
this is not a string } ()

incorrect

Problem A: Ghost Methods
Once again you lost days refactoring code, which never runs in the first place. Enough is enough
– your time is better spent writing a tool that finds unused code!

Your software is divided into packages and executables. A package is a collection of meth-

ods. Executables are packages defining among other methods exactly one method with name
PROGRAM. This method is executed on the start of the corresponding executable. Ordinary
packages have no method named PROGRAM.

Each method is uniquely identified by the combination of package and method names. E.g.
the method with the identifier SuperGame::PROGRAM would be the main method of the
executable SuperGame.

For every method in your software you are given a list of methods directly invoking it. Thus you
can easily identify methods, that are never called from any method. However, your task is more
challenging: you have to find unused methods. These are methods that are never reached by the
control flow of any executable in your software.

Input

The first line of the input contains an integer N , the number of methods in your software
(1 ≤ N ≤ 400).

Each method is described by two lines, totaling in 2 · N lines. The first line consists of the unique
identifier of the method and ki, the number of methods directly invoking this one (0 ≤ ki ≤ N).
The second line consists of a set of ki identifiers of these calling methods or is empty if there are
no such methods, i.e. ki = 0.
Method identifiers consist of a package name followed by two colons and a method name
like Packagename::Methodname. Both strings, the package and the method name, each
consist of up to 20 lowercase, uppercase characters or digits (a-z, A-Z, 0-9).

There will be exactly N different method identifiers mentioned in the input.

Output

A line containing the number of unused methods in your software.

Sample Input 1 Sample Output 1

2

SuperGame::PROGRAM 0

HelpPackage::HelpFunction 2

HelpPackage::HelpFunction SuperGame::PROGRAM

0

Sample Input 2 Sample Output 2

2

Loop::CallA 1

Loop::CallB

Loop::CallB 1

Loop::CallA

2

Sample Input 3 Sample Output 3

2

SuperGame::PROGRAM 1

SuperServer42::PROGRAM

SuperServer42::PROGRAM 1

SuperServer42::PROGRAM

0

0 Athens

1 stay 2

2

3

4

stay 2

5stay 2

2

3

3

10

6

2

21

2

5

Problem B: Let's Call a Taxi
For a long time Tim wanted to visit Greece. He has already purchased his flight to and from
Athens. Tim has a list of historical sites he wants to visit, e.g., Olympia and Delphi. However,
due to recent political events in Greece, the public transport has gotten a little complicated. To
make the Greek happy and content with their new government, many short-range bus and train
lines have been created. They shall take the citizens around in their neighborhoods, to work or
to their doctor. At the same time, long-range trains that are perfect for tourists have been closed
down as they are too expensive. This is bad for people like Tim, who really likes to travel by
train. Moreover, he has already purchased the Greece’ Card for Public Conveyance (GCPC)
making all trains and buses free for him.

taxi 5

Figure A.1: Visual representation of the Sample Input: Tim’s tour has length 18.

Despite his preferred railway lines being closed down, he still wants to make his travel trough

Greece. But taking all these local bus and train connections is slower than expected, so he wants

to know whether he can still visit all his favorite sites in the timeframe given by his flights. He

knows his schedule will be tight, but he has some emergency money to buy a single ticket for a

special Greek taxi service. It promises to bring you from any point in Greece to any other in a

certain amount of time.

For simplicity we assume, that Tim does never have to wait for the next bus or train at a station.

Tell Tim, whether he can still visit all sites and if so, whether he needs to use this taxi ticket.

Input

The first line contains five integers N , P , M , G and T , where N denotes the number of places

in Greece, P the number of sites Tim wants to visit, M the number of connections, G the total

amount of time Tim can spend in Greece, and T the time the taxi ride takes (1 ≤ N ≤ 2 · 104;

1 ≤ P ≤ 15; 1 ≤ M,G ≤ 10
5; 1 ≤ T ≤ 500).

Then follow P lines, each with two integers pi and ti, specifying the places Tim wants to visit

and the time Tim spends at each site (0 ≤ pi < N ; 1 ≤ ti ≤ 500). The sites pi are distinct from

each other.

