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(Weighted) Independent Set

Given: graph G, weight function ω:V → N
Question: What is the maximum weight of a set S ⊆ V

where no pair in S is adjacent in G?
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(Weighted) Independent Set

Thm. Independent Set is NP-complete.

Thm. On trees, Independent Set can be solved in linear time.

Given: graph G, weight function ω:V → N
Question: What is the maximum weight of a set S ⊆ V

where no pair in S is adjacent in G?
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Independent Sets in Trees

Choose an arbitrary root w.

Let T (v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set S in T (v)

Let B(v) := maximum weight of
an independent set S in T (v)
where v 6∈ S

– If v is a leaf: B(v) = 0 and A(v) = ω(v)

– If v has children x1, . . . , xr:

B(v) =
∑r

i=1 A(xi); A(v) = max{B(v), ω(v) +
∑r

i=1 B(xi)}

Algorithm: Compute A(·) and B(·) bottom-up!

w

A(w) = solution
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(s, t)-Series-Parallel Graphs

A graph G = (V,E) is 2-terminal if it contains two
special vertices s and t.

A 2-terminal graph G is series-parallel if:

• G is a single edge (s, t)

• G is a series composition of two series-parallel graphs

s t

s1 t1 s2 t2+ s1

t1 = s2

t2→

• G is a parallel composition of two series-parallel graphs

s1 t1 + s2 t2 →

s1 = s2 t1 = t2

recursive definition
Series-parallel graphs have a natural tree structure!

Def.

Def.
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Let i be a node in an SP-tree.
G(i) := graph represented by the
subtree rooted at i

iG(i)

si ti
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Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(i)

maximum weight of an independent set S in G(i)
where si ∈ S and ti ∈ S

maximum weight of an independent set S in G(i)
where si 6∈S and ti ∈ S

AB(i) and BB(i) are defined similarly.

– Other cases omitted... (easy exercise).

– O(1) time per SP-node.

Given an n-vertex series-parallel graph G with its
SP-tree, Independent Set on G can be solved in
O(n) time.

Thm.

AA(i) :=

BA(i) :=
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Generalization?

Many ways to generalize the concept of having a “tree structure”

Example: k-terminal graph G = (V,E, T ), |T | = k

+ →

Operation: “gluing”



8

Example: Tree Decomposition
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Graph G = (V,E): Tree Decomposition:

A tree decomposition is a tree whose nodes map to subsets
of V so that...

“bags”

d
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Def. A tree decomposition of a graph G = (V,E) is:

• a tuple D = (X,T )

• T = (P, F ) is a tree

• X = {Xp | p ∈ P} is a set family of subsets of V (“bags”;
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•
⋃
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Xp = V

• ∀{u, v} ∈ E there is a p ∈ P such that u, v ∈ Xp.
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Tree Decompostion (formal)

Def. A tree decomposition of a graph G = (V,E) is:

• a tuple D = (X,T )

• T = (P, F ) is a tree

• X = {Xp | p ∈ P} is a set family of subsets of V (“bags”;
one for each node in P )

•
⋃
p∈P

Xp = V

• ∀{u, v} ∈ E there is a p ∈ P such that u, v ∈ Xp.

• ∀v ∈ V the set {p ∈ P | v ∈ Xp} is connected in T .
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Treewidth (formal)

Def. Width (tree decomposition): maxp∈P |Xp| − 1,
i.e., cardinality of the largest bag −1

Def. Treewidth tw(G) is the minimum width of a tree
decomposition of G

Exercise:

Obs.

• a tuple D = (X,T ) • T = (P, F ) is a tree

Question: Which graphs have treewidth 0? E = ∅

?!

tw(G) < n

Trees have treewidth 1.
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Def. Width (tree decomposition): maxp∈P |Xp| − 1,
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Def. Treewidth tw(G) is the minimum width of a tree
decomposition of G
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Series-parallel graphs have treewidth 2
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Question: Which graphs have treewidth 0?
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Treewidth (formal)

Def. Width (tree decomposition): maxp∈P |Xp| − 1,
i.e., cardinality of the largest bag −1

Def. Treewidth tw(G) is the minimum width of a tree
decomposition of G

There is a tree decomposition of width tw(G)
where the tree size |P | is polynomial in n.

Exercise:

Series-parallel graphs have treewidth 2

Obs.

• a tuple D = (X,T ) • T = (P, F ) is a tree

Question: Which graphs have treewidth 0?

Thm.

tw(G) < n

Trees have treewidth 1.

Exercise:
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Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in O(f(k) · poly(n)) time.

