

Exact Algorithms

Sommer Term 2020

Lecture 12 Iterative Compression

Based on: [Parameterized Algorithms: §4, 4.1, 4.2]

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Alexander Wolff

Lehrstuhl für Informatik I

Iterative Compression

Idea: Is it useful for an exact algorithm to start from a near-optimal solution?

Iterative Compression

- Idea: Is it useful for an exact algorithm to start from a near-optimal solution?
- **Idea:** Greedy algorithms do not solve NP-hard problems *exactly*, but might give us an incremental approach.

Iterative Compression

- Idea: Is it useful for an exact algorithm to start from a near-optimal solution?
- Idea: Greedy algorithms do not solve NP-hard problems *exactly*, but might give us an incremental approach.

k-VERTEX (COVER
Given:	Graph $G = (V, E)$
Parameter:	Integer k
Question:	Does G have a vertex cover of size $\leq k$?

Vertex Cover with 2 vertices?

3 is easy...

Vertex Cover with 2 vertices?

3 is easy...

Vertex Cover with 2 vertices?

3 is easy...

Vertex Cover with 2 vertices?

3 is easy... But does 2 work?

Vertex Cover with 2 vertices?

3 is easy... But does 2 work?

Complexity of VERTEX COVER COMPRESSION?

Complexity of VERTEX COVER COMPRESSION? Not in *P*, otherwise VERTEX COVER in *P*!

- 1
- Start with a *k*-vertex subgraph.

1 Start with a *k*-vertex subgraph.

In such a graph, k-vertex cover is trivial :-)

1 Start with a *k*-vertex subgraph.

In such a graph, k-vertex cover is trivial :-)

2

1 Start with a k-vertex subgraph. In such a graph, k-vertex cover is trivial :-)

2

1 Start with a *k*-vertex subgraph.

In such a graph, k-vertex cover is trivial :-)

Add an unvisited vertex to our graph and our vertex cover.

4

1 Start with a k-vertex subgraph.

In such a graph, k-vertex cover is trivial :-)

2 Add an unvisited vertex to our graph and our vertex cover. This yields a (k + 1)-vertex cover.

4

1 Start with a *k*-vertex subgraph.

In such a graph, k-vertex cover is trivial :-)

2 Add an unvisited vertex to our graph and our vertex cover. This yields a (k + 1)-vertex cover.

4

Compress to a *k*-vertex cover

1 Start with a *k*-vertex subgraph.

In such a graph, k-vertex cover is trivial :-)

- Add an unvisited vertex to our graph and our vertex cover. This yields a (k + 1)-vertex cover.
- Compress to a *k*-vertex cover

1 Start with a *k*-vertex subgraph.

In such a graph, k-vertex cover is trivial :-)

- Add an unvisited vertex to our graph and our vertex cover. This yields a (k + 1)-vertex cover.
 - Compress to a k-vertex cover, or answer: No.

1 Start with a *k*-vertex subgraph.

In such a graph, k-vertex cover is trivial :-)

- Add an unvisited vertex to our graph and our vertex cover. This yields a (k + 1)-vertex cover.
 - Compress to a k-vertex cover, or answer: No.

3 Profit

Runtime: O(n) compression steps.

- Given: Vertex cover C, |C| = k + 1
- Find: Vertex cover X, |X| = k

- Given: Vertex cover C, |C| = k + 1
- Find: Vertex cover X, |X| = k

Given:Vertex cover C, |C| = k + 1Find:Vertex cover X, |X| = k

Given:Vertex cover C, |C| = k + 1Find:Vertex cover X, |X| = k

 $|\mathcal{H}| = \mathcal{K}$

Given: Vertex cover C, |C| = k + 1Find: Vertex cover X, |X| = k

Find: Vertex cover X, |X| = k

Given: Vertex cover C, |C| = k + 1Find: Vertex cover X, |X| = k

Find: Vertex cover X, |X| = k

Given:Vertex cover C, |C| = k + 1Find:Vertex cover X, |X| = k

Given:Vertex cover C, |C| = k + 1Find:Vertex cover X, |X| = k

Given: Vertex cover C, |C| = k + 1Find: Vertex cover X |X| = k

Find: Vertex cover X, |X| = k

Given:Vertex cover C, |C| = k + 1Find:Vertex cover X, |X| = k

Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C$, X is unique.