Then follow M lines, each describing one connection by three integers si, di and ti, where si
and di specify the start and destination of the connection and ti the amount of time it takes

(0 ≤ si, di < N ; 1 ≤ ti ≤ 500).

All connections are bi-directional. Tim’s journey starts and ends in Athens, which is always the

place 0.

Output

Print either “impossible”, if Tim cannot visit all sites in time, “possible without

taxi”, if he can visit all sites without his taxi ticket, or “possible with taxi”, if he

needs the taxi ticket.

Sample Input 1 Sample Output 1

6 3 10 18 5

1 2

4 2

5 2

0 1 2

1 2 3

2 4 3

1 3 10

2 3 6

0 3 2

3 4 2

4 5 1

3 5 2

0 5 5

possible with taxi

Problem C: Intergalactic

Figure A.1: Illustration of

Sample Input 2

Space pirate Captain Krys has recently acquired a map of the

artificial and highly secure planet Alpha-Zet which he has been

planning to raid for ages. It turns out the whole planet is built

on a 2D plane with modules that serve as one room each. There

is exactly one module at every pair of integer coordinates and

modules are exactly 1× 1 units big. Every module is bidirection-

ally connected to at least one adjacent module. Also, for any two

modules there exists exactly one path between them. All in all

the modules create a rectangular maze without any loops.

On the map Captain Krys has marked several modules he wants

to visit in exactly the marked order. What he intends to do there

is none of your business, but he promises you a fortune if you

determine the number of modules he has to walk through along

the route (since there are no loops he will always take the direct route from one marked module

to the next). The first marked module indicates where he starts his journey, the last where he

wants to finish.

Input

The input consists of:

• one line with two integers h and w (2 ≤ h, w ≤ 1 000) describing the height and the width

of the maze.

• h+1 lines follow, describing the maze in ASCII, each line containing 2 ·w+1 characters.

The description always follows these rules:

– In every row, columns with odd index (starting at index 1) contain either vertical

walls or spaces and columns with even index contain either horizontal walls or

spaces.

– The first row describes the northern wall of the maze (which always consists only of

horizontal walls). Every subsequent row describes a row of modules.

– A module is located at every even column index. Its western and eastern walls are

located at the directly neighboring odd column indices respectively, its northern wall

is located at the same column index but one row above and its southern wall can be

found at its own position. If a wall is missing, the corresponding position contains a

space instead.

• After the description of the maze, an integer m (2 ≤ m ≤ 10
4) is given.

• Each of the following m lines describes a marked module with two integer coordinates

x and y (1 ≤ x ≤ h; 1 ≤ y ≤ w). The first pair of coordinates is the start point of the

journey, the last pair the end point. Modules may appear multiple times but never twice or

more in a row. (1, 1) is the top left module and (h, w) is the bottom right module.

It is guaranteed that the maze itself is enclosed. Furthermore it is guaranteed that exactly one

path exists between any two modules.

Output

Output one integer, the number of modules Captain Krys has to travel through if he follows the

route in the exact order given in the input.

Sample Input 1 Sample Output 1

2 6

_ _ _ _ _ _

| _ _ _ _ _|

|_ _ _ _ _ _|

5

1 5

1 1

1 6

1 1

1 5

18

Sample Input 2 Sample Output 2

5 5

_ _ _ _ _

|_ _ |_ |

| _| | _|

| |_ _| |

| _ _ |

|_|_ _ _|_|

7

4 4

1 4

3 1

4 5

1 2

2 2

5 4

43

Problem D: unum modo platea

In the country of Via, the cities are connected by roads that can be used in both directions.
However, this has been the cause of many accidents since the lanes are not separated: The
drivers frequently look at their smartphones while driving, causing them to collide with the
oncoming traffic. To alleviate the problem, the politicians of Via came up with the magnificent
idea to have one-way roads only, i.e., the existing roads are altered such that each can be only
used in one of two possible directions. They call this “one-way-ification”.

The mayors do not want too many one-way roads to lead to their cities because this can cause
traffic jam within the city: they demand that the smallest integer d be found such that there is a
‘one-way-ification’ in which for every city, the number of one-way roads leading to it is at most
d.

