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Iterative Compression

Greedy algorithms do not solve NP-hard problems
exactly, but might give us an incremental approach.

Is it useful for an exact algorithm to start from a
near-optimal solution?

k-Vertex Cover
Given: Graph G = (V ,E )
Parameter: Integer k
Question: Does G have a vertex cover of size ≤ k?

Idea:

Idea:
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Vertex Cover

Vertex Cover with 2 vertices?

3 is easy...

But does 2 work?

Vertex Cover Compression

Given: Graph G = (V ,E ), number k,
vertex cover C ⊆ V with |C | = k+1,

Find: Vertex cover X ⊆ V with |X | = k,
or answer: No.

Complexity of Vertex Cover Compression?

Need to use other vertices!

Not in P, otherwise Vertex Cover in P!
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In such a graph, k-vertex cover is trivial :-)

Add an unvisited vertex to our graph and our vertex cover.

This yields a (k + 1)-vertex cover.
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Vertex Cover by Compression

Start with a k-vertex subgraph.

In such a graph, k-vertex cover is trivial :-)

Add an unvisited vertex to our graph and our vertex cover.

This yields a (k + 1)-vertex cover.

Compress to a k-vertex cover

Profit

Runtime: O(n) compression steps.

, or answer: No.

1

2

3
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Vertex Cover Compression

Given: Vertex cover C , |C | = k + 1
Find: Vertex cover X , |X | = k

Strategy: Fix X ∩ C , i.e., determine what to keep from C .

C :

V \ C :

? C is a vertex cover
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Vertex Cover Compression

Given: Vertex cover C , |C | = k + 1
Find: Vertex cover X , |X | = k

Strategy: Fix X ∩ C , i.e., determine what to keep from C .

C : X ∩ C

good?

X ∩ C is valid if

• C \ X is independent
• |(X ∩ C ) ∪ N(C \ X )| ≤ k

Runtime: < 2k options for X ∩ C ; polytime for each one

Runtime for Vertex Cover: O∗(2k)

For each potential X ∩ C , X is unique.

Note:
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dominating set D ⊆ V , |D| = k + 1

Find: Dominating set X ′ ⊆ V , |X ′| = k,
or answer: No
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Dominating Set

Dominating Set (Compression)

Given: Graph G = (V ,E ), number k,
dominating set D ⊆ V , |D| = k + 1

Find: Dominating set X ′ ⊆ V , |X ′| = k,
or answer: No

Complexity of Dominating Set (Compression)?

Not FPT in k since Dominating Set is not FPT in k!
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Feedback Vertex Set (Tournaments)

Given: Tournament T = (V ,E ), number k
Question: ∃ X ⊆ V such that |X | ≤ k and

T [V \ X ] is acyclic?
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Lemma.

Branch (1, 1, 1).
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Cycles in Tournaments

A tournament contains a cycle ⇔
it contains a length-3 cycle.

Can we use this lemma algorithmically?
FVS must contain ≥ 1 vertex of each 3-cycle.

Algorithm:

FVS in Tournaments can be solved in O∗(3k) time.

Lemma.

Theorem.

Branch (1, 1, 1).
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FVS (Tournaments) Compression

Given: Tournament T = (V ,E ), number k,
feedback vertex set S ⊆ V with |S | ≤ k + 1

Question: ∃ X ⊆ V so that |X | ≤ k and T \ X is acyclic?
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FVS in Tournaments

FVS (Tournaments) Compression

Given: Tournament T = (V ,E ), number k,
feedback vertex set S ⊆ V with |S | ≤ k + 1

Question: ∃ X ⊆ V so that |X | ≤ k and T \ X is acyclic?

Fix X ∩ S . Let R = X ∩ S and F = S \ X .

Disjoint FVS (Tournaments) Compression

Given: Tournament T ′ = (V ′,E ′), number k ′,
feedback vertex set S ′ ⊆ V with |S ′| ≤ k ′ + 1

Question: ∃X ⊆V ′\S ′ so that |X |≤k ′ and T ′−X is acyclic?

Then: delete R and

Reduction: FVS-T Comp. by 2k calls to Disj.-FVS-T Comp.

Strategy:
forbid F .

For each call, set T ′ :=T−R, S ′ :=F , k ′ := |F |−1.
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Disjoint FVS in Tournaments

Reduction Rule: If T ′[F ] is not acyclic, answer: No.
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Disjoint FVS in Tournaments

Obs. Acyclic tournaments have a total order on vertices.

Reduction Rule:

Let A := V ′ \ F be the set of chooseable vertices.

Let v ∈ A. If T ′[F ∪ {v}] is not acyclic,
then delete v and set k ′ ← k ′ − 1.

