Julius-Maximilians-
UNIVERSITAT Lonsunio ||||I - f
WURZBURG INFORMATIK | I |

Algorithmen & Komplexitat Institut fir Informatik

Exact Algorithms

Sommer Term 2020

Lecture 11 Tree Decomposition

Alexander Wolff Lehrstuhl fiuir Informatik |

(Weighted) Independent Set

Given: graph GG, weight function w:V — N
Question: What is the maximum weight of a set S C V
where no pair in S is adjacent in G7

(Weighted) Independent Set

Given: graph GG, weight function w:V — N
Question: What is the maximum weight of a set S C V
where no pair in S is adjacent in G7

(Weighted) Independent Set

Given: graph GG, weight function w:V — N
Question: What is the maximum weight of a set S C V
where no pair in S is adjacent in G7

Thm. On trees, Independent Set can be solved in linear time.

Independent Sets in Trees

Choose an arbitrary root w.

Independent Sets in Trees

Choose an arbitrary root w.
Let T'(v) := subtree rooted at v

Independent Sets in Trees

Choose an arbitrary root w.
Let T'(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T'(v)

Independent Sets in Trees A(w) = solution

Choose an arbitrary root w.

Let T'(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T'(v)

Independent Sets in Trees

Choose an arbitrary root w.

Let T'(v) := subtree rooted at v
Let A(v) := maximum weight of an
independent set S in T'(v)

Let B(v) := maximum weight of

an independent set S in T'(v)
where v & S

Independent Sets in Trees

Choose an arbitrary root w.
Let T'(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T'(v)

Let B(v) := maximum weight of
an independent set S in T'(v)
where v & S

— If v is a leaf: B(v) =

Independent Sets in Trees

Choose an arbitrary root w.
Let T'(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T'(v)

Let B(v) := maximum weight of
an independent set S in T'(v)
where v & S

— If v is a leaf: B(v) =0 and A(v) =

Independent Sets in Trees

Choose an arbitrary root w.
Let T'(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T'(v)

Let B(v) := maximum weight of
an independent set S in T'(v)
where v & S

—If vis a leaf: B(v) =0 and A(v) = w(v)

Independent Sets in Trees

Choose an arbitrary root w.
Let T'(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T'(v)

Let B(v) := maximum weight of
an independent set S in T'(v)
where v & S
—If vis a leaf: B(v) =0 and A(v) = w(v)
— If v has children x4, ..., z,:

B(v) =

Independent Sets in Trees

Choose an arbitrary root w.
Let T'(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T'(v)

Let B(v) := maximum weight of
an independent set S in T'(v)
where v & S

—If vis a leaf: B(v) =0 and A(v) = w(v)
— If v has children x4, ..., z,:

B(v) = > i—1 Alws);

Independent Sets in Trees

Choose an arbitrary root w.
Let T'(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T'(v)

Let B(v) := maximum weight of
an independent set S in T'(v)
where v & S

—If vis a leaf: B(v) =0 and A(v) = w(v)
— If v has children x4, ..., z,:

B(v) = Xim1 Alzi); Av) =

Independent Sets in Trees

Choose an arbitrary root w.
Let T'(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T'(v)

Let B(v) := maximum weight of
an independent set S in T'(v)
where v & S
—If vis a leaf: B(v) =0 and A(v) = w(v)
— If v has children x4, ..., z,:

B(v) = > i—y Alz:); A(v) = max{B(v),

Independent Sets in Trees

Choose an arbitrary root w.
Let T'(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T'(v)

Let B(v) := maximum weight of
an independent set S in T'(v)
where v & S

—If vis a leaf: B(v) =0 and A(v) = w(v)
— If v has children x4, ..., z,:

B(v) = 3251 Alz:); A(v) = max{B(v), w(v) + 3 ;_; B(xi)}

Independent Sets in Trees A(w) = solution

Choose an arbitrary root w.
Let T'(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T'(v)

Let B(v) := maximum weight of
an independent set S in T'(v)

where v & S
—If vis a leaf: B(v) =0 and A(v) = w(v)
— If v has children x4, ..., z,:

B(v) = 3251 Alz:); A(v) = max{B(v), w(v) + 3 ;_; B(xi)}

Algorithm: Compute A(-) and B(-) bottom-up!

