UNIVERSITÄT WÜRZBURG

Exact Algorithms

Sommer Term 2020
Lecture 12 Iterative Compression
Based on: [Parameterized Algorithms: §4, 4.1, 4.2]
(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Iterative Compression

Idea: Is it useful for an exact algorithm to start from a near-optimal solution?

Iterative Compression

Idea: Is it useful for an exact algorithm to start from a near-optimal solution?

Idea: Greedy algorithms do not solve NP-hard problems exactly, but might give us an incremental approach.

Iterative Compression

Idea: Is it useful for an exact algorithm to start from a near-optimal solution?

Idea: Greedy algorithms do not solve NP-hard problems exactly, but might give us an incremental approach.
k-Vertex Cover
Given: \quad Graph $G=(V, E)$
Parameter: Integer k
Question: \quad Does G have a vertex cover of size $\leq k$?

Vertex Cover

Vertex Cover with 2 vertices?

Vertex Cover

Vertex Cover with 2 vertices?

Vertex Cover

Vertex Cover with 2 vertices?

Vertex Cover

Vertex Cover with 2 vertices?

Vertex Cover

Vertex Cover with 2 vertices?
3 is easy...

Vertex Cover

Vertex Cover with 2 vertices?
3 is easy...

Vertex Cover

Vertex Cover with 2 vertices?
3 is easy...

Vertex Cover

Vertex Cover with 2 vertices?
3 is easy...
But does 2 work?

Vertex Cover

Vertex Cover with 2 vertices?
3 is easy...
But does 2 work?

Need to use other vertices!

Vertex Cover

Vertex Cover with 2 vertices?
3 is easy...
But does 2 work?

Need to use other vertices!

Vertex Cover Compression
Given: Graph $G=(V, E)$,
vertex cover $C \subseteq V$ with $|C|=3$,
Find: \quad Vertex cover $X \subseteq V$ with $|X|=2$, or answer: No.

Vertex Cover

Vertex Cover with 2 vertices?
3 is easy...
But does 2 work?

Need to use other vertices!

Vertex Cover Compression
Given: Graph $G=(V, E)$,
vertex cover $C \subseteq V$ with $|C|=3$,
Find: Vertex cover $X \subseteq V$ with $|X|=2$, or answer: No.

Vertex Cover

Vertex Cover with 2 vertices?
3 is easy...
But does 2 work?

Need to use other vertices!

Vertex Cover Compression
Given: Graph $G=(V, E)$, number k, vertex cover $C \subseteq V$ with $|C|=k+1$,
Find: Vertex cover $X \subseteq V$ with $|X|=k$, or answer: No.

Vertex Cover

Vertex Cover with 2 vertices?
3 is easy...
But does 2 work?

Need to use other vertices!

Vertex Cover Compression
Given: Graph $G=(V, E)$, number k, vertex cover $C \subseteq V$ with $|C|=k+1$,
Find: Vertex cover $X \subseteq V$ with $|X|=k$, or answer: No.

Complexity of Vertex Cover Compression?

Vertex Cover

Vertex Cover with 2 vertices?
3 is easy...
But does 2 work?

Need to use other vertices!

Vertex Cover Compression
Given: Graph $G=(V, E)$, number k, vertex cover $C \subseteq V$ with $|C|=k+1$,
Find: Vertex cover $X \subseteq V$ with $|X|=k$, or answer: No.

Complexity of Vertex Cover Compression? Not in P, otherwise Vertex Cover in P!

Vertex Cover by Compression

1 Start with a k-vertex subgraph.

Vertex Cover by Compression

1
Start with a k-vertex subgraph.
In such a graph, k-vertex cover is trivial :-)

Vertex Cover by Compression

1
Start with a k-vertex subgraph.
In such a graph, k-vertex cover is trivial :-)
2

Vertex Cover by Compression

1 Start with a k-vertex subgraph.
In such a graph, k-vertex cover is trivial :-)
2

3 Profit

Vertex Cover by Compression

1 Start with a k-vertex subgraph.
In such a graph, k-vertex cover is trivial :-)
2 Add an unvisited vertex to our graph and our vertex cover.