F

If T ′[F ] is not acyclic, answer: No.

Reduction Rule:
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Disjoint FVS in Tournaments

Obs. Acyclic tournaments have a total order on vertices.

Reduction Rule:

Let A := V ′ \ F be the set of chooseable vertices.

Let v ∈ A. If T ′[F ∪ {v}] is not acyclic,
then delete v and set k ′ ← k ′ − 1.

v

F

If T ′[F ] is not acyclic, answer: No.

Reduction Rule:
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Disjoint FVS in Tournaments (cont’d)

A:

T = (V ,E ), S = F ·∪ R is FVS, A = V \ S

S :
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Disjoint FVS in Tournaments (cont’d)

F :

A:

R:

removed

T = (V ,E ), S = F ·∪ R is FVS, A = V \ S
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Disjoint FVS in Tournaments (cont’d)

F :

A:

T = (V ,E ), S = F ·∪ R is FVS, A = V \ S

was removed by reduction rule

Q: Why is A
acyclic, too??
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Disjoint FVS in Tournaments (cont’d)

F :

A:

0 1 3 4 5

T = (V ,E ), S = F ·∪ R is FVS, A = V \ S

230 1 2 5 2 5

2

Q: Why is A
acyclic, too??
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Disjoint FVS in Tournaments (cont’d)

F :

A:

0 1 3 4 5

T = (V ,E ), S = F ·∪ R is FVS, A = V \ S

230 1 2 5 2 5

Find: minimum FVS X ⊆ A of T [F ∪ A]

2

Q: Why is A
acyclic, too??
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Disjoint FVS in Tournaments (cont’d)

F :

A:

0 1 3 4 5

T = (V ,E ), S = F ·∪ R is FVS, A = V \ S

230 1 2 5 2 5

Find: minimum FVS X ⊆ A of T [F ∪ A]

might be possible to keep both

2

Q: Why is A
acyclic, too??
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Disjoint FVS in Tournaments (cont’d)

F :

A:

0 1 3 4 5

T = (V ,E ), S = F ·∪ R is FVS, A = V \ S

230 1 2 5 2 5

Find: minimum FVS X ⊆ A of T [F ∪ A]

cannot keep both, otherwise cycle

2

Q: Why is A
acyclic, too??
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Disjoint FVS in Tournaments (cont’d)

F :

A:

0 1 3 4 5
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230 1 2 5 2 5

Find: minimum FVS X ⊆ A of T [F ∪ A]

Find: longest monotonically increasing subsequence

2
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Disjoint FVS in Tournaments (cont’d)

F :

A:

0 1 3 4 5
R:

T = (V ,E ), S = F ·∪ R is FVS, A = V \ S

230 1 2 5 2 5

Find: minimum FVS X ⊆ A of T [F ∪ A]

Find: longest monotonically increasing subsequence

X :

easy DP exercise for polytime

2

⇒ X ∪ R is a FVS of T !

Q: Why is A
acyclic, too??
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FVS in Tournaments by Compression

Start with any k-vertex subgraph Gk of G , and set S = V (Gk).

Partial graph gains a vertex, and so does S ; now |S | ≤ k + 1.

// Compress using Disj. FVS-T Compression:

Iteratively add vertices:

For each F ⊆ S :

Remove RF = S \ F .

Apply reduction rules.

Compute longest increasing subsequence

 min. FVS XF of T [F ∪ A]

If some set XF fulfills |XF |+ |RF | ≤ k, then S ← XF ∪ RF .
Otherwise, answer No.

via labels defined before.

poly(n)

O(2k)

n − k

Theorem. FVS in Tournaments can be solved in O∗(2k) time.
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FVS in general graphs

Iterative Compression  O∗(5k) time

Current “best” algorithm: O∗(3k) randomised

Lemma.

FVS has a kernel with O(k2) vertices and edges.

Kernel brute-force  runtime ... 2O(k2)poly(n)

(Monte Carlo)

see Parameterized Algorithms §4.3

see Parameterized Algorithms §11.2.1

see Parameterized Algorithms §9.1
Theorem.

If FVS ≤ k, then treewidth ≤ k + 1.
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Summary: Iterative Compression

• Show: (Problem) solvable
if (Problem)-Compression solvable

• Show: (Problem)-Compression solvable
if Disjoint-(Problem) solvable

• Solve: Disjoint-(Problem)

What makes the Disjoint-(Problem) easier?

• Size-(k + 1) solution Y is given.

• Splitting Y = F ·∪ R implies special properties of F
(here: acyclic).

• Complement of Y has special properties (here: acyclic).

(This is the hard part!)
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