UNIVERSITÄT WÜRZBURG

Exact Algorithms

Sommer Term 2020
Lecture 11 Tree Decomposition
Based on: [Parameterized Algorithms: §7.2, 7.3.1]
(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

(Weighted) Independent Set

Given:
graph G, weight function $\omega: V \rightarrow \mathbb{N}$
Question:
What is the maximum weight of a set $S \subseteq V$ where no pair in S is adjacent in G ?

(Weighted) Independent Set

Given: \quad graph G, weight function $\omega: V \rightarrow \mathbb{N}$
Question: What is the maximum weight of a set $S \subseteq V$ where no pair in S is adjacent in G ?

Thm. Independent Set is NP-complete.

(Weighted) Independent Set

Given: \quad graph G, weight function $\omega: V \rightarrow \mathbb{N}$
Question: What is the maximum weight of a set $S \subseteq V$ where no pair in S is adjacent in G ?

Thm. Independent Set is NP-complete.
Thm. On trees, Independent Set can be solved in linear time.

Independent Sets in Trees

Choose an arbitrary root w.

Independent Sets in Trees

Choose an arbitrary root w.
Let $T(v):=$ subtree rooted at v

Independent Sets in Trees

Choose an arbitrary root w. Let $T(v):=$ subtree rooted at v Let $A(v):=$ maximum weight of an independent set S in $T(v)$

Independent Sets in Trees

Choose an arbitrary root w. Let $T(v):=$ subtree rooted at v Let $A(v):=$ maximum weight of an independent set S in $T(v)$

Independent Sets in Trees

Choose an arbitrary root w. Let $T(v):=$ subtree rooted at v Let $A(v):=$ maximum weight of an independent set S in $T(v)$

Let $B(v):=$ maximum weight of an independent set S in $T(v)$ where $v \notin S$

Independent Sets in Trees

Choose an arbitrary root w. Let $T(v):=$ subtree rooted at v Let $A(v):=$ maximum weight of an independent set S in $T(v)$
Let $B(v):=$ maximum weight of an independent set S in $T(v)$ where $v \notin S$

- If v is a leaf: $B(v)=$

Independent Sets in Trees

Choose an arbitrary root w. Let $T(v):=$ subtree rooted at v Let $A(v):=$ maximum weight of an independent set S in $T(v)$

Let $B(v):=$ maximum weight of an independent set S in $T(v)$
 where $v \notin S$

- If v is a leaf: $B(v)=0$ and $A(v)=$

Independent Sets in Trees

Choose an arbitrary root w. Let $T(v):=$ subtree rooted at v Let $A(v):=$ maximum weight of an independent set S in $T(v)$

Let $B(v):=$ maximum weight of an independent set S in $T(v)$
 where $v \notin S$

- If v is a leaf: $B(v)=0$ and $A(v)=\omega(v)$

Independent Sets in Trees

Choose an arbitrary root w. Let $T(v):=$ subtree rooted at v Let $A(v):=$ maximum weight of an independent set S in $T(v)$

Let $B(v):=$ maximum weight of an independent set S in $T(v)$
 where $v \notin S$

- If v is a leaf: $B(v)=0$ and $A(v)=\omega(v)$
- If v has children x_{1}, \ldots, x_{r} :
$B(v)=$

Independent Sets in Trees

Choose an arbitrary root w. Let $T(v):=$ subtree rooted at v Let $A(v):=$ maximum weight of an independent set S in $T(v)$

Let $B(v):=$ maximum weight of an independent set S in $T(v)$
 where $v \notin S$

- If v is a leaf: $B(v)=0$ and $A(v)=\omega(v)$
- If v has children x_{1}, \ldots, x_{r} :

$$
B(v)=\sum_{i=1}^{r} A\left(x_{i}\right) ;
$$

Independent Sets in Trees

Choose an arbitrary root w. Let $T(v):=$ subtree rooted at v Let $A(v):=$ maximum weight of an independent set S in $T(v)$

Let $B(v):=$ maximum weight of an independent set S in $T(v)$
 where $v \notin S$