3 Profit

Vertex Cover by Compression

1 Start with a k-vertex subgraph.
In such a graph, k-vertex cover is trivial :-)
2 Add an unvisited vertex to our graph and our vertex cover.
This yields a $(k+1)$-vertex cover.

3 Profit

Vertex Cover by Compression

1 Start with a k-vertex subgraph.
In such a graph, k-vertex cover is trivial :-)
2 Add an unvisited vertex to our graph and our vertex cover.
This yields a $(k+1)$-vertex cover.
Compress to a k-vertex cover
3 Profit

Vertex Cover by Compression

1 Start with a k-vertex subgraph.
In such a graph, k-vertex cover is trivial :-)
2 Add an unvisited vertex to our graph and our vertex cover.
This yields a $(k+1)$-vertex cover.
Compress to a k-vertex cover
3 Profit

Vertex Cover by Compression

1 Start with a k-vertex subgraph.
In such a graph, k-vertex cover is trivial :-)
2 Add an unvisited vertex to our graph and our vertex cover.
This yields a $(k+1)$-vertex cover.
Compress to a k-vertex cover, or answer: No.
3 Profit

Vertex Cover by Compression

1 Start with a k-vertex subgraph.
In such a graph, k-vertex cover is trivial :-)
2 Add an unvisited vertex to our graph and our vertex cover. This yields a $(k+1)$-vertex cover.

Compress to a k-vertex cover, or answer: No.
3 Profit

Runtime: $O(n)$ compression steps.

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
Find: \quad Vertex cover $X,|X|=k$

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
 Find: \quad Vertex cover $X,|X|=k$

Strategy: Fix $X \cap C$, i.e., determine what to keep from C.

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
Find: \quad Vertex cover $X,|X|=k$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C.

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
Find: \quad Vertex cover $X,|X|=k$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C.

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
Find: \quad Vertex cover $X,|X|=k$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C.

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
Find: \quad Vertex cover $X,|X|=k$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C.

Vertex Cover Compression

$\begin{array}{ll}\text { Given: } & \text { Vertex cover } C,|C|=k+1 \\ \text { Find: } & \text { Vertex cover } X,|X|=k\end{array}$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C.

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
Find: \quad Vertex cover $X,|X|=k$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C.

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
Find: \quad Vertex cover $X,|X|=k$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C.

$X \cap C$
good?

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
Find: \quad Vertex cover $X,|X|=k$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C, X$ is unique.

Vertex Cover Compression

$\begin{array}{ll}\text { Given: } & \text { Vertex cover } C,|C|=k+1 \\ \text { Find: } & \text { Vertex cover } X,|X|=k\end{array}$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C, X$ is unique.

$X \cap C$
good?

Note: $X \cap C$ is valid if

- $C \backslash X$ is independent

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
Find: \quad Vertex cover $X,|X|=k$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C, X$ is unique.

$X \cap C$
good?

Note: $\quad X \cap C$ is valid if

- $C \backslash X$ is independent
- $|(X \cap C) \cup N(C \backslash X)| \leq k$

Runtime:

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
Find: \quad Vertex cover $X,|X|=k$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C, X$ is unique.

$X \cap C$
good?

Note: $\quad X \cap C$ is valid if

- $C \backslash X$ is independent
- $|(X \cap C) \cup N(C \backslash X)| \leq k$

Runtime: $<2^{k}$ options for $X \cap C$; polytime for each one

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
Find: \quad Vertex cover $X,|X|=k$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C, X$ is unique.

$X \cap C$
good?

Note: $\quad X \cap C$ is valid if

- $C \backslash X$ is independent
- $|(X \cap C) \cup N(C \backslash X)| \leq k$

Runtime: $<2^{k}$ options for $X \cap C$; polytime for each one Runtime for Vertex Cover:

Vertex Cover Compression

Given: \quad Vertex cover $C,|C|=k+1$
Find: \quad Vertex cover $X,|X|=k$
Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C, X$ is unique.