(s,1)-Series-Parallel Graphs

Def. A graph G = (V, F) is 2-terminal if it contains two
special vertices s and ¢.

(s,1)-Series-Parallel Graphs

Def. A graph G = (V, F) is 2-terminal if it contains two
special vertices s and ¢.

Def. A 2-terminal graph G is series-parallel if:

e (7 is a single edge (s, 1) @—@

(s,1)-Series-Parallel Graphs

Def. A graph G = (V, F) is 2-terminal if it contains two
special vertices s and ¢.

Def. A 2-terminal graph G is series-parallel if:

e (7 is a single edge (s, 1) @—@

e (& is a series composition of two series-parallel graphs

O W O-

(s,1)-Series-Parallel Graphs

Def. A graph G = (V, F) is 2-terminal if it contains two
special vertices s and ¢.

Def. A 2-terminal graph G is series-parallel if:

e (7 is a single edge (s, 1) @—@

e (& is a series composition of two series-parallel graphs

O 06 - O CB ©

1 = So

(s,1)-Series-Parallel Graphs

Def. A graph G = (V, F) is 2-terminal if it contains two
special vertices s and ¢.

Def. A 2-terminal graph G is series-parallel if:

e (7 is a single edge (s, 1) @—@

e (& is a series composition of two series-parallel graphs

O 06 - O CB ©

1 = So

e (& is a parallel composition of two series-parallel graphs

© O+ -

(s,1)-Series-Parallel Graphs

Def. A graph G = (V, F) is 2-terminal if it contains two
special vertices s and ¢.

Def. A 2-terminal graph G is series-parallel if:

e (7 is a single edge (s, 1) @—@

e (& is a series composition of two series-parallel graphs

O 06 - O CB ©

1 = So

e (& is a parallel composition of two series-parallel graphs

@ OO -0 O
A k

S1 = 89 t1 = 1>

(s,1)-Series-Parallel Graphs

Def. A graph G = (V, F) is 2-terminal if it contains two
special vertices s and ¢. recursive definition

Def. A 2-terminal graph G is series-parallel if:

e (7 is a single edge (s, 1) @—@

e (& is a series composition of two series-parallel graphs

O 06 - O CB ©

1 = So

e (& is a parallel composition of two series-parallel graphs

@ OO -0 O
A k

S1 = 89 t1 = 1>

(s,1)-Series-Parallel Graphs

Def. A graph G = (V, F) is 2-terminal if it contains two
special vertices s and ¢. recursive definition

Series-parallel graphs have a natural tree structure!

Def. A 2-terminal graph G is series-parallel if:

e (7 is a single edge (s, 1) @—@

e (& is a series composition of two series-parallel graphs

O 06 - O CB ©

1 = So

e (& is a parallel composition of two series-parallel graphs

@ OO -0 O
A k

S1 = S92 t1:t2

SP-Tree

SP-Tree

L] [

SP-Tree

HpEpN

SP-Tree

O O =

SP-Tree

SP-Tree

SP-Tree

Let 2 be a node in an SP-tree.
G (i) := graph represented by the
subtree rooted at 7

Let 2 be a node in an SP-tree.
G (i) := graph represented by the
subtree rooted at 7

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(7)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(7)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(7)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.

— |If 7 i1s a leaf...

BB(i) =

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.

— |If 7 i1s a leaf...

BB(i) = 0

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.

— |If 7 i1s a leaf...

BA(i) =
BB(i) = 0

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.

— |If 7 i1s a leaf...

BAG) = w(ti)
BB(i)= 0

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.

— |If 7 i1s a leaf...

AB(i) =
BA() = w(t)
BB(i) = 0

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.

— |If 7 i1s a leaf...

AB(i) = w(si)
BAG) = w(ti)
BB(i)= 0

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)
AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.

— If 7 is a leaf...
AA(7) =
AB(i) = w(s;)
BA() = wl(t,)
BB(t)= 0

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)
AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.

— If 7 is a leaf...
AA(1) = —o0
AB(i) = w(s;)
BA() = wl(t,)
BB(t)= 0

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.
le = Sy

— If 2 is a series composition @ Q @

with children x and v, ...

