

Exact Algorithms

Sommer Term 2020

Lecture 11 Tree Decomposition

Based on: [Parameterized Algorithms: §7.2, 7.3.1]

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Alexander Wolff

Lehrstuhl für Informatik I

(Weighted) Independent Set

Given:

graph G, weight function $\omega: V \to \mathbb{N}$ **Question:** What is the maximum weight of a set $S \subseteq V$ where no pair in S is adjacent in G?

(Weighted) Independent Set

Thm. Independent Set is NP-complete.

(Weighted) Independent Set

Thm. Independent Set is NP-complete.

Thm. On trees, Independent Set can be solved in linear time.

Choose an arbitrary root w.

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an independent set S in T(v)

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an independent set S in T(v)

A(w) =solution

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an independent set S in T(v)

Let B(v) := maximum weight of an independent set S in T(v)where $v \notin S$

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an independent set S in T(v)

Let B(v) := maximum weight of an independent set S in T(v)where $v \notin S$

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an independent set S in T(v)

Let B(v) := maximum weight of an independent set S in T(v)where $v \notin S$

- If v is a leaf: B(v) = 0 and A(v) =

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an independent set S in T(v)

Let B(v) := maximum weight of an independent set S in T(v)where $v \notin S$

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an independent set S in T(v)

Let B(v) := maximum weight of an independent set S in T(v)where $v \notin S$

- If
$$v$$
 has children x_1, \ldots, x_r :
 $B(v) =$

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an independent set S in T(v)

Let B(v) := maximum weight of an independent set S in T(v)where $v \notin S$

- If
$$v$$
 has children x_1, \ldots, x_r
 $B(v) = \sum_{i=1}^r A(x_i);$

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an independent set S in T(v)

Let B(v) := maximum weight of an independent set S in T(v)where $v \notin S$

- If v has children
$$x_1, \ldots, x_r$$
:
 $B(v) = \sum_{i=1}^r A(x_i); A(v) =$

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an independent set S in T(v)

Let B(v) := maximum weight of an independent set S in T(v)where $v \notin S$

- If v has children
$$x_1, \ldots, x_r$$
:
 $B(v) = \sum_{i=1}^r A(x_i); A(v) = \max\{B(v), v\}$

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an independent set S in T(v)

Let B(v) := maximum weight of an independent set S in T(v)where $v \notin S$

- If v has children
$$x_1, \ldots, x_r$$
:

$$B(v) = \sum_{i=1}^r A(x_i); \ \mathbf{A}(v) = \max\{B(v), \omega(v) + \sum_{i=1}^r B(x_i)\}$$

Choose an arbitrary root w. Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an independent set S in T(v)

Let B(v) := maximum weight of an independent set S in T(v)where $v \notin S$

- If v has children x_1, \ldots, x_r : $B(v) = \sum_{i=1}^r A(x_i); A(v) = \max\{B(v), \omega(v) + \sum_{i=1}^r B(x_i)\}$

Algorithm: Compute $A(\cdot)$ and $B(\cdot)$ bottom-up!

Def. A graph G = (V, E) is 2-terminal if it contains two special vertices s and t.

- **Def.** A graph G = (V, E) is 2-terminal if it contains two special vertices s and t.
- **Def.** A 2-terminal graph G is *series-parallel* if:
 - G is a single edge (s, t) (s, t)

- **Def.** A graph G = (V, E) is 2-terminal if it contains two special vertices s and t.
- **Def.** A 2-terminal graph G is *series-parallel* if:
 - G is a single edge (s,t) (s,t)
 - G is a series composition of two series-parallel graphs

$$(s_1) \quad (t_1) + (s_2) \quad (t_2) \rightarrow$$

- **Def.** A graph G = (V, E) is 2-terminal if it contains two special vertices s and t.
- **Def.** A 2-terminal graph G is *series-parallel* if:
 - G is a single edge (s,t) (s,t)
 - G is a series composition of two series-parallel graphs

- **Def.** A graph G = (V, E) is 2-terminal if it contains two special vertices s and t.
- **Def.** A 2-terminal graph G is *series-parallel* if:
 - G is a single edge (s, t) (s, t)
 - G is a series composition of two series-parallel graphs