$X \cap C$
good?

Note: $\quad X \cap C$ is valid if

- $C \backslash X$ is independent
- $|(X \cap C) \cup N(C \backslash X)| \leq k$

Runtime: $<2^{k}$ options for $X \cap C$; polytime for each one
Runtime for Vertex Cover: $O^{*}\left(2^{k}\right)$

Dominating Set

Dominating Set (Compression)
Given: Graph $G=(V, E)$, number k, dominating set $D \subseteq V,|D|=k+1$
Find: Dominating set $X^{\prime} \subseteq V,\left|X^{\prime}\right|=k$, or answer: No

Dominating Set

Dominating Set (Compression)
Given: Graph $G=(V, E)$, number k, dominating set $D \subseteq V,|D|=k+1$
Find: \quad Dominating set $X^{\prime} \subseteq V,\left|X^{\prime}\right|=k$, or answer: No

Complexity of Dominating Set (Compression)?

Dominating Set

Dominating Set (Compression)
Given: Graph $G=(V, E)$, number k, dominating set $D \subseteq V,|D|=k+1$
Find: \quad Dominating set $X^{\prime} \subseteq V,\left|X^{\prime}\right|=k$, or answer: No

Complexity of Dominating Set (Compression)?
Not FPT in k since Dominating Set is not FPT in k !

FVS in Tournaments

Feedback Vertex Set (Tournaments)	
Given:	Tournament $T=(V, E)$, number k
Question:	$\exists X \subseteq V$ such that $\|X\| \leq k$ and
	$T[V \backslash X]$ is acyclic?

FVS in Tournaments

Feedback Vertex Set (Tournaments) oriented clique
 Given: Tournament $T=(V, E)$, number k
 Question: $\exists X \subseteq V$ such that $|X| \leq k$ and $T[V \backslash X]$ is acyclic?

FVS in Tournaments

Feedback Vertex Set (Tournaments) oriented clique Given: Tournament $T=(V, E)$, number k
 Question: $\exists X \subseteq V$ such that $|X| \leq k$ and $T[V \backslash X]$ is acyclic?

FVS in Tournaments

Feedback Vertex Set (Tournaments) oriented clique Given: Tournament $T=(V, E)$, number k
 Question: $\exists X \subseteq V$ such that $|X| \leq k$ and $T[V \backslash X]$ is acyclic?

FVS in Tournaments

Feedback Vertex Set (Tournaments) oriented clique Given: Tournament $T=(V, E)$, number k
 Question: $\exists X \subseteq V$ such that $|X| \leq k$ and $T[V \backslash X]$ is acyclic?

Cycles in Tournaments

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Cycles in Tournaments

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Cycles in Tournaments

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Cycles in Tournaments

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Cycles in Tournaments

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Cycles in Tournaments

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Cycles in Tournaments

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Cycles in Tournaments

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Cycles in Tournaments

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Can we use this lemma algorithmically?

Cycles in Tournaments

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Can we use this lemma algorithmically? FVS must contain ≥ 1 vertex of each 3 -cycle.

Cycles in Tournaments

Lemma. A tournament contains a cycle \Leftrightarrow
it contains a length-3 cycle.
Can we use this lemma algorithmically? FVS must contain ≥ 1 vertex of each 3 -cycle.

Algorithm: Branch (1, 1, 1).

Cycles in Tournaments

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Can we use this lemma algorithmically? FVS must contain ≥ 1 vertex of each 3 -cycle.

Algorithm: Branch (1, 1, 1).

Theorem. FVS in Tournaments can be solved in $O^{*}\left(3^{k}\right)$ time.

FVS in Tournaments

FVS (Tournaments) Compression
Given: Tournament $T=(V, E)$, number k.
Question: $\quad \exists X \subseteq V$ so that $|X| \leq k$ and $T \backslash X$ is acyclic?