- If v is a leaf: $B(v)=0$ and $A(v)=\omega(v)$
- If v has children x_{1}, \ldots, x_{r} :

$$
B(v)=\sum_{i=1}^{r} A\left(x_{i}\right) ; A(v)=
$$

Independent Sets in Trees

Choose an arbitrary root w. Let $T(v):=$ subtree rooted at v Let $A(v):=$ maximum weight of an independent set S in $T(v)$

Let $B(v):=$ maximum weight of an independent set S in $T(v)$
 where $v \notin S$

- If v is a leaf: $B(v)=0$ and $A(v)=\omega(v)$
- If v has children x_{1}, \ldots, x_{r} :

$$
B(v)=\sum_{i=1}^{r} A\left(x_{i}\right) ; A(v)=\max \{B(v),
$$

Independent Sets in Trees

Choose an arbitrary root w. Let $T(v):=$ subtree rooted at v Let $A(v):=$ maximum weight of an independent set S in $T(v)$
Let $B(v):=$ maximum weight of an independent set S in $T(v)$
 where $v \notin S$

- If v is a leaf: $B(v)=0$ and $A(v)=\omega(v)$
- If v has children x_{1}, \ldots, x_{r} :

$$
B(v)=\sum_{i=1}^{r} A\left(x_{i}\right) ; A(v)=\max \left\{B(v), \omega(v)+\sum_{i=1}^{r} B\left(x_{i}\right)\right\}
$$

Independent Sets in Trees

Choose an arbitrary root w. Let $T(v):=$ subtree rooted at v Let $A(v):=$ maximum weight of an independent set S in $T(v)$
Let $B(v):=$ maximum weight of an independent set S in $T(v)$ where $v \notin S$

- If v is a leaf: $B(v)=0$ and $A(v)=\omega(v)$
- If v has children x_{1}, \ldots, x_{r} :

$$
B(v)=\sum_{i=1}^{r} A\left(x_{i}\right) ; A(v)=\max \left\{B(v), \omega(v)+\sum_{i=1}^{r} B\left(x_{i}\right)\right\}
$$

Algorithm: Compute $A(\cdot)$ and $B(\cdot)$ bottom-up!
(s, t)-Series-Parallel Graphs
Def. A graph $G=(V, E)$ is 2-terminal if it contains two special vertices s and t.

(s, t)-Series-Parallel Graphs

Def. A graph $G=(V, E)$ is 2-terminal if it contains two special vertices s and t.

Def. A 2-terminal graph G is series-parallel if:

- G is a single edge (s, t)

(s, t)-Series-Parallel Graphs

Def. A graph $G=(V, E)$ is 2-terminal if it contains two special vertices s and t.

Def. A 2-terminal graph G is series-parallel if:

- G is a single edge (s, t)

- G is a series composition of two series-parallel graphs

(s, t)-Series-Parallel Graphs

Def. A graph $G=(V, E)$ is 2-terminal if it contains two special vertices s and t.

Def. A 2-terminal graph G is series-parallel if:

- G is a single edge (s, t)

- G is a series composition of two series-parallel graphs

(s, t)-Series-Parallel Graphs

Def. A graph $G=(V, E)$ is 2-terminal if it contains two special vertices s and t.

Def. A 2-terminal graph G is series-parallel if:

- G is a single edge (s, t)

- G is a series composition of two series-parallel graphs

- G is a parallel composition of two series-parallel graphs
(1)
(1) + (8)
(t2) \rightarrow

(s, t)-Series-Parallel Graphs

Def. A graph $G=(V, E)$ is 2-terminal if it contains two special vertices s and t.

Def. A 2-terminal graph G is series-parallel if:

- G is a single edge (s, t)

- G is a series composition of two series-parallel graphs

- G is a parallel composition of two series-parallel graphs

(s, t)-Series-Parallel Graphs

Def. A graph $G=(V, E)$ is 2-terminal if it contains two special vertices s and t.