Input

The input consists of:

• one line with an integer n (1 ≤ n ≤ 500), where n is the number of cities labeled from 1

to n;

• one line with an integer m (0 ≤ m ≤ 2.5 · 103), where m is the number of (bi-directional)

roads;

• m lines describing the roads. Each road is described by:

– one line with two integers a and b (1 ≤ a, b ≤ n, a 6= b) indicating a road between

cities a and b.

There is at most one road between two cities.

Output

Output the minimum number d.

Sample Input 1 Sample Output 1

2

1

1 2

1

Sample Input 2 Sample Output 2

4

5

1 2

1 3

2 3

2 4

3 4

2

GCPC 2016 Problem F: One-Way Roads 13

Problem E: Why is this cable not longer?

Adam just moved into his new apartment and simply placed everything into it at random. This
means in particular that he did not put any effort into placing his electronics in a way that each
one can have its own electric socket.

Since the cables of his devices have limited reach, not every device can be plugged into every
socket without moving it first. As he wants to use as many electronic devices as possible right
away without moving stuff around, he now tries to figure out which device to plug into which
socket. Luckily the previous owner left behind a plugbar which turns one electric socket into 3.

Can you help Adam figure out how many devices he can power in total?

Input

The input consists of:

• one line containing three integers m, n and k, where

– m (1 ≤ m ≤ 1 500) is the number of sockets;

– n (1 ≤ n ≤ 1 500) is the number of electronic devices;

– k (0 ≤ k ≤ 75 000) is the number of possible connections from devices to sockets.

• k lines each containing two integers xi and yi indicating that socket xi can be used to

power device yi.

Sockets as well as electronic devices are numbered starting from 1.

The plugbar has no cable, i.e. if it is plugged into a socket it simply triples it.

Output

Output one line containing the total number of electrical devices Adam can power.

Sample Input 1 Sample Output 1

3 6 8

1 1

1 2

1 3

2 3

2 4

3 4

3 5

3 6

5

Sample Input 2 Sample Output 2

4 5 11

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

4 4

4 5

5

Sample Input 3 Sample Output 3

3 5 7

1 1

1 2

2 2

2 3

2 4

3 4

3 5

5

Problem F: Those who trespass against us

Somewhere in the great North American plains live the tribes of chiefs Blue Eagle, Red Beaver,
and Green Serpent. Their population is scattered over numerous villages all over the land and
conflict arises whenever members of different tribes meet while traveling across the plains.

To put an end to the constant animosities the chiefs have decided that the land should be divided
between the tribes so that they can avoid each other when moving between villages belonging to
the same tribe. More precisely, they want to construct two border fences – thus dividing the land
into three regions – such that two villages lie in the same region precisely when they belong to
the same tribe.

The villages are represented by points in the Euclidean plane that are colored blue, red or green,
depending on the tribe, and the fences should be drawn in the form of two
polygons. The polygons may not touch or intersect themselves or each other and none of the
points may lie on their boundary. (Make sure to read the constraints in the Output section!)

Figure A.1: Illustration of the sample.

Input

The input consists of:

• one line with an integer n (3 ≤ n ≤ 100), the number of villages.

• n lines, each with three integers x, y, c (−1 000 ≤ x, y ≤ 1 000, 1 ≤ c ≤ 3), representing

a village at coordinates (x, y) of color c (1 = blue, 2 = red, 3 = green). All positions are

unique. There is at least one village of each color.

Output

If there is no solution, print impossible. Otherwise, print the two polygons in the following

format:

• one line with an integer m (3 ≤ m ≤ 1 000), the number of vertices of the polygon.

• m lines, each with two real numbers x, y (−3 000 ≤ x, y ≤ 3 000), the vertices of the

polygon in either clockwise or counter-clockwise order. The numbers may be given with

up to five decimal places (additional places will be rounded off).

Sample Input 1 Sample Output 1

6

0 0 2

0 1 1

1 0 1

1 1 3

2 0 3

2 1 2

4

-0.3 1.0

1.0 -0.3

1.3 0.0

0.0 1.3

4

0.7 1.0

2.0 -0.3

2.3 0.0

1.0 1.3

Problem G: Patent Claims
The year is 1902. Albert Einstein is working in the patent office in Bern. Many patent proposals
contain egregious errors; some even violate the law of conservation of energy. To make matters
worse, the majority of proposals make use of non-standard physical units that are not part of the
metric system (or not even documented). All proposals are of the following form:

• Every patent proposal contains n energy converters.