FVS in Tournaments

```
FVS (TournamEnts) Compression
Given: \(\quad\) Tournament \(T=(V, E)\), number \(k\), feedback vertex set \(S \subseteq V\) with \(|S| \leq k+1\)
Question: \(\quad \exists X \subseteq V\) so that \(|X| \leq k\) and \(T \backslash X\) is acyclic?
```


FVS in Tournaments

FVS (Tournaments) Compression
Given: \quad Tournament $T=(V, E)$, number k, feedback vertex set $S \subseteq V$ with $|S| \leq k+1$
Question: $\quad \exists X \subseteq V$ so that $|X| \leq k$ and $T \backslash X$ is acyclic?
Strategy: Fix $X \cap S$. Let $R=X \cap S$ and $F=S \backslash X$.

FVS in Tournaments
FVS (Tournaments) Compression
Given: \quad Tournament $T=(V, E)$, number k, feedback vertex set $S \subseteq V$ with $|S| \leq k+1$
Question: $\quad \exists X \subseteq V$ so that $|X| \leq k$ and $T \backslash X$ is acyclic?
Strategy: Fix $X \cap S$. Let $R=X \cap S$ and $F=S \backslash X$. Then:

FVS in Tournaments
FVS (Tournaments) Compression
Given: Tournament $T=(V, E)$, number k, feedback vertex set $S \subseteq V$ with $|S| \leq k+1$
Question: $\quad \exists X \subseteq V$ so that $|X| \leq k$ and $T \backslash X$ is acyclic?
Strategy: Fix $X \cap S$. Let $R=X \cap S$ and $F=S \backslash X$.
Then: delete R and

FVS in Tournaments
FVS (Tournaments) Compression
Given: Tournament $T=(V, E)$, number k, feedback vertex set $S \subseteq V$ with $|S| \leq k+1$
Question: $\quad \exists X \subseteq V$ so that $|X| \leq k$ and $T \backslash X$ is acyclic?
Strategy: Fix $X \cap S$. Let $R=X \cap S$ and $F=S \backslash X$.
Then: delete R and forbid F.

FVS in Tournaments

FVS (Tournaments) Compression

Given: Tournament $T=(V, E)$, number k, feedback vertex set $S \subseteq V$ with $|S| \leq k+1$
Question: $\exists X \subseteq V$ so that $|X| \leq k$ and $T \backslash X$ is acyclic?
Strategy: Fix $X \cap S$. Let $R=X \cap S$ and $F=S \backslash X$.
Then: delete R and forbid F.
Disjoint FVS (Tournaments) Compression
Given: \quad Tournament $T^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, number k^{\prime}, feedback vertex set $S^{\prime} \subseteq V$ with $\left|S^{\prime}\right| \leq k^{\prime}+1$
Question: $\exists X \subseteq V^{\prime} \backslash S^{\prime}$ so that $|X| \leq k^{\prime}$ and $T^{\prime}-X$ is acyclic?

FVS in Tournaments

FVS (Tournaments) Compression
Given: Tournament $T=(V, E)$, number k, feedback vertex set $S \subseteq V$ with $|S| \leq k+1$
Question: $\quad \exists X \subseteq V$ so that $|X| \leq k$ and $T \backslash X$ is acyclic?
Strategy: Fix $X \cap S$. Let $R=X \cap S$ and $F=S \backslash X$.
Then: delete R and forbid F.
Disjoint FVS (Tournaments) Compression
Given: \quad Tournament $T^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, number k^{\prime}, feedback vertex set $S^{\prime} \subseteq V$ with $\left|S^{\prime}\right| \leq k^{\prime}+1$
Question: $\exists X \subseteq V^{\prime} \backslash S^{\prime}$ so that $|X| \leq k^{\prime}$ and $T^{\prime}-X$ is acyclic?
Reduction: FVS-T Comp. by 2^{k} calls to Disj.-FVS-T Comp.

FVS in Tournaments

FVS (Tournaments) Compression

Given: \quad Tournament $T=(V, E)$, number k, feedback vertex set $S \subseteq V$ with $|S| \leq k+1$
Question: $\quad \exists X \subseteq V$ so that $|X| \leq k$ and $T \backslash X$ is acyclic?
Strategy: Fix $X \cap S$. Let $R=X \cap S$ and $F=S \backslash X$. Then: delete R and forbid F.