AA(i) =

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.
le = Sy

— If 2 is a series composition @ Q @

with children x and v, ...

AA(7) = max{

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.
le = Sy

— If 2 is a series composition @ Q @

with children x and v, ...

AA(i) = max{ AB(z) + BA(y),

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.
le = Sy

— If 2 is a series composition @ Q @

with children x and v, ...

AA(i) = max{ AB(z) + BA(y),

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.

— If 2 is a series composition @ Q @

with children x and v, ...

AA(7) = max{ AB(z) + BA(y), AA(z) + AA(y) —w(t:) }

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.

— If 2 is a series composition @ Q @

with children x and v, ...

AA(7) = max{ AB(z) + BA(y), AA(z) + AA(y) —w(t:) }

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(1) are defined similarly.

— Other cases omitted... (easy exercise).

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(%) are defined similarly.
— Other cases omitted... (easy exercise).

— O(1) time per SP-node.

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(%) are defined similarly.
— Other cases omitted... (easy exercise).
— O(1) time per SP-node.

Thm. Given an n-vertex series-parallel graph G with its
SP-tree, INDEPENDENT SET on (G can be solved in

O(n) time.

Generalization?

Many ways to generalize the concept of having a “tree structure”

Example: k-terminal graph G = (V, E,T), |T| =k

Generalization?

Many ways to generalize the concept of having a “tree structure”

Example: k-terminal graph G = (V, E,T), |T| =k

Generalization?

Many ways to generalize the concept of having a “tree structure”

Example: k-terminal graph G = (V, E,T), |T| =k

Generalization?

Many ways to generalize the concept of having a “tree structure”

Example: k-terminal graph G = (V, E,T), |T| =k
Operation: “gluing”

Example: Tree Decomposition ‘bags’

'

A tree decomposition is a tree whose nodes map to subsets
of V' so that...

Graph G = (V, E): Tree Decomposition:

Example: Tree Decomposition

1

each vertex belongs to at least one bag
these bags are connected

Graph G = (V, E): Tree Decomposition:

Example: Tree Decomposition

1

each vertex belongs to at least one bag
these bags are connected

Graph G = (V, E): Tree Decomposition:

Example: Tree Decomposition

1

each vertex belongs to at least one bag
these bags are connected

Graph G = (V, E): Tree Decomposition:

Example: Tree Decomposition

2

each edge Is contained in at least one bag

Graph G = (V, E): Tree Decomposition:

Example: Tree Decomposition

2

each edge Is contained in at least one bag

Graph G = (V, E): Tree Decomposition:

Example: Tree Decomposition

Graph G = (V, E): Tree Decomposition:

Example: Tree Decomposition

Graph G = (V, E): Tree Decomposition:

Example: Tree Decomposition

Graph G = (V, E): Tree Decomposition:

Example: Tree Decomposition

Graph G = (V, E): Tree Decomposition:

Example: Tree Decomposition

Graph G = (V, E): Tree Decomposition:

(a)—&)—(h,

(6]
Oan 0
OO

Example: Tree Decomposition

Graph G = (V, E): Tree Decomposition:

Example: Tree Decomposition

Tree Decomposition:

Example: Tree Decomposition

Tree Decomposition:

Example: Tree Decomposition

Graph G = (V, E): Tree Decomposition:

Tree Decompostion (formal)

Def. A tree decomposition of a graph G = (V, E) is:
e atuple D= (X,T)

Tree Decompostion (formal)

Def. A tree decomposition of a graph G = (V, E) is:
e atuple D= (X,T)
e I'=(P,F)is a tree

Tree Decompostion (formal)

Def. A tree decomposition of a graph G = (V, E) is:
e atuple D= (X,T)
e I'=(P,F)is a tree

o X ={X, |pe P} is a set family of subsets of V' (“bags”;
one for each node in P)

Tree Decompostion (formal)

Def. A tree decomposition of a graph G = (V, E) is:
e atuple D= (X,T)
e I'=(P,F)is a tree

o X ={X, |pe P} is a set family of subsets of V' (“bags”;
one for each node in P)

° UXP:V

peP

Tree Decompostion (formal)

Def. A tree decomposition of a graph G = (V, E) is:
e atuple D= (X,T)
e I'=(P,F)is a tree
o X ={X, |pe P} is a set family of subsets of V' (“bags”;
one for each node in P)

o U X, =V
peP
o V{u,v} € E thereis a p € P such that u,v € X,,.