• Every converter has an unknown input energy unit associated with it.

• Some energy converters can be connected: If converter a can be connected to converter b

such that one energy unit associated with a is turned into c input units for b, then this is

indicated by an arc a
c

−→ b in the proposal. The output of a can be used as input for b if

and only if such an arc from a to b exists.

Einstein would like to dismiss all those proposals out of hand where the energy converters can

be chained up in a cycle such that more energy is fed back to a converter than is given to it as

input, thereby violating the law of conservation of energy.

Einstein’s assistants know that he is born for higher things than weeding out faulty patent

proposals. Hence, they take care of the most difficult cases, while the proposals given to Einstein

are of a rather restricted form: Every admissible patent proposal given to Einstein does not allow

for a cycle where the total product of arc weights exceeds 0.9. By contrast, every inadmissible

patent proposal given to Einstein contains a cycle where the the number of arcs constituting the

cycle does not exceed the number of converters defined in the proposal, and the total product of

arc weights is greater or equal to 1.1.

Could you help Einstein identify the inadmissible proposals?

Input

The input consists of:

• one line with two integers n and m, where

– n (2 ≤ n ≤ 800) is the number of energy converters;

– m (0 ≤ m ≤ 4000) is the number of arcs.

• m lines each containing three numbers ai, bi, and ci, where

– ai and bi (1 ≤ ai, bi ≤ n) are integers identifying energy converters;

– ci (0 < ci ≤ 5.0) is a decimal number

indicating that the converter ai can be connected to the converter bi such that one input

unit associated with ai is converted to ci units associated with bi. The number ci may have

up to 4 decimal places.

Output

Output a single line containing inadmissible if the proposal given to Einstein is inadmissi-

ble, admissible otherwise.

Sample Input 1 Sample Output 1

2 2

1 2 0.5

2 1 2.3

inadmissible

Sample Input 2 Sample Output 2

2 2

1 2 0.5

2 1 0.7

admissible

Problem H: Keychain Shuffle
When Julia was a child, she just had one key for her

savings box. But with greater age comes greater respon-

sibility. Today, she owns n distinct keys: one for her

apartment, her mail box, her car, her secret box filled

with chocolate bars, and so on. It got to a point where it

sometimes becomes a hassle to find the right key when-

ever she needs to open a lock. Luckily, Julia owns a

metallic ring which serves as her key chain. In order to

find her keys quicker, she always keeps her n distinct

keys in the exact same order on the key chain. Last night, however, Julia’s sister Anna was

bored and started playing around with Julia’s key chain. Unfortunately, the keys were not in the

original order when she handed the key chain back to Julia. Annoyed by this childish behaviour,

Julia started detaching and reattaching keys from her key chain that seemed to be in a wrong

position. Now she wonders what the minimum number of keys is that she needs to detach and

reattach from her key chain in order to reestablish the correct order. Note that it does not matter

to Julia whether she reestablishes the correct order in clockwise or counterclockwise order as

she can always flip around her key chain.

Did you know that . . . ?

. . . shortly before the maiden voyage of the RMS Titanic, the seaman who kept the

keys to the storage locker containing the binoculars intended for use by the crow’s

nest lookout was removed from its command roster? Due to his hasty departure, he

accidentally kept the key, and the absence of any binoculars within the crow’s nest is

believed to be one of the main contributory factors in the Titanic’s ultimate demise.

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 1 000), the number of keys on Julia’s key chain. All

keys are distinct and have a unique label ranging from 1 to n.

• One line with n integers k1, . . . , kn (1 ≤ ki ≤ n for all i), the original order of Julia’s keys

on her key chain that she wants to reestablish. All keys in the original order are distinct,

i.e., k1, . . . , kn form a permutation of [n].

• One line with n integers ℓ1, . . . , ℓn (1 ≤ ℓi ≤ n for all i), the order of Julia’s keys on her

key chain after Anna has played with them. All keys in the modified order are distinct,

i.e., ℓ1, . . . , ℓn form a permutation of [n].