Disjoint FVS (Tournaments) Compression
Given: \quad Tournament $T^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, number k^{\prime}, feedback vertex set $S^{\prime} \subseteq V$ with $\left|S^{\prime}\right| \leq k^{\prime}+1$
Question: $\exists X \subseteq V^{\prime} \backslash S^{\prime}$ so that $|X| \leq k^{\prime}$ and $T^{\prime}-X$ is acyclic?
Reduction: FVS-T Comp. by 2^{k} calls to Disj.-FVS-T Comp. For each call, set $T^{\prime}:=T-R, S^{\prime}:=F, k^{\prime}:=|F|-1$.

Disjoint FVS in Tournaments
Reduction Rule: If $T^{\prime}[F]$ is not acyclic, answer: No.

Disjoint FVS in Tournaments

Reduction Rule: If $T^{\prime}[F]$ is not acyclic, answer: No.
Obs. Acyclic tournaments have a total order on vertices.

Disjoint FVS in Tournaments

Reduction Rule: If $T^{\prime}[F]$ is not acyclic, answer: No.
Obs. Acyclic tournaments have a total order on vertices.
Let $A:=V^{\prime} \backslash F$ be the set of chooseable vertices.

Disjoint FVS in Tournaments

Reduction Rule: If $T^{\prime}[F]$ is not acyclic, answer: No.
Obs. Acyclic tournaments have a total order on vertices.
Let $A:=V^{\prime} \backslash F$ be the set of chooseable vertices.
Reduction Rule: Let $v \in A$. If $T^{\prime}[F \cup\{v\}]$ is not acyclic, then delete v and set $k^{\prime} \leftarrow k^{\prime}-1$.

Disjoint FVS in Tournaments

Reduction Rule: If $T^{\prime}[F]$ is not acyclic, answer: No.
Obs. Acyclic tournaments have a total order on vertices.
Let $A:=V^{\prime} \backslash F$ be the set of chooseable vertices.
Reduction Rule: Let $v \in A$. If $T^{\prime}[F \cup\{v\}]$ is not acyclic, then delete v and set $k^{\prime} \leftarrow k^{\prime}-1$.

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

S :

\bigcirc

A:

\bigcirc

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

R :

A:

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is FVS, } \quad A=V \backslash S
$$

F :

A:

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

was removed by reduction rule

A:
 \bigcirc

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

$$
F: \quad{ }^{0} \bigcirc^{1} \bigcirc^{2} \bigcirc^{3} \bigcirc^{4} \bigcirc^{5}
$$

A:

acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

$$
F: \quad{ }^{0} \bigcirc^{1} \bigcirc^{2} \bigcirc^{3} \bigcirc^{4} \bigcirc^{5}
$$

A:

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

$$
F:
$$

A:

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

F :

A:

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

$$
F: \quad{ }^{0} \bigcirc^{1} \bigcirc^{2} \bigcirc^{3} \bigcirc^{4} \bigcirc^{5}
$$

A:

Q: Why is A
acyclic, too??

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

$$
F: \quad{ }^{0} \bigcirc^{1} \bigcirc^{2} \bigcirc^{3} \bigcirc^{4} \bigcirc^{5}
$$

A:

Find: minimum FVS $X \subseteq A$ of $T[F \cup A]$

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

$$
{ }^{0} \bigcirc^{1} \bigcirc^{2} \bigcirc^{3} \bigcirc^{4} \bigcirc^{5}
$$

might be possible to keep both
A:

Find: minimum FVS $X \subseteq A$ of $T[F \cup A]$

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

$$
{ }^{0} \bigcirc^{1} \bigcirc^{2} \bigcirc^{3} \bigcirc^{4} \bigcirc^{5}
$$

cannot keep both, otherwise cycle
A:

Find: minimum FVS $X \subseteq A$ of $T[F \cup A]$

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

$$
{ }^{0} \bigcirc^{1} \bigcirc^{2} \bigcirc^{3} \bigcirc^{4} \bigcirc^{5}
$$

Find: longest monotonically increasing subsequence-

A:

