

Exact Algorithms

Sommer Term 2020

Lecture 12 Iterative Compression

Based on: [Parameterized Algorithms: §4, 4.1, 4.2]

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Alexander Wolff

Lehrstuhl für Informatik I

Iterative Compression

Idea: Is it useful for an exact algorithm to start from a

near-optimal solution?

Idea: Greedy algorithms do not solve NP-hard problems exactly, but might give us an incremental approach.

k-Vertex Cover

Given: Graph G = (V, E)

Parameter: Integer k

Question: Does G have a vertex cover of size $\leq k$?

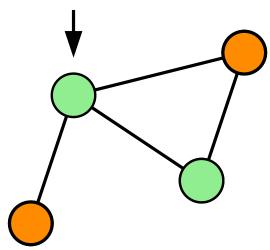
Vertex Cover

Vertex Cover with 2 vertices?

3 is easy...

But does 2 work?

Need to use other vertices!



VERTEX COVER COMPRESSION

Given: Graph G = (V, E), number k,

vertex cover $C \subseteq V$ with |C| = k+1,

Find: Vertex cover $X \subseteq V$ with |X| = k,

or answer: No.

Complexity of Vertex Cover Compression? Not in *P*, otherwise Vertex Cover in *P*!

Vertex Cover by Compression

- Start with a k-vertex subgraph. In such a graph, k-vertex cover is trivial :-)
- Add an unvisited vertex to our graph and our vertex cover.

 This yields a (k + 1)-vertex cover.

 Compress to a k-vertex cover, or answer: No.
 - **3** Profit

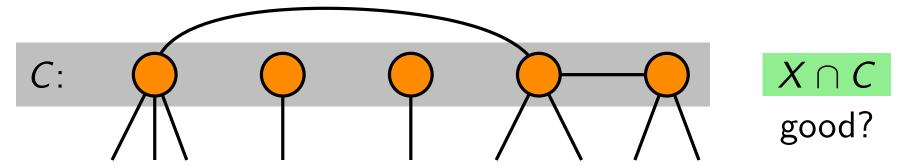
Runtime: O(n) compression steps.

Vertex Cover Compression

Given: Vertex cover C, |C| = k + 1

Find: Vertex cover X, |X| = k

Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C$, X is unique.



Note: $X \cap C$ is valid if

- $C \setminus X$ is independent
- $|(X \cap C) \cup N(C \setminus X)| \leq k$

Runtime: $< 2^k$ options for $X \cap C$; polytime for each one

Runtime for Vertex Cover: $O^*(2^k)$

Dominating Set

Dominating Set (Compression)

Given: Graph G = (V, E), number k,

dominating set $D \subseteq V$, |D| = k + 1

Find: Dominating set $X' \subseteq V$, |X'| = k,

or answer: No

Complexity of Dominating Set (Compression)?

Not FPT in k since Dominating Set is not FPT in k!

FVS in Tournaments

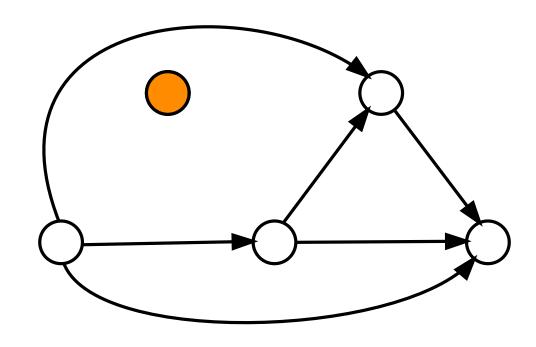
FEEDBACK VERTEX SET (TOURNAMENTS)

-oriented clique

Given: Tournament T = (V, E), number k

Question: $\exists X \subseteq V$ such that $|X| \leq k$ and

 $T[V \setminus X]$ is acyclic?



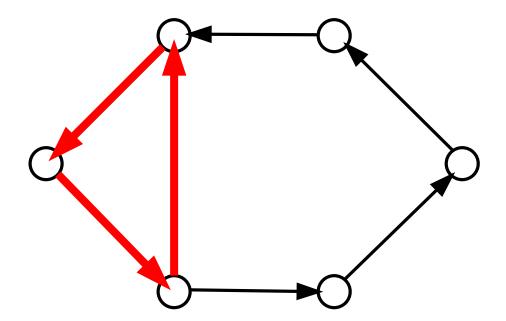
Cycles in Tournaments

Lemma.

A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Can we use this lemma algorithmically? FVS must contain ≥ 1 vertex of each 3-cycle.