Output

Output a single integer z where z is the minimum number of detach/reattach operations necessary

to reestablish the correct order.

Sample Input 1 Sample Output 1

3

1 3 2

2 3 1

0

Problem K: Daily Dividend
David is a young boy and he loves numbers. Recently he learned how to divide two numbers.
David divides the whole day. He is happy if the result of the division is an integer, but he is not
very amused if this is not the case. After quite a while he decided to use only a single dividend
each day.

The parents of David are very careful and they would like to ensure that David experiences
enough happiness. Therefore they decide which number David will use as the dividend for this
day.

There is still a problem: The parents are not very good at math and don’t know how to calculate

the number of positive integral divisors for a given dividend N , which lead to an integral result.

Now it’s up to you to help David’s parents.

Input

The single input line contains the single integer N , where N is chosen as a dividend (1 ≤ N ≤ 1018).

Output

Print the number of positive integral divisors of N that lead to an integral result of the division.

Sample Input 1 Sample Output 1

12 6

Sample Input 2 Sample Output 2

999999999999999989 2

Sample Input 3 Sample Output 3

100000007700000049 4

Problem L: Hiking Preparations
The Chilean Andes have become increasingly popular as a destination for backpacking and
hiking. Many parts of the Andes are quite remote and thus dangerous. Because of this, the
Ministry of Tourism wants to help travelers plan their trips. In particular, the travelers need to
know how high they will have to climb during their journey, as this information will help them
decide which equipment they need to bring. The Ministry has tasked you to provide the aspiring
mountaineers with this data.

You are given a topographic map of a part of the Andes, represented as a two-dimensional grid
of height values, as well as the list of origins and destinations. Mountaineers can move from
each grid cell to any of the four adjacent cells. For each mountaineer find the minimal height
that they must be able to reach in order to complete their journey.

Input

The input consists of:

• one line with three integers m,n and q (1 ≤ m,n ≤ 500, 1 ≤ q ≤ 10
5), where m is the

number of rows, n is the number of columns, and q is the number of mountaineers;

• m lines, each with n integers h1, . . . , hn (1 ≤ hi ≤ 10
6), the height values in the map;

• q lines, each with four integers x1, y1, x2, y2 (1 ≤ x1, x2 ≤ m, 1 ≤ y1, y2 ≤ n), describing

a mountaineer who wants to trek from (x1, y1) to (x2, y2).

The top left cell of the grid has coordinates (1, 1) and the bottom right cell has coordinates

(m,n).

Output

Output q integers, the minimal height for each mountaineer, in the same order as in the input.

Sample Input 1 Sample Output 1

3 5 3

1 3 2 1 3

2 4 5 4 4

2 1 3 2 2

1 1 3 2

2 4 2 2

1 4 3 4

2

4

3

Problem M: Train Reversal

Did you know that . . . ?

. . . to the rest of the world,

Germans have a reputation for

being punctual? Yet when it

comes to the country’s train

system, passengers experience

shocking delays.

The German train services have a problem. Due to construc-

tion errors, they are not able to reverse the order of a train in

place once it is on the railway. This means that currently trains

enter stations either forwards or backwards at random. This fre-

quently leads to chaos, e.g. when people with seat reservations

try to find their seat. But isn’t there a better solution?

Assume a train is currently at a certain train station with the

coaches in some order. What is the shortest way to route this

train through the railway system in such a manner that it arrives back at that same station but

with the reverse order of coaches? Each station has two opposite sides at which tracks lead to

other stations. Trains can drive in either direction. When a train leaves a station at the same side

it arrived, the direction of driving is reversed. When it leaves at the opposite side, the direction

of driving stays the same.

Station 1 Station 2

Figure A.1: Illustration of Sample Input 1.

Input

The input consists of:

• One line with two integers n and m (2 ≤ n ≤ 2 · 105; 1 ≤ m ≤ 2 · 105) where n is the

number of stations and m the number of tracks connecting the stations. The stations are

numbered from 1 to n and each station has two sides 1 and 2.

• m lines, each with five integers as, at, bs, bt and ℓ (1 ≤ as, bs ≤ n; 1 ≤ at, bt ≤ 2;

1 ≤ ℓ ≤ 10
9). This means that stations as and bs are connected by a track which connects

to side at of station as and to side bt of station bs. The length of the track is ℓ kilometres.