Find: minimum FVS $X \subseteq A$ of $T[F \cup A]$

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

$$
{ }^{0} \bigcirc^{1} \bigcirc^{2} \bigcirc^{3} \bigcirc^{4} \bigcirc^{5}
$$

Find: longest monotonically increasing subsequence-

A:

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

$$
{ }^{0} \bigcirc^{1} \bigcirc^{2} \bigcirc^{3} \bigcirc^{4} \bigcirc^{5}
$$

Find: longest monotonically increasing subsequence-

A: X :

Disjoint FVS in Tournaments (cont'd)

$$
T=(V, E), \quad S=F \cup R \text { is } \mathrm{FVS}, \quad A=V \backslash S
$$

R :

Find: longest monotonically increasing subsequence-

A: X :

Disjoint FVS in Tournaments (cont'd) $T=(V, E), \quad S=F \cup R$ is $\mathrm{FVS}, \quad A=V \backslash S$
F :
${ }^{0} \bigcirc^{1} \bigcirc^{2} \bigcirc^{3} \bigcirc^{4} \bigcirc^{5}$
R :

Find: longest monotonically increasing subsequence-

A: X :

Q: Why is A
acyclic, too??
Find: minimum FVS $X \subseteq A$ of $T[F \cup A]$

$$
\Rightarrow X \cup R \text { is a } \mathrm{FVS} \text { of } T!
$$

Disjoint FVS in Tournaments (cont'd) $T=(V, E), \quad S=F \cup R$ is $\mathrm{FVS}, \quad A=V \backslash S$
F :

R :

Find: longest monotonically increasing subsequence\longrightarrow easy DP exercise for polytime A: X :

Q: Why is A
acyclic, too??
Find: minimum FVS $X \subseteq A$ of $T[F \cup A]$

$$
\Rightarrow X \cup R \text { is a } F V \bar{S} \text { of } T!
$$

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$.

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$. Iteratively add vertices:

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \leq k+1$.

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \leq k+1$. // Compress using Disj. FVS-T Compression:

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \leq k+1$. // Compress using Disj. FVS-T Compression:
For each $F \subseteq S$:

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \leq k+1$. // Compress using Disj. FVS-T Compression:
For each $F \subseteq S$:

$$
\text { Remove } R_{F}=S \backslash F \text {. }
$$

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \leq k+1$. // Compress using Disj. FVS-T Compression:
For each $F \subseteq S$:
Remove $R_{F}=S \backslash F$.
Apply reduction rules.

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \leq k+1$. // Compress using Disj. FVS-T Compression:
For each $F \subseteq S$:
Remove $R_{F}=S \backslash F$.
Apply reduction rules.
Compute longest increasing subsequence
via labels defined before.

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \leq k+1$. // Compress using Disj. FVS-T Compression:
For each $F \subseteq S$:
Remove $R_{F}=S \backslash F$.
Apply reduction rules.
Compute longest increasing subsequence $\rightsquigarrow \min$. FVS X_{F} of $T[F \cup A]$

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$.
Iteratively add vertices:
Partial graph gains a vertex, and so does S; now $|S| \leq k+1$.
// Compress using Disj. FVS-T Compression:
For each $F \subseteq S$:
Remove $R_{F}=S \backslash F$.
Apply reduction rules.
Compute longest increasing subsequence
min FVS X of $T[F \cup A]$ via labels defined before.
If some set X_{F} fulfills $\left|X_{F}\right|+\left|R_{F}\right| \leq k$, then $S \leftarrow X_{F} \cup R_{F}$.
Otherwise, answer]

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$.
Iteratively add vertices:
Partial graph gains a vertex, and so does S; now $|S| \leq k+1$.
// Compress using Disj. FVS-T Compression:
For each $F \subseteq S$:
Remove $R_{F}=S \backslash F$.
Apply reduction rules.
Compute longest increasing subsequence
min FVS X of $T[F \cup A]$ via labels defined before.
If some set X_{F} fulfills $\left|X_{F}\right|+\left|R_{F}\right| \leq k$, then $S \leftarrow X_{F} \cup R_{F}$.
Otherwise, answer No.