Def. A 2-terminal graph G is series-parallel if:

- G is a single edge (s, t) (S)-

- G is a series composition of two series-parallel graphs

- G is a parallel composition of two series-parallel graphs

(s, t)-Series-Parallel Graphs

Def. A graph $G=(V, E)$ is 2-terminal if it contains two special vertices s and t.

Def. A 2-terminal graph G is series-parallel if:

- G is a single edge (s, t)

- G is a series composition of two series-parallel graphs
- G is a parallel composition of two series-parallel graphs

SP-Tree
(s)

SP-Tree

(s) t

SP-Tree

$s \rightarrow t$

(s) t

SP-Tree

(s)

SP-Tree

SP-Tree

SP-Tree

Let i be a node in an SP-tree. $G(i):=$ graph represented by the subtree rooted at i

SP-Tree

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a leaf...

$B B(i)=$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a leaf...

$B B(i)=0$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a leaf...

$B A(i)=$
$B B(i)=0$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a leaf...

$B A(i)=\omega\left(t_{i}\right)$
$B B(i)=0$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a leaf...
$A B(i)=$
$B A(i)=\omega\left(t_{i}\right)$
$B B(i)=0$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a leaf...
$A B(i)=\omega\left(s_{i}\right)$

$B A(i)=\omega\left(t_{i}\right)$
$B B(i)=0$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a leaf...
$A A(i)=$
$A B(i)=\omega\left(s_{i}\right)$
$B A(i)=\omega\left(t_{i}\right)$
$B B(i)=0$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a leaf...
$A A(i)=-\infty$
$A B(i)=\omega\left(s_{i}\right)$
$B A(i)=\omega\left(t_{i}\right)$
$B B(i)=0$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a series composition with children x and y, \ldots

t_{y}
$A A(i)=$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a series composition with children x and y, \ldots

t_{y}
$A A(i)=\max \{$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a series composition with children x and y, \ldots
$A A(i)=\max \{A B(x)+B A(y)$,

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a series composition with children x and y, \ldots
$A A(i)=\max \{A B(x)+\underset{\sim}{B} A(y)$,

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a series composition with children x and y, \ldots

t_{y}
$A A(i)=\max \left\{A B(x)+\underset{\sim}{B} A(y), A A(x)+A A(y)-\omega\left(t_{x}\right)\right\}$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- If i is a series composition with children x and y, \ldots

ty
$A A(i)=\max \left\{A B(x)+\underset{\sim}{B} A(y), A A(x)+A A(y)-\omega\left(t_{x}\right)\right\}$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- Other cases omitted... (easy exercise).

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- Other cases omitted... (easy exercise).
- $O(1)$ time per SP-node.

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by $G(i)$
$A A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \in S$ and $t_{i} \in S$
$B A(i):=$ maximum weight of an independent set S in $G(i)$ where $s_{i} \notin S$ and $t_{i} \in S$
$A B(i)$ and $B B(i)$ are defined similarly.

- Other cases omitted... (easy exercise).
- $O(1)$ time per SP-node.

Thm. Given an n-vertex series-parallel graph G with its SP-tree, Independent Set on G can be solved in $O(n)$ time.

Generalization?

Many ways to generalize the concept of having a "tree structure"
Example: k-terminal graph $G=(V, E, T),|T|=k$

Generalization?

Many ways to generalize the concept of having a "tree structure"
Example: k-terminal graph $G=(V, E, T),|T|=k$

Generalization?

Many ways to generalize the concept of having a "tree structure"
Example: k-terminal graph $G=(V, E, T),|T|=k$

Generalization?

Many ways to generalize the concept of having a "tree structure"
Example: k-terminal graph $G=(V, E, T),|T|=k$
Operation: "gluing"

Example: Tree Decomposition

A tree decomposition is a tree whose nodes map to subsets of V so that...