Tree Decompostion (formal)

Def. A tree decomposition of a graph G = (V, E) is:
e atuple D= (X,T)
e I'=(P,F)is a tree

o X ={X, |pe P} is a set family of subsets of V' (“bags”;
one for each node in P)

o U X, =V
peP
o V{u,v} € E thereis a p € P such that u,v € X,,.

o Vv eV theset {pe P|ve X,} is connected in T

Treewidth (formal)

e atuple D= (X,T) e I'= (P F)is a tree

Def. Width (tree decomposition): max,cp | X,| — 1,
I.e., cardinality of the largest bag —1

10

Treewidth (formal)

e atuple D= (X,T) e I'= (P F)is a tree

Def. Width (tree decomposition): max,cp | X,|(— 1,
I.e., cardinality of the largest bag —1

10

Treewidth (formal)

e atuple D= (X,T) e I'= (P F)is a tree

Def. Width (tree decomposition): max,cp | X,| — 1,
I.e., cardinality of the largest bag —1

Def. Treewidth tw(G) is the minimum width of a tree
decomposition of &G

10

Treewidth (formal)

e atuple D= (X,T) e I'= (P F)is a tree

Def. Width (tree decomposition): max,cp | X,| — 1,
I.e., cardinality of the largest bag —1

Def. Treewidth tw(G) is the minimum width of a tree
decomposition of &G

Obs. tw(G) <n

10

Treewidth (formal)

e atuple D= (X,T) e I'= (P F)is a tree

Def. Width (tree decomposition): max,cp | X,| — 1,
I.e., cardinality of the largest bag —1

Def. Treewidth tw(G) is the minimum width of a tree
decomposition of &G

Obs. tw(G) <n
Question: Which graphs have treewidth 07

10

10

Treewidth (formal)

e atuple D= (X,T) e I'= (P F)is a tree

Def. Width (tree decomposition): max,cp | X,| — 1,
I.e., cardinality of the largest bag —1

Def. Treewidth tw(G) is the minimum width of a tree
decomposition of &G

Obs. tw(G) <n
Question: Which graphs have treewidth 07 £ = O

10

Treewidth (formal)

e atuple D= (X,T) e I'= (P F)is a tree

Def. Width (tree decomposition): max,cp | X,|(— 1,
I.e., cardinality of the largest bag —1

Def. Treewidth tw(G) is the minimum width of a tree
decomposition of &G

Obs. tw(G) <n
Question: Which graphs have treewidth 07 £ = O

Exercise: Trees have treewidth 1.

Treewidth (formal)

e atuple D= (X,T) e I'= (P F)is a tree

Def. Width (tree decomposition): max,cp | X,| — 1,
I.e., cardinality of the largest bag —1

Def. Treewidth tw(G) is the minimum width of a tree
decomposition of &G

Obs. tw(G) <n
Question: Which graphs have treewidth 07
Exercise: Trees have treewidth 1.

Exercise: Series-parallel graphs have treewidth 2

10

10

Treewidth (formal)

e atuple D= (X,T) e I'= (P F)is a tree

Def. Width (tree decomposition): max,cp | X,| — 1,
I.e., cardinality of the largest bag —1

Def. Treewidth tw(G) is the minimum width of a tree
decomposition of &G

Obs. tw(G) <n
Question: Which graphs have treewidth 07
Exercise: Trees have treewidth 1.

Exercise: Series-parallel graphs have treewidth 2

Thm. There is a tree decomposition of width tw(G)
where the tree size | P| is polynomial in n.

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.

Ex.: k-VERTEX COVER

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.

Ex.: k-VERTEX COVER FPT

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.

Ex.: k-VERTEX COVER FPT

k-INDEPENDENT SET

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.

Ex.: k-VERTEX COVER FPT

k-INDEPENDENT SET

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.

Ex.: k-VERTEX COVER FPT
k-INDEPENDENT SET

k-DOMINATING SET

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.

Ex.: k-VERTEX COVER FPT
k-INDEPENDENT SET

k-DOMINATING SET

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.