Ex.: k-Vertex Cover

k-Coloring

k-Independent Set

k-Dominating Set

FPT

W [1]-comp.

W [2]-comp.

NP-comp. k ≥ 3

Independent Set (treewidth) FPT

List Coloring (treewidth) W [1]-comp.

Channel Assignment (treewidth) NP-comp. k ≥ 3

O(f(tw(G)) · poly(n)) time.
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Computing Treewidth

Thm. k-Treewidth is FPT.

k-Treewidth
Given: graph G = (V,E)
Parameter: number k
Question: tw(G) ≤ k?

– Algorithm is constructive (provides an optimal tree decomp.)

– Actually fixed-parameter linear : runtime O(f(k) · n)

Treewidth
Given: Graph G = (V,E), number k
Question: tw(G) ≤ k?

Thm. Treewidth is NP-complete.

– How can we make “fixed-treewidth-tractable” algorithms?
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Tool #1: Nice Tree Decompositoins

In a nice tree decomp., one bag is marked as the root and
there are only 4 types of bags:

• Leaf: the bag is a leaf and contains only one vertex

• Introduce:
The bag has exactly one child and contains the child’s
vertices and exactly one new vertex.

• Forget:
The bag has exactly one child and contains
one vertex fewer than the child.

• Join:
The bag has exactly two children and these three nodes
have exactly the same vertices

B

B B



14

Tool #1: Nice Tree Decompositoins

a, b, c

a, c, f

a, f, g

g, h

c, d, e

For each tree decomposition, there is a nice tree
decomposition of the same width and polynomially
many more bags. The nice decomposition can be
constructed in polynomial time.

Thm.
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Tool #1: Nice Tree Decompositoins

c, d

c

a, b, c

a, c

a, c, f

a, f, g

g, h

c, d, e

Introduce b

Forget f

a, c, f

a, c, f

Join

a, c

Introduce f

Introduce a

Forget d

Forget e

Introduce e

c, d Introduce d

etc.
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Tool #2: DP (on Nice Tree Decompositions)

Corollary. For FPT-Algorithms it suffices to consider nice tree
decompositions.

Thm. k-Treewidth is FPT

Thm. Tree decompositions can be made nice in poly-time.

Strategy: Build a recurrence for each type of bag, and use
dynamic programming.
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Let G(i) := graph induced by the vertices in the subtree at i.

c, d

c

a, b, c

a, c

a, c, f

c, d, e

Introduce b

Forget f

a, c, f

a, c, f

Join

a, c

Introduce f

Introduce a

Forget d

Forget e

Introduce e

c, d Introduce d

a

b

c

g h

f

d e

i

G(i)
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R(i, S) :=

with I ∩Xi = S.

If i is a Leaf ...

Sei Xi = {v}.

R(i, {v}) =
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Independent Set Using Nice Tree Decomp.

Let G(i) := graph induced by the vertices in the subtree at i.

For bag i and S ⊆ Xi, let:

R(i, S) :=

with I ∩Xi = S.
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For bag i and S ⊆ Xi, let:

R(i, S) :=

with I ∩Xi = S.

If i is a Join ...

+ →

with children j1 and j2
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Independent Set Using Nice Tree Decomp.

Let G(i) := graph induced by the vertices in the subtree at i.

For bag i and S ⊆ Xi, let:

R(i, S) :=

with I ∩Xi = S.

If i is a Join ...

+ →

with children j1 and j2

R(i, S) = R(j1, S) + R(j2, S) −
∑
v∈S

ω(v)
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maximum weight of an independent set I in G(i)
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Let G(i) := graph induced by the vertices in the subtree at i.

For bag i and S ⊆ Xi, let:
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If i is an Introduce ...

with child j and Xi = Xj ∪ {v}
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Independent Set Using Nice Tree Decomp.

Let G(i) := graph induced by the vertices in the subtree at i.

For bag i and S ⊆ Xi, let:

R(i, S) :=

with I ∩Xi = S.

If i is a Forget ...

with child j and Xi = Xj \ {v}

R(i, S) = max{ R(j, S) , R(j, S ∪ {v}) }

maximum weight of an independent set I in G(i)
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Let G(i) := graph induced by the vertices in the subtree at i.

For bag i and S ⊆ Xi, let:

R(i, S) :=
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Independent Set Using Nice Tree Decomp.

Let G(i) := graph induced by the vertices in the subtree at i.

For bag i and S ⊆ Xi, let:

R(i, S) :=

with I ∩Xi = S.

Compute R(i, S) for all i and corresponding S.

Runtime: ?

Algorithm:

maximum weight of an independent set I in G(i)
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