- **Def.** A graph G = (V, E) is 2-terminal if it contains two special vertices s and t.
- **Def.** A 2-terminal graph G is *series-parallel* if:
 - G is a single edge (s, t) (s, t)
 - G is a series composition of two series-parallel graphs

$$(t_1) + (s_2) \quad (t_2) \rightarrow (s_1) \quad (t_2) \quad (t_2) \quad (t_2) \quad (t_2) \quad (t_3) \quad (t_$$

$$\underbrace{s_1} \quad \underbrace{t_1} + \underbrace{s_2} \quad \underbrace{t_2} \rightarrow O \quad O \\ s_1 = s_2 \quad t_1 = t_2$$

- **Def.** A graph G = (V, E) is 2-terminal if it contains two special vertices s and t. recursive definition
- **Def.** A 2-terminal graph G is *series-parallel* if:
 - G is a single edge (s, t) (s, t)
 - G is a series composition of two series-parallel graphs

(5) (
$$t_1$$
) + (S2) (t_2) \rightarrow (S1) (t_2) (t_1) (t_2) (

$$\begin{array}{cccc} s_1 & t_1 + s_2 & t_2 \rightarrow & & \\ & s_1 = s_2 & t_1 = t_2 \end{array}$$

- **Def.** A graph G = (V, E) is 2-terminal if it contains two special vertices s and t. Series-parallel graphs have a natural tree structure!
- **Def.** A 2-terminal graph G is *series-parallel* if:
 - G is a single edge (s, t) (s) (t)
 - G is a series composition of two series-parallel graphs

(5) (
$$t_1$$
) + (S2) (t_2) \rightarrow (S1) (t_2) (t_1) (t_2) (

$$\underbrace{s_1} \quad \underbrace{t_1} + \underbrace{s_2} \quad \underbrace{t_2} \rightarrow \underbrace{o} \quad o \\ s_1 = s_2 \quad t_1 = t_2$$

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(i)

Independent Set on SP-Trees

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in G(i)where $s_i \notin S$ and $t_i \in S$

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

- If i is a leaf...

BB(i) = 0

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

- If i is a leaf...

BA(i) = BB(i) = 0

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

- If i is a leaf...

 $BA(i) = \omega(t_i)$ BB(i) = 0

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

$$AA(i) =$$

$$AB(i) = \omega(s_i)$$

$$BA(i) = \omega(t_i)$$

$$BB(i) = 0$$

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

- If i is a leaf...

 $AA(i) = -\infty$ $AB(i) = \omega(s_i)$ $BA(i) = \omega(t_i)$ BB(i) = 0

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

- If i is a series composition with children x and y, ...

AA(i) =

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

- If i is a series composition with children x and y, ...

$$AA(i) = \max\{$$

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

- If i is a series composition with children x and y, ...

$$AA(i) = \max\{ AB(x) + BA(y),$$

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

- If i is a series composition with children x and y, ...

$$AA(i) = \max\{AB(x) + BA(y),$$

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

 $AA(i) = \max\{AB(x) + BA(y), AA(x) + AA(y) - \omega(t_x)\}$

 (s_x)

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

- Other cases omitted... (easy exercise).

Dynamic program on SP-tree indexed by G(i)

AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$

BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$

AB(i) and BB(i) are defined similarly.

- Other cases omitted... (easy exercise).
- -O(1) time per SP-node.

Dynamic program on SP-tree indexed by G(i)

- AA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \in S$ and $t_i \in S$
- BA(i) := maximum weight of an independent set S in <math>G(i)where $s_i \notin S$ and $t_i \in S$
- AB(i) and BB(i) are defined similarly.
- Other cases omitted... (easy exercise).
- -O(1) time per SP-node.
- **Thm.** Given an *n*-vertex series-parallel graph G with its SP-tree, INDEPENDENT SET on G can be solved in O(n) time.

Many ways to generalize the concept of having a "tree structure"

Example: k-terminal graph G = (V, E, T), |T| = k

Many ways to generalize the concept of having a "tree structure"

Example: k-terminal graph G = (V, E, T), |T| = k

Many ways to generalize the concept of having a "tree structure" **Example:** k-terminal graph G = (V, E, T), |T| = k

Many ways to generalize the concept of having a "tree structure"

Example: k-terminal graph G = (V, E, T), |T| = kOperation: "gluing"

A *tree decomposition* is a tree whose nodes map to subsets of V so that...

g,

'bags"

- each vertex belongs to at least one bag
- 1 these bags are connected

Graph G = (V, E):

- each vertex belongs to at least one bag
- 1 these bags are connected

Graph G = (V, E):

- each vertex belongs to at least one bag
- 1 these bags are connected

Graph G = (V, E):

2

each edge is contained in at least one bag

Graph G = (V, E):