Given:Vertex cover C, |C| = k + 1Find:Vertex cover X, |X| = k

Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C$, X is unique.

Given:Vertex cover C, |C| = k + 1Find:Vertex cover X, |X| = k

Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C$, X is unique.

Runtime:

Given: Vertex cover C, |C| = k + 1Find: Vertex cover X, |X| = k

Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C$, X is unique.

Runtime: $< 2^k$ options for $X \cap C$; polytime for each one

Given: Vertex cover C, |C| = k + 1Find: Vertex cover X, |X| = k

Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C$, X is unique.

Runtime: $< 2^k$ options for $X \cap C$; polytime for each one **Runtime for Vertex Cover:**

Given: Vertex cover C, |C| = k + 1Find: Vertex cover X, |X| = k

Strategy: Fix $X \cap C$, i.e., determine what to keep from C. For each potential $X \cap C$, X is unique.

Runtime for Vertex Cover: $O^*(2^k)$

Dominating Set

Dominating Set

Complexity of DOMINATING SET (COMPRESSION)?

Dominating Set

Complexity of DOMINATING SET (COMPRESSION)? Not FPT in k since DOMINATING SET is not FPT in k!

Feedback	Vertex Set (Tournaments)
Given:	Tournament $T = (V, E)$, number k
Question:	$\exists X \subseteq V$ such that $ X \leq k$ and
	$T[V \setminus X]$ is acyclic?

7

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Can we use this lemma algorithmically?

Lemma. A tournament contains a cycle ⇔ it contains a length-3 cycle.

> Can we use this lemma algorithmically? FVS must contain ≥ 1 vertex of each 3-cycle.

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Can we use this lemma algorithmically? FVS must contain ≥ 1 vertex of each 3-cycle.

Algorithm: Branch (1, 1, 1).

Lemma. A tournament contains a cycle \Leftrightarrow it contains a length-3 cycle.

Can we use this lemma algorithmically? FVS must contain ≥ 1 vertex of each 3-cycle.

Algorithm: Branch (1, 1, 1).

Theorem. FVS in Tournaments can be solved in $O^*(3^k)$ time.

FVS (TOURNAMENTS) COMPRESSIONGiven:Tournament T = (V, E), number k,
feedback vertex set $S \subseteq V$ with $|S| \leq k + 1$ Question: $\exists X \subseteq V$ so that $|X| \leq k$ and $T \setminus X$ is acyclic?

Strategy: Fix $X \cap S$. Let $R = X \cap S$ and $F = S \setminus X$.

FVS (TOURNAMENTS) COMPRESSION		
Given:	Tournament $T = (V, E)$, number k,	
	feedback vertex set $S \subseteq V$ with $ S \leq k+1$	
Question:	$\exists X \subseteq V$ so that $ X \leq k$ and $T \setminus X$ is acyclic?	
Strategy:	Fix $X \cap S$. Let $R = X \cap S$ and $F = S \setminus X$. Then:	

FVS (TOURNAMENTS) COMPRESSIONGiven:Tournament T = (V, E), number k,
feedback vertex set $S \subseteq V$ with $|S| \leq k + 1$ Question: $\exists X \subseteq V$ so that $|X| \leq k$ and $T \setminus X$ is acyclic?

Strategy: Fix $X \cap S$. Let $R = X \cap S$ and $F = S \setminus X$. Then: delete R and

FVS (TOURNAMENTS) COMPRESSION		
Given:	Tournament $T = (V, E)$, number k , feedback vertex set $S \subset V$ with $ S \leq k + 1$	
	Teedback vertex set $S \subseteq V$ with $ S \leq K + 1$	
Question:	$\exists X \subseteq V$ so that $ X \leq k$ and $T \setminus X$ is acyclic?	