• One line with an integer t (1 ≤ t ≤ n) giving the station the train is in at the moment.

Railway connections are bidirectional and every existing connection is listed exactly once in the

input. No station has a direct connection to itself (as 6= bs). The railway network is connected,

which means that there is a path between every pair of stations.

Output

In case there is no route which reverses the train, output impossible. Otherwise, output the

minimum possible length of such a route in kilometres.

Sample Input 1 Sample Output 1

2 2

1 2 2 1 1

2 1 1 1 4

1

5

Sample Input 2 Sample Output 2

2 1

1 2 2 1 1

1

impossible

Sample Input 3 Sample Output 3

4 5

1 2 2 1 1

2 2 3 1 1

3 2 1 1 1

2 1 4 2 2

4 1 1 1 3

1

6

Problem N: Is this a detour?
Every day you drive to work using the same roads as it is the shortest way. This is efficient, but
over time you have grown increasingly bored of seeing the same buildings and junctions every
day. So you decide to look for different routes. Of course you do not want to sacrifice time, so
the new way should be as short as the old one. Is there another way that differs from the old one
in at least one street?

Input

The first line of the input starts with three integers N M and K, where N is the number of
junctions and M is the number of streets in your city, and K is the number of junctions you pass
every day (1 ≤ K ≤ N ≤ 10 000, 0 ≤ M ≤ 1 000 000).
The next line contains K integers, the (1-based) indices of the junctions you pass every day. The
first integer in this line will always be 1, the last integer will always be N . There is a shortest
path from 1 to N along the K junctions given.

M lines follow. The i-th of those lines contains three integers ai bi ci and describes a street from
junction ai to junction bi of length ci (1 ≤ ai, bi ≤ N , 1 ≤ ci ≤ 10 000). Streets are always
undirected.

Note that there may be multiple streets connecting the same pair of junctions. The shortest path
given uses for every pair of successive junctions a and b a street of minimal length between a
and b.

Output

Print one line of output containing “yes” if there is another way you can take without losing
time, “no” otherwise.

Sample Input 1 Sample Output 1

3 3 3

1 2 3

1 2 1

2 3 2

1 3 3

yes

Sample Input 2 Sample Output 2

4 5 2

1 4

1 2 2

2 4 1

1 3 1

3 4 2

1 4 2

no

Problem O: Professor Toving Liles
The computer science Professor Toving Liles loves the floor tiles in his office so much that he
wants to protect them from damage by careless students. Therefore, he would like to buy cheap
small rectangular carpets from the supermarket and cover the floor such that:

1. The entire floor is covered.

2. The carpets do not overlap.

3. The carpets are rotated arbitrarily.

4. No carpet is cut into pieces.

But when checking the supermarket’s stock he begins to wonder whether he can accomplish his

plan at all. Can you help him?

Input

The first line contains two integers W and H describing the size of his room (1 ≤ W,H ≤ 100).

The second line contains an integer c, denoting the number of different carpet colors the

supermarket has in stock (1 ≤ c ≤ 7).

Each of the following c lines consists of three integers ai, wi, and hi, which means: the

supermarket’s stock contains ai carpets of size wi, hi and color i (1 ≤ ai ≤ 7; 1 ≤ wi ≤ 100;

1 ≤ hi ≤ 100).

The supermarket has at most 7 carpets, i.e.
∑

i
ai ≤ 7.

Output

For the given room dimensions and the supermarket’s stock of carpets, print “yes” if it is

possible to cover the room with carpets as specified above and “no” otherwise.

Sample Input 1 Sample Output 1

2 4

2

3 1 3

2 2 1

yes

Sample Input 2 Sample Output 2

100 100

3

4 42 42

1 100 16

1 32 42

no

Problem P: Assistant to the Regional Manager
In One Road City the grocery store chain Great Buy has a monopoly. As the city’s name implies,
it conveniently consists of only Smith Street, a single street forming a straight line. There are
k houses along the street with given coordinates. There are also n grocery stores belonging to
chain Great Buy.