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$.
Iteratively add vertices:
Partial graph gains a vertex, and so does S; now $|S| \leq k+1$.
// Compress using Disj. FVS-T Compression:
For each $F \subseteq S$:
Remove $R_{F}=S \backslash F$.
Apply reduction rules.
Compute longest increasing subsequence
min $X_{\text {F }}$ of $[F \cup A]$ via labels defined before.
If some set X_{F} fulfills $\left|X_{F}\right|+\left|R_{F}\right| \leq k$, then $S \leftarrow X_{F} \cup R_{F}$.
Otherwise, answer No.
Runtime?

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$.
Iteratively add vertices:
Partial graph gains a vertex, and so does S; now $|S| \leq k+1$.
// Compress using Diss. FVS-T Compression:
For each $F \subseteq S$:
Remove $R_{F}=S \backslash F$.
Apply reduction rules.
Compute longest increasing subsequence
\rightarrow min FV X of $T[\digamma \cup A]$ via labels defined before.
If some set X_{F} fulfills $\left|X_{F}\right|+\left|R_{F}\right| \leq k$, then $S \leftarrow X_{F} \cup R_{F}$.
Otherwise, answer No.
Runtime?

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$.
Iteratively add vertices:
Partial graph gains a vertex, and so does S; now $|S| \leq k+1$.
// Compress using Diss. FVS-T Compression: $O\left(2^{k}\right)$
For each $F \subseteq S$:
Remove $R_{F}=S \backslash F$.
Apply reduction rules.
Compute longest increasing subsequence
\rightarrow in FVS X of $T[F \cup A]$ via labels defined before.
If some set X_{F} fulfills $\left|X_{F}\right|+\left|R_{F}\right| \leq k$, then $S \leftarrow X_{F} \cup R_{F}$.
Otherwise, answer No.
Runtime?

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$.
Iteratively add vertices:
Partial graph gains a vertex, and so does S; now $|S| \leq k+1$.
// Compress using Diss. FVS-T Compression: $O\left(2^{k}\right)$
For each $F \subseteq S$:
Remove $R_{F}=S \backslash F$.
Apply reduction rules.
Compute longest increasing subsequence
\rightarrow. TVS X of $T[F \cup A]$ via labels defined before.
If some set X_{F} fulfills $\left|X_{F}\right|+\left|R_{F}\right| \leq k$, then $S \leftarrow X_{F} \cup R_{F}$.
Otherwise, answer No.
Runtime?

FVS in Tournaments by Compression

Start with any k-vertex subgraph G_{k} of G, and set $S=V\left(G_{k}\right)$.
Iteratively add vertices:
Partial graph gains a vertex, and so does S; now $|S| \leq k+1$.
// Compress using Diss. FVS-T Compression: $O\left(2^{k}\right)$
For each $F \subseteq S$:
Remove $R_{F}=S \backslash F$.
Apply reduction rules.
Compute longest increasing subsequence
. RVS X_{F} of $[F \cup A]$ via labels defined before.
$\leadsto \min$. RVS X_{F} of $T[F \cup A]$
If some set X_{F} fulfills $\left|X_{F}\right|+\left|R_{F}\right| \leq k$, then $S \leftarrow X_{F} \cup R_{F}$.
Otherwise, answer No.
Theorem. FVS in Tournaments can be solved in $O^{*}\left(2^{k}\right)$ time.

FVS in general graphs
Theorem. FVS has a kernel with $O\left(k^{2}\right)$ vertices and edges. see Parameterized Algorithms §9.1

FVS in general graphs
Theorem. FVS has a kernel with $O\left(k^{2}\right)$ vertices and edges. see Parameterized Algorithms §9.1

Kernel brute-force \rightsquigarrow runtime ...