Ex.: k-VERTEX COVER FPT
k-INDEPENDENT SET
k-DOMINATING SET

k-COLORING

11

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.

Ex.: k-VERTEX COVER FPT
k-INDEPENDENT SET
k-DOMINATING SET

k-COLORING NP-comp. & >3

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.

Ex.: Kk-VERTEX COVER FPT
k-INDEPENDENT SET
k-DOMINATING SET

k-COLORING NP-comp. & >3

+

“natural parameterization”

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.

Ex.: k-VERTEX COVER FPT
k-INDEPENDENT SET
k-DOMINATING SET

k-COLORING NP-comp. & >3

INDEPENDENT SET (TREEWIDTH)

Given: Graph GG, number k
Parameter: tw(G)
Question: Does G have an independent set of size > k7

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.
O(f(tw(G)) - poly(n)) time.
Ex.: k-VERTEX COVER FPT

k-INDEPENDENT SET
k-DOMINATING SET

k-COLORING NP-comp. & >3

INDEPENDENT SET (TREEWIDTH)

Given: Graph G, number k
Parameter: tw(G)
Question: Does G have an independent set of size > k7

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.
O(f(tw(G)) - poly(n)) time.
Ex.: k-VERTEX COVER FPT

k-INDEPENDENT SET

k-DOMINATING SET

k-COLORING NP-comp. & >3
INDEPENDENT SET (TREEWIDTH) FPT
Given: Graph GG, number k

Parameter: tw(G)
Question: Does G have an independent set of size > k7

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.
O(f(tw(G)) - poly(n)) time.
Ex.: k-VERTEX COVER FPT

k-INDEPENDENT SET
k-DOMINATING SET

k-COLORING NP-comp. & >3

INDEPENDENT SET (TREEWIDTH) FPT

L1ST COLORING (TREEWIDTH)

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.
O(f(tw(G)) - poly(n)) time.
Ex.: k-VERTEX COVER FPT

k-INDEPENDENT SET
k-DOMINATING SET

k-COLORING NP-comp. & >3

INDEPENDENT SET (TREEWIDTH) FPT

L1ST COLORING (TREEWIDTH)

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.
O(f(tw(G)) - poly(n)) time.
Ex.: k-VERTEX COVER FPT

k-INDEPENDENT SET
k-DOMINATING SET

k-COLORING NP-comp. & >3

INDEPENDENT SET (TREEWIDTH) FPT
L1ST COLORING (TREEWIDTH)

CHANNEL ASSIGNMENT (TREEWIDTH)

11

Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.
O(f(tw(G)) - poly(n)) time.
Ex.: k-VERTEX COVER FPT

k-INDEPENDENT SET
k-DOMINATING SET

k-COLORING NP-comp. & >3

INDEPENDENT SET (TREEWIDTH) FPT
L1ST COLORING (TREEWIDTH)

CHANNEL ASSIGNMENT (TREEWIDTH) NP-comp. &« >

Computing Treewidth

TREEWIDTH
Given: Graph G = (V, E), number k
Question: tw(G) < k7

12

Computing Treewidth

TREEWIDTH
Given: Graph G = (V, F), number k
Question: tw(G) < k7

Thm. TREEWIDTH is NP-complete.

12

Computing Treewidth

TREEWIDTH
Given: Graph G = (V, F), number k
Question: tw(G) < k7

Thm. TREEWIDTH is NP-complete.

k- TREEWIDTH

Given: graph G = (V, F)
Parameter: number &
Question: tw(G) < k7

12

Computing Treewidth

TREEWIDTH
Given: Graph G = (V, F), number k
Question: tw(G) < k7

Thm. TREEWIDTH is NP-complete.

k- TREEWIDTH

Given: graph G = (V, F)
Parameter: number &
Question: tw(G) < k7

Thm. k-TREEWIDTH is FPT.

12

Computing Treewidth

TREEWIDTH
Given: Graph G = (V, F), number k
Question: tw(G) < k7

Thm. TREEWIDTH is NP-complete.

k- TREEWIDTH

Given: graph G = (V, F)
Parameter: number &
Question: tw(G) < k7

Thm. k-TREEWIDTH is FPT.