Graph $G=(V, E)$:

Tree Decomposition:

Example: Tree Decomposition

1 each vertex belongs to at least one bag these bags are connected

Graph $G=(V, E)$:
Tree Decomposition:

Example: Tree Decomposition

1 each vertex belongs to at least one bag these bags are connected

Graph $G=(V, E)$:
Tree Decomposition:

Example: Tree Decomposition

1 each vertex belongs to at least one bag these bags are connected

Graph $G=(V, E)$:
Tree Decomposition:

Example: Tree Decomposition

 each edge is contained in at least one bagGraph $G=(V, E)$:
Tree Decomposition:

Example: Tree Decomposition

each edge is contained in at least one bag

Graph $G=(V, E)$:
Tree Decomposition:

Example: Tree Decomposition

Graph $G=(V, E)$:

Tree Decomposition:

Example: Tree Decomposition

Graph $G=(V, E)$:

Example: Tree Decomposition

Graph $G=(V, E)$:

Tree Decomposition:

Example: Tree Decomposition

Graph $G=(V, E)$:

Example: Tree Decomposition

Graph $G=(V, E)$:

Tree Decomposition:

Example: Tree Decomposition

Graph $G=(V, E)$:

Example: Tree Decomposition

Graph $G=(V, E)$:

Tree Decomposition:

$$
\{b, d\} \notin E
$$

Example: Tree Decomposition

Graph $G=(V, E)$:

Tree Decomposition:

$$
\{b, d\} \notin E
$$

Example: Tree Decomposition

Graph $G=(V, E)$:

Tree Decomposition:

Tree Decompostion (formal)

Def. A tree decomposition of a graph $G=(V, E)$ is:

- a tuple $D=(X, T)$

Tree Decompostion (formal)

Def. A tree decomposition of a graph $G=(V, E)$ is:

- a tuple $D=(X, T)$
- $T=(P, F)$ is a tree

Tree Decompostion (formal)

Def. A tree decomposition of a graph $G=(V, E)$ is:

- a tuple $D=(X, T)$
- $T=(P, F)$ is a tree
- $X=\left\{X_{p} \mid p \in P\right\}$ is a set family of subsets of V ("bags"; one for each node in P)

Tree Decompostion (formal)

Def. A tree decomposition of a graph $G=(V, E)$ is:

- a tuple $D=(X, T)$
- $T=(P, F)$ is a tree
- $X=\left\{X_{p} \mid p \in P\right\}$ is a set family of subsets of V ("bags"; one for each node in P)
- $\bigcup_{p \in P} X_{p}=V$

Tree Decompostion (formal)

Def. A tree decomposition of a graph $G=(V, E)$ is:

- a tuple $D=(X, T)$
- $T=(P, F)$ is a tree
- $X=\left\{X_{p} \mid p \in P\right\}$ is a set family of subsets of V ("bags"; one for each node in P)
- $\bigcup_{p \in P} X_{p}=V$
- $\forall\{u, v\} \in E$ there is a $p \in P$ such that $u, v \in X_{p}$.

Tree Decompostion (formal)

Def. A tree decomposition of a graph $G=(V, E)$ is:

- a tuple $D=(X, T)$
- $T=(P, F)$ is a tree
- $X=\left\{X_{p} \mid p \in P\right\}$ is a set family of subsets of V ("bags"; one for each node in P)
- $\bigcup_{p \in P} X_{p}=V$
- $\forall\{u, v\} \in E$ there is a $p \in P$ such that $u, v \in X_{p}$.
- $\forall v \in V$ the set $\left\{p \in P \mid v \in X_{p}\right\}$ is connected in T.

Treewidth (formal)

- a tuple $D=(X, T) \quad$ - $T=(P, F)$ is a tree

Def. Width (tree decomposition): $\max _{p \in P}\left|X_{p}\right|-1$, i.e., cardinality of the largest bag -1

Treewidth (formal)

- a tuple $D=(X, T) \quad$ - $T=(P, F)$ is a tree

Def. Width (tree decomposition): $\max _{p \in P}\left|X_{p}\right|-1$? ?!
i.e., cardinality of the largest bag -1

Treewidth (formal)

- a tuple $D=(X, T) \quad$ - $T=(P, F)$ is a tree

Def. Width (tree decomposition): $\max _{p \in P}\left|X_{p}\right|-1$, i.e., cardinality of the largest bag -1

Def. Treewidth $\operatorname{tw}(G)$ is the minimum width of a tree decomposition of G