Strategy: Fix $X \cap S$. Let $R = X \cap S$ and $F = S \setminus X$. Then: delete R and forbid F.
FVS in Tournaments

FVS (TOURNAMENTS) COMPRESSION		
Given:	Tournament $T = (V, E)$, number k,	
	feedback vertex set $S \subseteq V$ with $ S \leq k+1$	
Question:	$\exists X \subseteq V$ so that $ X \leq k$ and $T \setminus X$ is acyclic?	
Strategy:	Fix $X \cap S$. Let $R = X \cap S$ and $F = S \setminus X$. Then: delete R and <i>forbid</i> F .	
Disjoint F	FVS (TOURNAMENTS) COMPRESSION	
Given:	Tournament $T' = (V', E')$, number k' ,	
	feedback vertex set $S' \subseteq V$ with $ S' \leq k' + 1$	
Question:	$\exists X \subseteq V' \setminus S'$ so that $ X \leq k'$ and $T' - X$ is acyclic?	

FVS in Tournaments

FVS (TOURNAMENTS) COMPRESSION		
Given:	Tournament $T = (V, E)$, number k,	
	feedback vertex set $S \subseteq V$ with $ S \leq k+1$	
Question:	$\exists X \subseteq V$ so that $ X \leq k$ and $T \setminus X$ is acyclic?	
Strategy:	Fix $X \cap S$. Let $R = X \cap S$ and $F = S \setminus X$. Then: delete R and forbid F .	
DISJOINT FVS (TOURNAMENTS) COMPRESSION		
Given:	Tournament $T' = (V', E')$, number k' ,	
	feedback vertex set $S' \subseteq V$ with $ S' \leq k' + 1$	
Question:	$\exists X \subseteq V' \setminus S'$ so that $ X \leq k'$ and $T' - X$ is acyclic?	

Reduction: FVS-T COMP. by 2^k calls to DISJ.-FVS-T COMP.

FVS in Tournaments

FVS (TOURNAMENTS) COMPRESSION		
Given:	Tournament $T = (V, E)$, number k,	
	feedback vertex set $S \subseteq V$ with $ S \leq k+1$	
Question:	$\exists X \subseteq V$ so that $ X \leq k$ and $T \setminus X$ is acyclic?	
Strategy:	Fix $X \cap S$. Let $R = X \cap S$ and $F = S \setminus X$. Then: delete R and forbid F .	
DISJOINT FVS (TOURNAMENTS) COMPRESSION		
Given:	Tournament $T' = (V', E')$, number k' ,	
	feedback vertex set $S' \subseteq V$ with $ S' \leq k' + 1$	
Question:	$\exists X \subseteq V' \setminus S'$ so that $ X \leq k'$ and $T' - X$ is acyclic?	

Reduction: FVS-T COMP. by 2^k calls to DISJ.-FVS-T COMP. For each call, set T' := T - R, S' := F, k' := |F| - 1.

Reduction Rule: If T'[F] is not acyclic, answer: NO.

Reduction Rule: If T'[F] is not acyclic, answer: NO.

Obs. Acyclic tournaments have a total order on vertices.

Reduction Rule: If T'[F] is not acyclic, answer: NO.

Obs. Acyclic tournaments have a total order on vertices.

Let $A := V' \setminus F$ be the set of *chooseable* vertices.

Reduction Rule: If T'[F] is not acyclic, answer: NO.

Obs. Acyclic tournaments have a total order on vertices.

Let $A := V' \setminus F$ be the set of *chooseable* vertices.

Reduction Rule: Let $v \in A$. If $T'[F \cup \{v\}]$ is not acyclic, then delete v and set $k' \leftarrow k' - 1$.

Reduction Rule: If T'[F] is not acyclic, answer: NO.

Obs. Acyclic tournaments have a total order on vertices.

Let $A := V' \setminus F$ be the set of *chooseable* vertices.

Reduction Rule: Let $v \in A$. If $T'[F \cup \{v\}]$ is not acyclic, then delete v and set $k' \leftarrow k' - 1$.