2

each edge is contained in at least one bag

Graph G = (V, E):

Graph
$$G = (V, E)$$
:

Example: Tree Decomposition

8

Example: Tree Decomposition

Tree Decomposition:

Def. A *tree decomposition* of a graph G = (V, E) is:

• a tuple D = (X, T)

- a tuple D = (X, T)
- T = (P, F) is a tree

- a tuple D = (X, T)
- T = (P, F) is a tree
- $X = \{X_p \mid p \in P\}$ is a set family of subsets of V ("bags"; one for each node in P)

- a tuple D = (X, T)
- T = (P, F) is a tree
- $X = \{X_p \mid p \in P\}$ is a set family of subsets of V ("bags"; one for each node in P)

•
$$\bigcup_{p \in P} X_p = V$$

Def. A *tree decomposition* of a graph G = (V, E) is:

- a tuple D = (X, T)
- T = (P, F) is a tree
- $X = \{X_p \mid p \in P\}$ is a set family of subsets of V ("bags"; one for each node in P)

•
$$\bigcup_{p \in P} X_p = V$$

• $\forall \{u, v\} \in E$ there is a $p \in P$ such that $u, v \in X_p$.

- a tuple D = (X, T)
- T = (P, F) is a tree
- $X = \{X_p \mid p \in P\}$ is a set family of subsets of V ("bags"; one for each node in P)

•
$$\bigcup_{p \in P} X_p = V$$

- $\forall \{u, v\} \in E$ there is a $p \in P$ such that $u, v \in X_p$.
- $\forall v \in V$ the set $\{p \in P \mid v \in X_p\}$ is connected in T.

- a tuple D = (X, T) T = (P, F) is a tree
- **Def.** Width (tree decomposition): $\max_{p \in P} |X_p| 1$, i.e., cardinality of the largest bag -1

• a tuple D = (X, T) • T = (P, F) is a tree Def. Width (tree decomposition): $\max_{p \in P} |X_p| - 1$, i.e., cardinality of the largest bag -1

- a tuple D = (X, T) T = (P, F) is a tree
- **Def.** Width (tree decomposition): $\max_{p \in P} |X_p| 1$, i.e., cardinality of the largest bag -1
- **Def.** Treewidth tw(G) is the minimum width of a tree decomposition of G

- a tuple D = (X, T) T = (P, F) is a tree
- **Def.** Width (tree decomposition): $\max_{p \in P} |X_p| 1$, i.e., cardinality of the largest bag -1
- **Def.** Treewidth tw(G) is the minimum width of a tree decomposition of G
- **Obs.** $\mathsf{tw}(G) < n$

- a tuple D = (X, T) T = (P, F) is a tree
- **Def.** Width (tree decomposition): $\max_{p \in P} |X_p| 1$, i.e., cardinality of the largest bag -1
- **Def.** Treewidth tw(G) is the minimum width of a tree decomposition of G
- **Obs.** $\mathsf{tw}(G) < n$

Question: Which graphs have treewidth 0?

• a tuple D = (X, T) • T = (P, F) is a tree

Def. Width (tree decomposition): $\max_{p \in P} |X_p| - 1$, i.e., cardinality of the largest bag -1

Def. Treewidth tw(G) is the minimum width of a tree decomposition of G

Obs. $\mathsf{tw}(G) < n$

Question: Which graphs have treewidth 0? $E = \emptyset$

• a tuple D = (X, T) • T = (P, F) is a tree

Def. Width (tree decomposition): $\max_{p \in P} |X_p| - 1$, i.e., cardinality of the largest bag -1

Def. Treewidth tw(G) is the minimum width of a tree decomposition of G

Obs. $\mathsf{tw}(G) < n$

Question: Which graphs have treewidth 0? $E = \emptyset$

Exercise: Trees have treewidth 1.

- a tuple D = (X, T) T = (P, F) is a tree
- **Def.** Width (tree decomposition): $\max_{p \in P} |X_p| 1$, i.e., cardinality of the largest bag -1
- **Def.** Treewidth tw(G) is the minimum width of a tree decomposition of G
- **Obs.** $\mathsf{tw}(G) < n$
- **Question:** Which graphs have treewidth 0?
- **Exercise:** Trees have treewidth 1.
- **Exercise:** Series-parallel graphs have treewidth 2

- a tuple D = (X, T) T = (P, F) is a tree
- **Def.** Width (tree decomposition): $\max_{p \in P} |X_p| 1$, i.e., cardinality of the largest bag -1
- **Def.** Treewidth tw(G) is the minimum width of a tree decomposition of G
- **Obs.** $\mathsf{tw}(G) < n$
- **Question:** Which graphs have treewidth 0?
- **Exercise:** Trees have treewidth 1.
- **Exercise:** Series-parallel graphs have treewidth 2
- **Thm.** There is a tree decomposition of width tw(G) where the tree size |P| is polynomial in n.