— Actually fixed-parameter linear: runtime O(f(k) - n)

12

Computing Treewidth

TREEWIDTH
Given: Graph G = (V, F), number k
Question: tw(G) < k7

Thm. TREEWIDTH is NP-complete.

k- TREEWIDTH

Given: graph G = (V, F)
Parameter: number &
Question: tw(G) < k7

Thm. k-TREEWIDTH is FPT.

— Actually fixed-parameter linear: runtime O(f(k) - n)
— Algorithm is constructive (provides an optimal tree decomp.)

Computing Treewidth

TREEWIDTH
Given: Graph G = (V, F), number k
Question: tw(G) < k7

Thm. TREEWIDTH is NP-complete.

k- TREEWIDTH

Given: graph G = (V, F)
Parameter: number &
Question: tw(G) < k7

Thm. k-TREEWIDTH is FPT.

— Actually fixed-parameter linear: runtime O(f(k) - n)
— Algorithm is constructive (provides an optimal tree decomp.)
— How can we make “fixed-treewidth-tractable” algorithms?

Tool #1: Nice Tree Decompositoins

In a nice tree decomp., one bag is marked as the root and
there are only 4 types of bags:

13

Tool #1: Nice Tree Decompositoins

In a nice tree decomp., one bag is marked as the root and
there are only 4 types of bags:

e Leaf: the bag is a leaf and contains only one vertex

13

Tool #1: Nice Tree Decompositoins

In a nice tree decomp., one bag is marked as the root and
there are only 4 types of bags:

e Leaf: the bag is a leaf and contains only one vertex

¢ Introduce:
The bag has exactly one child and contains the child’s
vertices and exactly one new vertex.

13

13

Tool #1: Nice Tree Decompositoins

In a nice tree decomp., one bag is marked as the root and
there are only 4 types of bags:

e Leaf: the bag is a leaf and contains only one vertex

¢ Introduce:
The bag has exactly one child and contains the child’s

vertices and exactly one new vertex.

e Forget:
The bag has exactly one child and contains
one vertex fewer than the child.

13

Tool #1: Nice Tree Decompositoins

In a nice tree decomp., one bag is marked as the root and
there are only 4 types of bags:

e Leaf: the bag is a leaf and contains only one vertex

¢ Introduce:
The bag has exactly one child and contains the child’s

vertices and exactly one new vertex. H

e Forget:
The bag has exactly one child and contains

one vertex fewer than the child. H H
e Join:

The bag has exactly two children and these three nodes
have exactly the same vertices

Tool #1: Nice Tree Decompositoins

Thm. For each tree decomposition, there is a nice tree
decomposition of the same width and polynomially
many more bags. The nice decomposition can be

constructed in polynomial time.

14

Tool #1: Nice Tree Decompositoins

14

Tool #1: Nice Tree Decompositoins

14

Tool #1: Nice Tree Decompositoins

14

Tool #1: Nice Tree Decompositoins

14

Tool #1: Nice Tree Decompositoins

14

Tool #1: Nice Tree Decompositoins

14

Tool #1: Nice Tree Decompositoins

Forget f

Join

Introduce b

ntroduce f
ntroduce a
-orget d
-orget e

ntroduce e

ntroduce d

14

Tool #1: Nice Tree Decompositoins

Forget f

Join

Introduce b

ntroduce f
ntroduce a
-orget d
-orget e

ntroduce e

ntroduce d

14

Tool #1:

Nice Tree Decompositoins

Forget f

Join

Introduce b

ntroduce f
ntroduce a
-orget d
-orget e

ntroduce e

ntroduce d

14

15

Tool #2: DP (on Nice Tree Decompositions)

k-TREEWIDTH is FPT

15

Tool #2: DP (on Nice Tree Decompositions)

k-TREEWIDTH is FPT

Tree decompositions can be made nice in poly-time.

15

Tool #2: DP (on Nice Tree Decompositions)

k-TREEWIDTH is FPT

Tree decompositions can be made nice in poly-time.

Corollary. For FPT-Algorithms it suffices to consider nice tree
decompositions.

15

Tool #2: DP (on Nice Tree Decompositions)

k- TREEWIDTH is FPT

Tree decompositions can be made nice in poly-time.

Corollary. For FPT-Algorithms it suffices to consider nice tree
decompositions.