Treewidth (formal)

- a tuple $D=(X, T) \quad$ - $T=(P, F)$ is a tree

Def. Width (tree decomposition): $\max _{p \in P}\left|X_{p}\right|-1$, i.e., cardinality of the largest bag -1

Def. Treewidth $\operatorname{tw}(G)$ is the minimum width of a tree decomposition of G

Obs. $\quad \operatorname{tw}(G)<n$

Treewidth (formal)

- a tuple $D=(X, T) \quad$ - $T=(P, F)$ is a tree

Def. Width (tree decomposition): $\max _{p \in P}\left|X_{p}\right|-1$, i.e., cardinality of the largest bag -1

Def. Treewidth $\operatorname{tw}(G)$ is the minimum width of a tree decomposition of G
Obs. $\quad \mathrm{tw}(G)<n$
Question: Which graphs have treewidth 0?

Treewidth (formal)

- a tuple $D=(X, T) \quad$ - $T=(P, F)$ is a tree

Def. Width (tree decomposition): $\max _{p \in P}\left|X_{p}\right|-1$, i.e., cardinality of the largest bag -1

Def. Treewidth $\operatorname{tw}(G)$ is the minimum width of a tree decomposition of G
Obs. $\quad \mathrm{tw}(G)<n$
Question: Which graphs have treewidth 0 ? $\quad E=\varnothing$

Treewidth (formal)

- a tuple $D=(X, T)$ - $T=(P, F)$ is a tree

Def. Width (tree decomposition): $\max _{p \in P}\left|X_{p}\right|-1$? ?! i.e., cardinality of the largest bag -1

Def. Treewidth $\operatorname{tw}(G)$ is the minimum width of a tree decomposition of G
Obs. $\quad \operatorname{tw}(G)<n$
Question: Which graphs have treewidth 0 ? $\quad E=\varnothing$
Exercise: Trees have treewidth 1.

Treewidth (formal)

- a tuple $D=(X, T) \quad$ - $T=(P, F)$ is a tree

Def. Width (tree decomposition): $\max _{p \in P}\left|X_{p}\right|-1$, i.e., cardinality of the largest bag -1

Def. Treewidth $\operatorname{tw}(G)$ is the minimum width of a tree decomposition of G
Obs. $\quad \mathrm{tw}(G)<n$
Question: Which graphs have treewidth 0?
Exercise: Trees have treewidth 1.
Exercise: Series-parallel graphs have treewidth 2

Treewidth (formal)

- a tuple $D=(X, T) \quad$ - $T=(P, F)$ is a tree

Def. Width (tree decomposition): $\max _{p \in P}\left|X_{p}\right|-1$, i.e., cardinality of the largest bag -1

Def. Treewidth $\operatorname{tw}(G)$ is the minimum width of a tree decomposition of G
Obs. $\quad \operatorname{tw}(G)<n$
Question: Which graphs have treewidth 0?
Exercise: Trees have treewidth 1.
Exercise: Series-parallel graphs have treewidth 2
Thm. There is a tree decomposition of width $\mathrm{tw}(G)$ where the tree size $|P|$ is polynomial in n.

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time.

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time.

Ex.: k-Vertex Cover

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time.

Ex.: k-Vertex Cover

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time.

Ex.: k-Vertex Cover
k-Independent Set

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time.

Ex.: k-Vertex Cover
k-Independent Set
W [1]-comp.

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time.

Ex.: k-Vertex Cover
k-Independent Set
W[1]-comp.
k-Dominating Set

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time.

Ex.: k-Vertex Cover
FPT
k-Independent Set
k-Dominating Set
W [1]-comp.
$W[2]-c o m p$.

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time.

Ex.: k-Vertex Cover
k-Independent Set
k-Dominating Set
W [1]-comp.
W[2]-comp.
k-Coloring

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time.

Ex.: k-Vertex Cover k-Independent Set
k-Dominating Set
k-Coloring

FPT
W [1]-comp.
W [2]-comp.
NP-comp. $k \geq 3$

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time.