The grocery chain Bestworld wants to break the monopoly and you, as assistant to the
regional manager, are sanctioned to open up to m stores in the city.

Did you know that . . . ?

. . . the famous board

game Monopoly has its

roots in an early 20th

century precursor called

The Landlord’s Game,

which was created by

Lizzie Magie and intended

to be social criticism?

Studies show that shoppers are lazy and will always go to the store

closest to their home. If the distance is equal, they will go to the

store they are more familiar with (in our case Great Buy).

With an optimal placement of stores, how many households can you

win as new customers?

You may place stores anywhere, including already occupied or non-

integer coordinates.

Input

The input consists of:

• One line with three integers k, n and m (1 ≤ k, n,m ≤ 10
6 and k+n+m ≤ 10

6), where

k is the number of houses, n is the number of stores belonging to Great Buy, and m is the

number of stores chain Bestworld can open.

• One line with k integers h1, . . . , hk (0 ≤ hi ≤ 10
6 for each i), the positions of the houses.

• One line with n integers b1, . . . , bn (0 ≤ bi ≤ 10
6 for each i), the positions of Great Buy

stores.

No two entities in the input (stores or houses) are at the same position.

Output

Output the number of houses that are closer to a Bestworld store than to a Great Buy store if you

place the stores optimally.

Sample Input 1 Sample Output 1

10 2 2

1 3 4 5 6 7 8 9 11 12

2 10

7

Sample Input 2 Sample Output 2

10 2 2

1 2 3 4 6 7 8 9 21 22

5 10

7

Sample Input 3 Sample Output 3

3 2 1

6 8 7

9 5

2

Problem Q: A Stingy Park Visit
It is another wonderful sunny day in July – and you decided to spend your day together with
your little daughter Joy. Since she really likes the fairy-park in the next town, you decided to go
there for the day. Your wife (unfortunately she has to work) agreed to drive you to the park and
pick you up again. Alas, she is very picky about being on time, so she told you exactly when
she will be at the park’s front entrance to pick you up and you have to be there at exactly that
time. You clearly also don’t want to wait outside, since this would make your little daughter sad
– she could have spent more time in the park!

Now you have to plan your stay at the park. You know when you will arrive and when you will
have to depart. The park consists of several rides, interconnected by small pavements. The entry
into the park is free, but you have to pay for every use of every ride in the park. Since it is Joy’s
favorite park, you already know how long using each ride takes and how much each ride costs.
When walking through the park, you obviously must not skip a ride when walking along it (even
if Joy has already used it), or else Joy would be very sad. Since Joy likes the park very much,
she will gladly use rides more than once. Walking between two rides takes a given amount of
time.

Since you are a provident parent you want to spend as little as possible when being at the park.
Can you compute how much is absolutely necessary?

Input

The input consists of:

• one line with an integer x (1 ≤ x ≤ 1 000) denoting the time between your arrival and the

time you will be picked up (in minutes);

• one line with with three integers n, m, and t, where

– n (1 ≤ n ≤ 1 000) is the number of rides in the park;

– m (1 ≤ m ≤ 1 000) is the number of pavements;

– t (1 ≤ t ≤ 1 000) is the number of minutes needed to pass over a pavement from

one ride to another.

• m lines each containing two integers a and b (1 ≤ a, b ≤ n) stating that there is a pavement

between the rides a and b.

• n lines each containing two integers t and p (1 ≤ t, p ≤ 10
6) stating that the corresponding

ride takes t minutes and costs p Euro.

You always start at ride 1 and have to return to ride 1 at the end of your stay, since the entry is

located there. This means that you have to use the ride 1 at least twice (once upon entry and

once upon exit). You can take a ride more than once, if you have arrived at it.

Output

Output one line containing either a single integer, the minimum amount necessary to stay x

minutes in the park, or It is a trap. (including the period) if it is not possible to stay

exactly x minutes.

Sample Input 1 Sample Output 1

4

4 4 1

1 2

2 3

3 4

4 1

1 2

2 1

5 4

3 3

8

Sample Input 2 Sample Output 2

6

4 4 1

1 2

2 3

3 4

4 1

1 2

2 1

5 4

3 3

5

	very_easy_helpless_humans
	sem-pc20_problems