FVS in general graphs
Theorem. FVS has a kernel with $O\left(k^{2}\right)$ vertices and edges. see Parameterized Algorithms §9.1

Kernel brute-force \rightsquigarrow runtime ... $\quad 2^{O\left(k^{2}\right)}$ poly (n)

FVS in general graphs
Theorem. FVS has a kernel with $O\left(k^{2}\right)$ vertices and edges. see Parameterized Algorithms $\S 9.1$

Kernel brute-force \rightsquigarrow runtime ... $\quad 2^{O\left(k^{2}\right)}$ poly (n)
Iterative Compression $\rightsquigarrow O^{*}\left(5^{k}\right)$ time
see Parameterized Algorithms §4.3

FVS in general graphs
Theorem. FVS has a kernel with $O\left(k^{2}\right)$ vertices and edges. see Parameterized Algorithms §9.1

Kernel brute-force \rightsquigarrow runtime ... $\quad 2^{O\left(k^{2}\right)}$ poly (n)
Iterative Compression $\rightsquigarrow O^{*}\left(5^{k}\right)$ time see Parameterized Algorithms $\S 4.3$

Current "best" algorithm: $O^{*}\left(3^{k}\right)$ randomised (Monte Carlo) see Parameterized Algorithms §11.2.1

FVS in general graphs
Theorem. FVS has a kernel with $O\left(k^{2}\right)$ vertices and edges. see Parameterized Algorithms §9.1

Kernel brute-force \rightsquigarrow runtime ... $\quad 2^{O\left(k^{2}\right)}$ poly (n)
Iterative Compression $\rightsquigarrow O^{*}\left(5^{k}\right)$ time see Parameterized Algorithms §4.3

Current "best" algorithm: $O^{*}\left(3^{k}\right)$ randomised (Monte Carlo) see Parameterized Algorithms §11.2.1

Lemma. If $\mathrm{FVS} \leq k$, then treewidth $\leq k+1$.

Summary: Iterative Compression

- Show: (Problem) solvable if (Problem)-Compression solvable

Summary: Iterative Compression

- Show: (Problem) solvable if (Problem)-Compression solvable
- Show: (Problem)-Compression solvable if Disjoint-(Problem) solvable

Summary: Iterative Compression

- Show: (Problem) solvable if (Problem)-Compression solvable
- Show: (Problem)-Compression solvable if Disjoint-(Problem) solvable
- Solve: Disjoint-(Problem)

Summary: Iterative Compression

- Show: (Problem) solvable if (Problem)-Compression solvable
- Show: (Problem)-Compression solvable if Disjoint-(Problem) solvable
- Solve: Disjoint-(Problem)

Summary: Iterative Compression

- Show: (Problem) solvable if (Problem)-Compression solvable
- Show: (Problem)-Compression solvable if Disjoint-(Problem) solvable
- Solve: Disjoint-(Problem)
(This is the hard part!)

What makes the Disjoint-(Problem) easier?

Summary: Iterative Compression

- Show: (Problem) solvable if (Problem)-Compression solvable
- Show: (Problem)-Compression solvable if Disjoint-(Problem) solvable
- Solve: Disjoint-(Problem)
(This is the hard part!)

What makes the Disjoint-(Problem) easier?

- Size- $(k+1)$ solution Y is given.

Summary: Iterative Compression

- Show: (Problem) solvable if (Problem)-Compression solvable
- Show: (Problem)-Compression solvable if Disjoint-(Problem) solvable
- Solve: Disjoint-(Problem)
(This is the hard part!)

What makes the Disjoint-(Problem) easier?

- Size- $(k+1)$ solution Y is given.
- Complement of Y has special properties (here: acyclic).

Summary: Iterative Compression

- Show: (Problem) solvable if (Problem)-Compression solvable
- Show: (Problem)-Compression solvable if Disjoint-(Problem) solvable
- Solve: Disjoint-(Problem)

(This is the hard part!)

What makes the Disjoint-(Problem) easier?

- Size- $(k+1)$ solution Y is given.
- Complement of Y has special properties (here: acyclic).
- Splitting $Y=F \cup R$ implies special properties of F (here: acyclic).