Ex.: k-Vertex Cover
k-Independent Set
k-Dominating Set
k-Coloring
"natural parameterization"

FPT
W [1]-comp.
W [2]-comp.
NP-comp. $k \geq 3$

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time.

Ex.: k-Vertex Cover
k-Independent Set
k-Dominating Set
k-Coloring
Independent Set (treewidth)
Given: Graph G, number k
Parameter: $\operatorname{tw}(G)$
Question: Does G have an independent set of size $\geq k$?

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time. $O(f(\operatorname{tw}(G)) \cdot \operatorname{poly}(n))$ time.

Ex.: k-Vertex Cover
k-Independent Set
k-Dominating Set
k-Coloring

FPT
W [1]-comp.
$W[2]$-comp.
NP-comp. $k \geq 3$
Independent Set (Treewidth)
Given: Graph G, number k
Parameter: $\operatorname{tw}(G)$
Question: Does G have an independent set of size $\geq k$?

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time. $O(f(\operatorname{tw}(G)) \cdot \operatorname{poly}(n))$ time.
Ex.: k-Vertex Cover FPT
k-Independent Set
k-Dominating Set
k-Coloring
W [1]-comp.
W [2]-comp.
NP-comp. $k \geq 3$
Independent Set (treewidth)
FPT
Given: Graph G, number k
Parameter: $\operatorname{tw}(G)$
Question: Does G have an independent set of size $\geq k$?

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time. $O(f(\operatorname{tw}(G)) \cdot \operatorname{poly}(n))$ time.
Ex.: k-Vertex Cover FPT
k-Independent Set
k-Dominating Set
k-Coloring
W [1]-comp.
W [2]-comp.
NP-comp. $k \geq 3$
Independent Set (treewidth)
FPT
List Coloring (TREEWIDTh)

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time. $O(f(\operatorname{tw}(G)) \cdot \operatorname{poly}(n))$ time.
Ex.: k-Vertex Cover FPT
k-Independent Set
k-Dominating Set
k-Coloring
W [1]-comp.
$W[2]-c o m p$.
NP-comp. $k \geq 3$
Independent Set (treewidth)
FPT
List Coloring (TREEWIDth)
W[1]-comp.

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time. $O(f(\operatorname{tw}(G)) \cdot \operatorname{poly}(n))$ time.
Ex.: k-Vertex Cover FPT
k-Independent Set
k-Dominating Set
k-Coloring
W [1]-comp.
$W[2]-c o m p$.
NP-comp. $k \geq 3$
Independent Set (treewidth)
FPT
List Coloring (treewidth)
W[1]-comp.
Channel Assignment (treewidth)

Parameterized Problems

Given: Instance of size n and parameter k
Def. Problem is FPT when solvable in $O(f(k) \cdot \operatorname{poly}(n))$ time. $O(f(\operatorname{tw}(G)) \cdot \operatorname{poly}(n))$ time.

Ex.: k-Vertex Cover
k-Independent Set
k-Dominating Set
k-Coloring
Independent Set (treewidth)
List Coloring (treewidth)
Channel Assignment (treewidth) NP-comp. $k \geq 3$

Computing Treewidth

Treewidth
Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \operatorname{tw}(G) \leq k$?

Computing Treewidth

Treewidth
Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \operatorname{tw}(G) \leq k$?
Thm. Treewidth is NP-complete.

Computing Treewidth

Treewidth
Given: \quad Graph $G=(V, E)$, number k
Question: $\operatorname{tw}(G) \leq k$?
Thm. Treewidth is NP-complete.
k-Treewidth
Given: \quad graph $G=(V, E)$
Parameter: number k
Question: $\quad \operatorname{tw}(G) \leq k$?

Computing Treewidth

Treewidth
Given: \quad Graph $G=(V, E)$, number k
Question: $\operatorname{tw}(G) \leq k$?
Thm. Treewidth is NP-complete.
k-Treewidth
Given: \quad graph $G=(V, E)$
Parameter: number k
Question: $\quad \operatorname{tw}(G) \leq k$?
Thm. k-Treewidth is FPT.