Disjoint FVS in Tournaments (cont'd) $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$ S: O O O O O

Disjoint FVS in Tournaments (cont'd) $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$ F: O O O O O

Disjoint FVS in Tournaments (cont'd) $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$ F: OOOOOO

Disjoint FVS in Tournaments (cont'd) $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$ \bigcirc \bigcirc \bigcirc *F*: () () () () () () ()*A*:

Q: Why is *A* acyclic, too??

Disjoint FVS in Tournaments (cont'd) $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$ *F*: *A*: Q: Why is A acyclic, too?? Disjoint FVS in Tournaments (cont'd)

 $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$

Disjoint FVS in Tournaments (cont'd)

 $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$

Disjoint FVS in Tournaments (cont'd) $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$ 0 5 *F*: *A*: Q: Why is A acyclic, too??

Disjoint FVS in Tournaments (cont'd) $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$ 0 5 4 *F*: *A*: 2 Q: Why is A acyclic, too??

Disjoint FVS in Tournaments (cont'd) $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$ 0 5 *F*: *A*: 3 Q: Why is A acyclic, too??

Find: longest monotonically increasing subsequence

A:

$$0$$
 3
 1
 2
 2
 5
 2
 5
 Q : Why is A acyclic, too??

Find: longest monotonically increasing subsequence

Find: longest monotonically increasing subsequence

A: X:
$$0$$
 0 3 1 2 2 5 2 5 2 5 4
Q: Why is A acyclic, too??

Disjoint FVS in Tournaments (cont'd) $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$ $^{0} \cap ^{1} \cap ^{2} \cap ^{3} \cap ^{4} \cap ^{5}$ *R*: *F*: **Find:** longest monotonically increasing subsequence— A: X: Q: Why is A acyclic, too??
Disjoint FVS in Tournaments (cont'd) $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$ $0 \cap 1 \cap 2 \cap 3 \cap 4 \cap 5$ *R*: *F*: **Find:** longest monotonically increasing subsequence— A: X: $\begin{array}{c} \\ \\ 3 \end{array} \begin{array}{c} \\ 1 \end{array} \begin{array}{c} \\ 2 \end{array} \begin{array}{c} \\ 2 \end{array} \begin{array}{c} \\ 2 \end{array} \begin{array}{c} \\ 2 \end{array} \end{array}$ Q: Why is A acyclic, too??

Find: minimum FVS $X \subseteq A$ of $T[F \cup A]$ $\Rightarrow X \cup R$ is a FVS of T! Disjoint FVS in Tournaments (cont'd) $T = (V, E), \quad S = F \cup R \text{ is FVS}, \quad A = V \setminus S$ $^{0} \cap ^{1} \cap ^{2} \cap ^{3} \cap ^{4} \cap ^{5}$ *R*: *F*: Find: longest monotonically increasing subsequence – easy DP exercise for polytime A: X: $\bigcup_{2} \bigcup_{2}$ Q: Why is A acyclic, too??

Find: minimum FVS $X \subseteq A$ of $T[F \cup A]$ $\Rightarrow X \cup R$ is a FVS of T!

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$.

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \le k + 1$.

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \le k + 1$. // Compress using DISJ. FVS-T COMPRESSION:

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \le k + 1$. // Compress using DISJ. FVS-T COMPRESSION: For each $F \subseteq S$:

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Partial graph gains a vertex, and so does *S*; now $|S| \le k + 1$. // Compress using DISJ. FVS-T COMPRESSION: For each $F \subseteq S$:

Remove $R_F = S \setminus F$.

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \le k + 1$. // Compress using DISJ. FVS-T COMPRESSION: For each $F \subseteq S$:

Remove $R_F = S \setminus F$.

Apply reduction rules.

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \le k + 1$. // Compress using DISJ. FVS-T COMPRESSION: For each $F \subseteq S$:

Remove $R_F = S \setminus F$.

Apply reduction rules.

Compute longest increasing subsequence via labels defined before.

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \le k + 1$. // Compress using DISJ. FVS-T COMPRESSION: For each $F \subseteq S$: Remove $R_F = S \setminus F$. Apply reduction rules.