Algorithm: Branch (1, 1, 1).



Theorem. FVS in Tournaments can be solved in $O^*(3^k)$ time.

FVS in Tournaments

FVS (Tournaments) Compression

Given: Tournament T = (V, E), number k,

feedback vertex set $S \subseteq V$ with $|S| \le k+1$

Question: $\exists X \subseteq V$ so that $|X| \le k$ and $T \setminus X$ is acyclic?

Strategy: Fix $X \cap S$. Let $R = X \cap S$ and $F = S \setminus X$.

Then: delete R and forbid F.

DISJOINT FVS (TOURNAMENTS) COMPRESSION

Given: Tournament T' = (V', E'), number k',

feedback vertex set $S' \subseteq V$ with $|S'| \leq k' + 1$

Question: $\exists X \subseteq V' \setminus S'$ so that $|X| \le k'$ and T' - X is acyclic?

Reduction: FVS-T COMP. by 2^k calls to DISJ.-FVS-T COMP. For each call, set T' := T - R, S' := F, k' := |F| - 1.

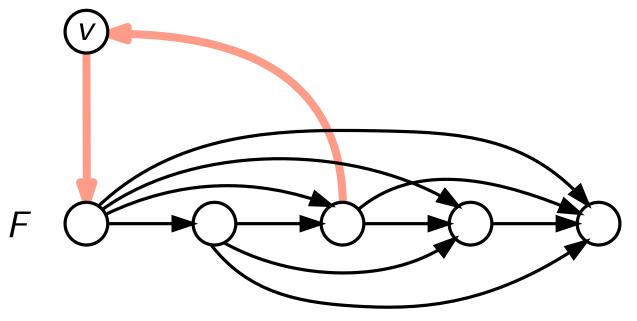
Disjoint FVS in Tournaments

Reduction Rule: If T'[F] is not acyclic, answer: No.

Obs. Acyclic tournaments have a total order on vertices.

Let $A := V' \setminus F$ be the set of *chooseable* vertices.

Reduction Rule: Let $v \in A$. If $T'[F \cup \{v\}]$ is not acyclic, then delete v and set $k' \leftarrow k' - 1$.



Disjoint FVS in Tournaments (cont'd)

$$T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$$

 $F: \qquad {}^{0}\bigcirc{}^{1}\bigcirc{}^{2}\bigcirc{}^{3}\bigcirc{}^{4}\bigcirc{}^{5} \qquad R: \qquad \bigcirc$

Find: longest monotonically increasing subsequence

easy DP exercise for polytime

: X:

0 3 1 2 2 5 2

Q: Why is A acyclic, too??

Find: minimum FVS $X \subseteq A$ of $T[F \cup A]$ $\Rightarrow X \cup R$ is a FVS of T!

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$.

Iteratively add vertices:

n-k

Partial graph gains a vertex, and so does S; now $|S| \le k + 1$.

// Compress using DISJ. FVS-T COMPRESSION: $O(2^k)$

For each $F \subseteq S$:

Remove $R_F = S \setminus F$.

poly(n)

Apply reduction rules.

Compute longest increasing subsequence

via labels defined before.

 \rightsquigarrow min. FVS X_F of $T[F \cup A]$

If some set X_F fulfills $|X_F| + |R_F| \le k$, then $S \leftarrow X_F \cup R_F$. Otherwise, answer No.

Theorem. FVS in Tournaments can be solved in $O^*(2^k)$ time.

FVS in general graphs

Theorem. FVS has a kernel with $O(k^2)$ vertices and edges. see Parameterized Algorithms §9.1

Kernel brute-force \rightsquigarrow runtime ... $2^{O(k^2)}$ poly(n)

Iterative Compression $\rightsquigarrow O^*(5^k)$ time see Parameterized Algorithms §4.3

Current "best" algorithm: $O^*(3^k)$ randomised (Monte Carlo) see Parameterized Algorithms §11.2.1

Lemma. If FVS $\leq k$, then treewidth $\leq k+1$.

Summary: Iterative Compression

- Show: (PROBLEM) solvable if (PROBLEM)-COMPRESSION solvable
- Show: (Problem)-Compression solvable if Disjoint-(Problem) solvable
- Solve: DISJOINT-(PROBLEM) (This is the hard part!)

What makes the Disjoint-(Problem) easier?

- Size-(k + 1) solution Y is given.
- Complement of Y has special properties (here: acyclic).
- Splitting $Y = F \cup R$ implies special properties of F (here: acyclic).