Computing Treewidth

Treewidth
Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \operatorname{tw}(G) \leq k$?
Thm. Treewidth is NP-complete.
k-TREEWIDTH
Given: \quad graph $G=(V, E)$
Parameter: number k
Question: $\quad \operatorname{tw}(G) \leq k$?
Thm. k-Treewidth is FPT.

- Actually fixed-parameter linear: runtime $O(f(k) \cdot n)$

Computing Treewidth

Treewidm
Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \operatorname{tw}(G) \leq k$?
Thm. Treewidth is NP-complete.
k-TREEWIDTH
Given: \quad graph $G=(V, E)$
Parameter: number k
Question: $\quad \operatorname{tw}(G) \leq k$?
Thm. k-Treewidth is FPT.

- Actually fixed-parameter linear: runtime $O(f(k) \cdot n)$
- Algorithm is constructive (provides an optimal tree decomp.)

Computing Treewidth

Treewidth
Given: \quad Graph $G=(V, E)$, number k
Question: $\quad \operatorname{tw}(G) \leq k$?
Thm. Treewidth is NP-complete.
k-TREEWIDTH
Given: \quad graph $G=(V, E)$
Parameter: number k
Question: $\quad \operatorname{tw}(G) \leq k$?
Thm. k-Treewidth is FPT.

- Actually fixed-parameter linear: runtime $O(f(k) \cdot n)$
- Algorithm is constructive (provides an optimal tree decomp.)
- How can we make "fixed-treewidth-tractable" algorithms?

Tool \#1: Nice Tree Decompositoins

In a nice tree decomp., one bag is marked as the root and there are only 4 types of bags:

Tool \#1: Nice Tree Decompositoins

In a nice tree decomp., one bag is marked as the root and there are only 4 types of bags:

- Leaf: the bag is a leaf and contains only one vertex

Tool \#1: Nice Tree Decompositoins

In a nice tree decomp., one bag is marked as the root and there are only 4 types of bags:

- Leaf: the bag is a leaf and contains only one vertex
- Introduce:

The bag has exactly one child and contains the child's vertices and exactly one new vertex.

Tool \#1: Nice Tree Decompositoins

In a nice tree decomp., one bag is marked as the root and there are only 4 types of bags:

- Leaf: the bag is a leaf and contains only one vertex
- Introduce:

The bag has exactly one child and contains the child's vertices and exactly one new vertex.

- Forget:

The bag has exactly one child and contains one vertex fewer than the child.

Tool \#1: Nice Tree Decompositoins

In a nice tree decomp., one bag is marked as the root and there are only 4 types of bags:

- Leaf: the bag is a leaf and contains only one vertex
- Introduce:

The bag has exactly one child and contains the child's vertices and exactly one new vertex.

- Forget:

The bag has exactly one child and contains one vertex fewer than the child.

- Join:

The bag has exactly two children and these three nodes have exactly the same vertices

Tool \#1: Nice Tree Decompositoins

Thm. For each tree decomposition, there is a nice tree decomposition of the same width and polynomially many more bags. The nice decomposition can be constructed in polynomial time.

Tool \#1: Nice Tree Decompositoins

Tool \#1: Nice Tree Decompositoins

Tool \#1: Nice Tree Decompositoins

Tool \#1: Nice Tree Decompositoins

Tool \#1: Nice Tree Decompositoins

Tool \#1: Nice Tree Decompositoins

Tool \#1: Nice Tree Decompositoins

Tool \#1: Nice Tree Decompositoins

Tool \#1: Nice Tree Decompositoins

Tool \#2: DP (on Nice Tree Decompositions)
Thm. k-Treewidth is FPT

Tool \#2: DP (on Nice Tree Decompositions)

Thm. k-TREEWIDTH is FPT
Thm. Tree decompositions can be made nice in poly-time.

Tool \#2: DP (on Nice Tree Decompositions)

Thm. k-Treewidth is FPT
Thm. Tree decompositions can be made nice in poly-time.

Corollary. For FPT-Algorithms it suffices to consider nice tree decompositions.