Compute longest increasing subsequence \rightsquigarrow min. FVS X_F of $T[F \cup A]$

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \leq k+1$. // Compress using DISJ. FVS-T COMPRESSION: For each $F \subset S$: Remove $R_F = S \setminus F$. Apply reduction rules. Compute longest increasing subsequence via labels defined before. \rightsquigarrow min. FVS X_F of $T[F \cup A]$ If some set X_F fulfills $|X_F| + |R_F| \le k$, then $S \leftarrow X_F \cup R_F$. Otherwise, answer]

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \leq k+1$. // Compress using DISJ. FVS-T COMPRESSION: For each $F \subset S$: Remove $R_F = S \setminus F$. Apply reduction rules. Compute longest increasing subsequence via labels defined before. \rightsquigarrow min. FVS X_F of $T[F \cup A]$ If some set X_F fulfills $|X_F| + |R_F| \le k$, then $S \leftarrow X_F \cup R_F$. Otherwise, answer NO.

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \leq k+1$. // Compress using DISJ. FVS-T COMPRESSION: For each $F \subset S$: Remove $R_F = S \setminus F$. Apply reduction rules. Compute longest increasing subsequence via labels defined before. \rightsquigarrow min. FVS X_F of $T[F \cup A]$ If some set X_F fulfills $|X_F| + |R_F| \le k$, then $S \leftarrow X_F \cup R_F$. Otherwise, answer NO.

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \leq k+1$. // Compress using DISJ. FVS-T COMPRESSION: For each $F \subset S$: poly(n)Remove $R_F = S \setminus F$. Apply reduction rules. Compute longest increasing subsequence via labels defined before. \rightsquigarrow min. FVS X_F of $T[F \cup A]$ If some set X_F fulfills $|X_F| + |R_F| \le k$, then $S \leftarrow X_F \cup R_F$. Otherwise, answer NO.

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices:

Partial graph gains a vertex, and so does S; now $|S| \le k + 1$. // Compress using DISJ. FVS-T COMPRESSION: $O(2^k)$ For each $F \subseteq S$: Remove $R_F = S \setminus F$. poly(n)

Apply reduction rules.

Compute longest increasing subsequence \rightsquigarrow min. FVS X_F of $T[F \cup A]$ where X_F fulfills $|X_F| = |P_F| \leq k$, then $S \neq |X_F| = |P_F|$

If some set X_F fulfills $|X_F| + |R_F| \le k$, then $S \leftarrow X_F \cup R_F$. Otherwise, answer NO.

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices: n - k

Partial graph gains a vertex, and so does S; now $|S| \le k + 1$. // Compress using DISJ. FVS-T COMPRESSION: $O(2^k)$ For each $F \subseteq S$:

Remove $R_F = S \setminus F$.

poly(*n*)

Apply reduction rules.

Compute longest increasing subsequence \rightsquigarrow min. FVS X_F of $T[F \cup A]$ $\downarrow D \downarrow \leq h$ then $C \leq X \downarrow \downarrow D$

If some set X_F fulfills $|X_F| + |R_F| \le k$, then $S \leftarrow X_F \cup R_F$. Otherwise, answer No.

Start with any k-vertex subgraph G_k of G, and set $S = V(G_k)$. Iteratively add vertices: n - kPartial graph gains a vertex, and so does S; now $|S| \le k + 1$. // Compress using DISJ. FVS-T COMPRESSION: $O(2^k)$

For each $F \subseteq S$:

Remove $R_F = S \setminus F$.

Apply reduction rules.

Compute longest increasing subsequence \rightsquigarrow min. FVS X_F of $T[F \cup A]$ via labels defined before.

If some set X_F fulfills $|X_F| + |R_F| \le k$, then $S \leftarrow X_F \cup R_F$. Otherwise, answer No.

Theorem. FVS in Tournaments can be solved in $O^*(2^k)$ time.

poly(n)

Theorem. FVS has a kernel with $O(k^2)$ vertices and edges. see Parameterized Algorithms §9.1

Theorem. FVS has a kernel with $O(k^2)$ vertices and edges. see Parameterized Algorithms §9.1

Kernel brute-force ~>> runtime ...