Strategy: Build a recurrence for each type of bag, and use
dynamic programming.

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

16

Independent Set Using Nice Tree Decomp.

Let GG(7) := graph induced by the vertices in the subtree at <.

(

ntroduce f

ntroduce a G(1)
-orget d

-orget e

ntroduce e

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:

16

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(3)

16

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

If 2 1s a Leaf ...

16

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

If 2 1s a Leaf ...
Sel X,L — {U}

R(i,{v}) =

16

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

If 2 1s a Leaf ...
Sel X,L — {U}

R(i,{v}) = w(v)

16

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

If 2 is a Leaf ...
Sei X,L = {U}

R(i,{v}) = w(v)
R(i,2) =

16

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

If 2 is a Leaf ...
Sei X,L = {U}

R(i,{v}) = w(v)
R(i,2)=0

16

16

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 2 and S C X, let
R(7,S) := maximum welght of an independent set [in G(4

with INX;, =5.

ey

with children 77 and 5
R(i,S) =

16

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 2 and S C X, let
R(7,S) := maximum welght of an independent set [in G(4

with INX, =5.

e £ ”

with children 77 and 5
R(sz) — R(]la _I_R.]27

16

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 2 and S C X, let
R(7,S) := maximum welght of an independent set [in G(4

with INX, =5.

o £ ”

with children 77 and 5
R(i,S) = R(jr,S) + R(j», S) — 3 w(v)

veS

16

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

. O

If 2 1s an Introduce ...
with child 7 and X; = Xj U {U}

16

Independent Set Using Nice Tree Decomp.

Let GG(2) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

. O

If 2 1s an Introduce ...
with child 7 and X; = Xj U {U}

For each S C X,;: R(:,5) = R(j,5).

16

Independent Set Using Nice Tree Decomp.

Let GG(2) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

—

If 2 1s an Introduce ...
with child 7 and X; = Xj U {U}

For each S C X,;: R(:,5) = R(j,5).
Otherwise if v has neighbors in S, R(i,5) = —o¢

16

Independent Set Using Nice Tree Decomp.

Let GG(2) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

_» O
If 2 1s an Introduce ...
with child 7 and X; = Xj U {U}

For each S C X,;: R(:,5) = R(j,5).

Otherwise if v has neighbors in S, R(i,5) = —o¢
if v has no neighbors in S5,

16

Independent Set Using Nice Tree Decomp.

Let GG(2) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

_» O
If 2 1s an Introduce ...
with child 7 and X; = Xj U {U}

For each S C X,;: R(:,5) = R(j,5).

Otherwise if v has neighbors in S, R(i,5) = —o¢
if v has no neighbors in S5,

R(i,5) = R(j, S\ {v}) + w(v)

16

Independent Set Using Nice Tree Decomp.

Let GG(2) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

<_O

If 7 is a Forget ...
with child j and X; = X, \ {v}

R(i,S) =

16

Independent Set Using Nice Tree Decomp.

Let GG(2) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

<_O

If 7 is a Forget ...
with child j and X; = X, \ {v}

R(i,5) = max{

16

Independent Set Using Nice Tree Decomp.

Let GG(2) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

<_O

If 7 is a Forget ...
with child j and X; = X, \ {v}

R(i, S) = max{ R(4,S)

16

Independent Set Using Nice Tree Decomp.

Let GG(2) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

<_O

If 7 is a Forget ...
with child j and X; = X, \ {v}

R(i,S) = max{ R(3,5),R(j,SU{v}) }

16

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(3)

Algorithm: Compute R(7,.5) for all 2 and corresponding S.

16

Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

Algorithm: Compute R(7,.5) for all 2 and corresponding S.

Runtime: 7

	(Weighted) Independent Set
	Independent Sets in Trees
	(s,t)-Series-Parallel Graphs
	SP-Tree
	Independent Set on SP-Trees
	Tree Decompostion (formal)
	Treewidth (formal)
	Parameterized Problems
	Computing Treewidth
	Tool \#1: Nice Tree Decompositoins
	Tool \#1: Nice Tree Decompositoins
	Tool \#2: DP (on Nice Tree Decompositions)
	Independent Set Using Nice Tree Decomp.