Tool \#2: DP (on Nice Tree Decompositions)

Thm. k-TREEWIDTH is FPT
Thm. Tree decompositions can be made nice in poly-time.

Corollary. For FPT-Algorithms it suffices to consider nice tree decompositions.

Strategy: Build a recurrence for each type of bag, and use dynamic programming.

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.

Independent Set Using Nice Tree Decomp. Let $G(i):=$ graph induced by the vertices in the subtree at i.
a, b, c Introduce b
a, c Forget f
a, c, f Join
a, c, f
a, c, f Introduce f
a, c Introduce a
(d)

c Forget d
c, d Forget e
c, d, e Introduce e

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is a Leaf ...

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is a Leaf ...

$$
\begin{aligned}
& \text { Sei } X_{i}=\{v\} . \\
& R(i,\{v\})=
\end{aligned}
$$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is a Leaf ...

$$
\begin{aligned}
& \text { Sei } X_{i}=\{v\} . \\
& R(i,\{v\})=\omega(v)
\end{aligned}
$$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is a Leaf ...

$$
\begin{aligned}
& \text { Sei } X_{i}=\{v\} . \\
& R(i,\{v\})=\omega(v) \\
& R(i, \varnothing)=
\end{aligned}
$$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is a Leaf ...

$$
\begin{aligned}
& \text { Sei } X_{i}=\{v\} . \\
& R(i,\{v\})=\omega(v) \\
& R(i, \varnothing)=0
\end{aligned}
$$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is a Join ...
with children j_{1} and j_{2}
 $R(i, S)=$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is a Join ...

with children j_{1} and j_{2}

$$
R(i, S)=R\left(j_{1}, S\right)+R\left(j_{2}, S\right)
$$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is a Join ...
with children j_{1} and j_{2}

$$
R(i, S)=R\left(j_{1}, S\right)+R\left(j_{2}, S\right)-\sum_{v \in S} \omega(v)
$$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is an Introduce ... with child j and $X_{i}=X_{j} \cup\{v\}$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is an Introduce ...
with child j and $X_{i}=X_{j} \cup\{v\}$

For each $S \subseteq X_{j}: R(i, S)=R(j, S)$.

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is an Introduce ... with child j and $X_{i}=X_{j} \cup\{v\}$

For each $S \subseteq X_{j}: R(i, S)=R(j, S)$.
Otherwise if v has neighbors in $S, R(i, S)=-\infty$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is an Introduce ...
with child j and $X_{i}=X_{j} \cup\{v\}$

For each $S \subseteq X_{j}: R(i, S)=R(j, S)$.
Otherwise if v has neighbors in $S, R(i, S)=-\infty$ if v has no neighbors in S,

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is an Introduce ... with child j and $X_{i}=X_{j} \cup\{v\}$

For each $S \subseteq X_{j}: R(i, S)=R(j, S)$.
Otherwise if v has neighbors in $S, R(i, S)=-\infty$ if v has no neighbors in S,

$$
R(i, S)=R(j, S \backslash\{v\})+\omega(v)
$$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is a Forget ...
with child j and $X_{i}=X_{j} \backslash\{v\}$
 $R(i, S)=$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is a Forget ...
with child j and $X_{i}=X_{j} \backslash\{v\}$
 $R(i, S)=\max \{$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is a Forget ...
with child j and $X_{i}=X_{j} \backslash\{v\}$

$$
R(i, S)=\max \{R(j, S)
$$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

If i is a Forget ...
with child j and $X_{i}=X_{j} \backslash\{v\}$ $R(i, S)=\max \{R(j, S), R(j, S \cup\{v\})\}$

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

Algorithm: Compute $R(i, S)$ for all i and corresponding S.

Independent Set Using Nice Tree Decomp.

Let $G(i):=$ graph induced by the vertices in the subtree at i.
For bag i and $S \subseteq X_{i}$, let:
$R(i, S):=$ maximum weight of an independent set I in $G(i)$ with $I \cap X_{i}=S$.

Algorithm: Compute $R(i, S)$ for all i and corresponding S.

Runtime: ?