Theorem. FVS has a kernel with $O(k^2)$ vertices and edges. see Parameterized Algorithms §9.1

Kernel brute-force ~>>> runtime ...

 $2^{O(k^2)} \operatorname{poly}(n)$

Theorem. FVS has a kernel with $O(k^2)$ vertices and edges. see Parameterized Algorithms §9.1

Kernel brute-force \rightsquigarrow runtime ... $2^{O(k^2)}$ poly(*n*)

Iterative Compression $\rightsquigarrow O^*(5^k)$ time see Parameterized Algorithms §4.3

Theorem. FVS has a kernel with $O(k^2)$ vertices and edges. see Parameterized Algorithms §9.1

Kernel brute-force \rightsquigarrow runtime ... $2^{O(k^2)}$ poly(*n*)

Iterative Compression $\rightsquigarrow O^*(5^k)$ time see Parameterized Algorithms §4.3

Current "best" algorithm: $O^*(3^k)$ randomised (Monte Carlo) see Parameterized Algorithms §11.2.1

Theorem. FVS has a kernel with $O(k^2)$ vertices and edges. see Parameterized Algorithms §9.1

Kernel brute-force \rightsquigarrow runtime ... $2^{O(k^2)}$ poly(*n*)

Iterative Compression $\rightsquigarrow O^*(5^k)$ time see Parameterized Algorithms §4.3

Current "best" algorithm: $O^*(3^k)$ randomised (Monte Carlo) see Parameterized Algorithms §11.2.1

Lemma. If FVS $\leq k$, then treewidth $\leq k + 1$.

• Show: (PROBLEM) solvable if (PROBLEM)-COMPRESSION solvable

- Show: (PROBLEM) solvable if (PROBLEM)-COMPRESSION solvable
- Show: (PROBLEM)-COMPRESSION solvable if DISJOINT-(PROBLEM) solvable

- Show: (PROBLEM) solvable if (PROBLEM)-COMPRESSION solvable
- Show: (PROBLEM)-COMPRESSION solvable if DISJOINT-(PROBLEM) solvable
- Solve: DISJOINT-(PROBLEM)

- Show: (PROBLEM) solvable if (PROBLEM)-COMPRESSION solvable
- Show: (PROBLEM)-COMPRESSION solvable if DISJOINT-(PROBLEM) solvable
- Solve: DISJOINT-(PROBLEM) (This is the hard part!)

- Show: (PROBLEM) solvable if (PROBLEM)-COMPRESSION solvable
- Show: (PROBLEM)-COMPRESSION solvable if DISJOINT-(PROBLEM) solvable
- Solve: DISJOINT-(PROBLEM) (This is the hard part!)

What makes the Disjoint-(Problem) easier?

- Show: (PROBLEM) solvable if (PROBLEM)-COMPRESSION solvable
- Show: (PROBLEM)-COMPRESSION solvable if DISJOINT-(PROBLEM) solvable
- Solve: DISJOINT-(PROBLEM) (This is the hard part!)

What makes the Disjoint-(Problem) easier?

• Size-(k + 1) solution Y is given.

- Show: (PROBLEM) solvable if (PROBLEM)-COMPRESSION solvable
- Show: (PROBLEM)-COMPRESSION solvable if DISJOINT-(PROBLEM) solvable
- Solve: DISJOINT-(PROBLEM) (This is the hard part!)

What makes the Disjoint-(Problem) easier?

- Size-(k + 1) solution Y is given.
- Complement of Y has special properties (here: acyclic).

- Show: (PROBLEM) solvable if (PROBLEM)-COMPRESSION solvable
- Show: (PROBLEM)-COMPRESSION solvable if DISJOINT-(PROBLEM) solvable
- Solve: DISJOINT-(PROBLEM) (This is the hard part!)

What makes the Disjoint-(Problem) easier?

- Size-(k + 1) solution Y is given.
- Complement of Y has special properties (here: acyclic).
- Splitting $Y = F \cup R$ implies special properties of F (here: acyclic).