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Given: graph GG, weight function w:V — N
Question: What is the maximum weight of a set S C V
where no pair in S is adjacent in G7

Thm. On trees, Independent Set can be solved in linear time.
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Independent Sets in Trees A(w) = solution

Choose an arbitrary root w.
Let T'(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T'(v)

Let B(v) := maximum weight of
an independent set S in T'(v)

where v & S
—If vis a leaf: B(v) =0 and A(v) = w(v)
— If v has children x4, ..., z,:

B(v) = 3251 Alz:); A(v) = max{B(v), w(v) + 3 ;_; B(xi)}

Algorithm: Compute A(-) and B(-) bottom-up!
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(s,1)-Series-Parallel Graphs

Def. A graph G = (V, F) is 2-terminal if it contains two
special vertices s and ¢. recursive definition

Series-parallel graphs have a natural tree structure!

Def. A 2-terminal graph G is series-parallel if:

e (7 is a single edge (s, 1) @—@

e (& is a series composition of two series-parallel graphs

O 06 - O CB ©

1 = So

e (& is a parallel composition of two series-parallel graphs

@ OO -0 O
A k

S1 = S92 t1:t2
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Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(4)

AA(7) := maximum weight of an independent set .S in G(%)
where s, € S and t; € S

BA(%) := maximum weight of an independent set S in G(7)
where s; ¢S and t; € S

AB(i) and BB(%) are defined similarly.
— Other cases omitted... (easy exercise).
— O(1) time per SP-node.

Thm. Given an n-vertex series-parallel graph G with its
SP-tree, INDEPENDENT SET on (G can be solved in

O(n) time.
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Generalization?

Many ways to generalize the concept of having a “tree structure”

Example: k-terminal graph G = (V, E,T), |T| =k
Operation: “gluing”
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Def. A tree decomposition of a graph G = (V, E) is:
e atuple D= (X,T)
e I'=(P,F)is a tree

o X ={X, |pe P} is a set family of subsets of V' ( “bags”;
one for each node in P)

o U X, =V
peP
o V{u,v} € E thereis a p € P such that u,v € X,,.

o Vv eV theset {pe P|ve X,} is connected in T
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Treewidth (formal)

e atuple D= (X,T) e I'= (P F)is a tree

Def. Width (tree decomposition): max,cp | X,| — 1,
I.e., cardinality of the largest bag —1

Def. Treewidth tw(G) is the minimum width of a tree
decomposition of &G

Obs. tw(G) <n
Question: Which graphs have treewidth 07
Exercise: Trees have treewidth 1.

Exercise: Series-parallel graphs have treewidth 2

10



10

Treewidth (formal)

e atuple D= (X,T) e I'= (P F)is a tree

Def. Width (tree decomposition): max,cp | X,| — 1,
I.e., cardinality of the largest bag —1

Def. Treewidth tw(G) is the minimum width of a tree
decomposition of &G

Obs. tw(G) <n
Question: Which graphs have treewidth 07
Exercise: Trees have treewidth 1.

Exercise: Series-parallel graphs have treewidth 2

Thm. There is a tree decomposition of width tw(G)
where the tree size | P| is polynomial in n.
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Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) - poly(n)) time.
O(f(tw(G)) - poly(n)) time.
Ex.: k-VERTEX COVER FPT

k-INDEPENDENT SET
k-DOMINATING SET

k-COLORING NP-comp. & >3

INDEPENDENT SET (TREEWIDTH) FPT
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Computing Treewidth

TREEWIDTH
Given: Graph G = (V, F), number k
Question:  tw(G) < k7

Thm. TREEWIDTH is NP-complete.

k- TREEWIDTH

Given: graph G = (V, F)
Parameter: number &
Question: tw(G) < k7

Thm. k-TREEWIDTH is FPT.

— Actually fixed-parameter linear: runtime O(f(k) - n)
— Algorithm is constructive (provides an optimal tree decomp.)
— How can we make “fixed-treewidth-tractable” algorithms?
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Tool #1: Nice Tree Decompositoins

In a nice tree decomp., one bag is marked as the root and
there are only 4 types of bags:

e Leaf: the bag is a leaf and contains only one vertex

¢ Introduce:
The bag has exactly one child and contains the child’s

vertices and exactly one new vertex. H

e Forget:
The bag has exactly one child and contains

one vertex fewer than the child. H H
e Join:

The bag has exactly two children and these three nodes
have exactly the same vertices



Tool #1: Nice Tree Decompositoins

Thm. For each tree decomposition, there is a nice tree
decomposition of the same width and polynomially
many more bags. The nice decomposition can be

constructed in polynomial time.
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Tool #2: DP (on Nice Tree Decompositions)

k- TREEWIDTH is FPT

Tree decompositions can be made nice in poly-time.

Corollary. For FPT-Algorithms it suffices to consider nice tree
decompositions.

Strategy: Build a recurrence for each type of bag, and use
dynamic programming.
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Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 2 and S C X, let
R(7,S) := maximum welght of an independent set [ in G(4

with INX, =5.

o £ ”

with children 77 and 5
R(i,S) = R(jr,S) + R(j», S) — 3 w(v)

veS
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Let GG(2) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

_» O
If 2 1s an Introduce ...
with child 7 and X; = Xj U {U}

For each S C X,;: R(:,5) = R(j,5).

Otherwise if v has neighbors in S, R(i,5) = —o¢
if v has no neighbors in S5,

R(i,5) = R(j, S\ {v}) + w(v)
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Independent Set Using Nice Tree Decomp.

Let GG(2) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

<_O

If 7 is a Forget ...
with child j and X; = X, \ {v}

R(i,S) = max{ R(3,5),R(j,SU{v}) }
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Independent Set Using Nice Tree Decomp.

Let GG(¢) := graph induced by the vertices in the subtree at 7.

For bag 7 and S C X, let:
R(7,S5) := maximum weight of an independent set I in G(i)

Algorithm: Compute R(7,.5) for all 2 and corresponding S.

Runtime: 7
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