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Ex.: k-Vertex Cover

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Ex.: k-Vertex Cover

FPT

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Ex.: k-Vertex Cover k-Independent Set FPT

Given: Instance of size \boldsymbol{n} and parameter \boldsymbol{k}

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Ex.: k-Vertex Cover k-Independent Set **FPT** *W*[1]-**comp**.

Given: Instance of size \boldsymbol{n} and parameter \boldsymbol{k}

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Ex.: k-Vertex Cover k-Independent Set k-Dominating Set **FPT** *W*[1]-**comp**.

Given: Instance of size \boldsymbol{n} and parameter \boldsymbol{k}

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Ex.: k-Vertex Cover k-Independent Set k-Dominating Set **FPT** *W*[1]-comp. *W*[2]-comp.

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Ex.: k-Vertex Cover k-Independent Set k-Dominating Set k-Coloring **FPT** *W*[1]-comp. *W*[2]-comp.

Given: Instance of size \boldsymbol{n} and parameter \boldsymbol{k}

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Ex.: k-Vertex Cover k-Independent Set k-Dominating Set k-Coloring FPT W[1]-comp. W[2]-comp. NP-comp. $k \ge 3$

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

 Ex.:
 k-VERTEX COVER

 k-INDEPENDENT SET

 k-DOMINATING SET

 k-COLORING

 * natural parameterization"

FPT W[1]-comp. W[2]-comp. NP-comp. $k \ge 3$

Given: Instance of size \boldsymbol{n} and parameter \boldsymbol{k}

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Ex.:k-VERTEX COVER**FPT**k-INDEPENDENT SETW[1]-comp.k-DOMINATING SETW[2]-comp.k-COLORING**NP-comp.** $k \ge 3$

INDEPENDENT SET (TREEWIDTH)

Given:Graph G, number kParameter:tw(G)Question:Does G have an independent set of size $\geq k$?

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.
 $O(f(tw(G)) \cdot poly(n))$ time.Ex.:k-VERTEX COVERFPTk-INDEPENDENT SETW[1]-comp.
W[2]-comp.
k-COLORINGW[2]-comp.
 $k \ge 3$

INDEPENDENTSET (TREEWIDTH)Given:Graph G, number kParameter:tw(G)Question:Does G have an independent set of size $\geq k$?

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time. $O(f(tw(G)) \cdot poly(n))$ time.Ex.:k-VERTEX COVERk-INDEPENDENT SETW[1]-comp.k-DOMINATING SETW[2]-comp.k-COLORINGNP-comp. $k \ge 3$

INDEPENDENT	Set (treewidth)	FPT
Given:	Graph G , number k	
Parameter:	tw(G)	
Question:	Does G have an independent	set of size $\geq k$?

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.
 $O(f(tw(G)) \cdot poly(n))$ time.Ex.:k-VERTEX COVERFPTk-INDEPENDENT SETW[1]-comp.
W[2]-comp.
k-COLORINGW[2]-comp.
NP-comp. $k \ge 3$

INDEPENDENT SET (TREEWIDTH) FPT LIST COLORING (TREEWIDTH)

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time. $O(f(\mathsf{tw}(G)) \cdot poly(n))$ time. **Ex.:** k-VERTEX COVER FPT k-INDEPENDENT SET *W*[1]-comp. W[2]-comp. k-Dominating Set **NP-comp.** $k \ge 3$ *k*-COLORING INDEPENDENT SET (TREEWIDTH) **FPT** LIST COLORING (TREEWIDTH) W|1|-comp.

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time. $O(f(\mathsf{tw}(G)) \cdot poly(n))$ time. **Ex.:** k-VERTEX COVER FPT k-INDEPENDENT SET *W*[1]-comp. W[2]-comp. k-Dominating Set **NP-comp.** $k \ge 3$ *k*-Coloring INDEPENDENT SET (TREEWIDTH) FPT LIST COLORING (TREEWIDTH) W|1|-comp. CHANNEL ASSIGNMENT (TREEWIDTH)

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time. $O(f(\mathsf{tw}(G)) \cdot poly(n))$ time. **Ex.:** k-VERTEX COVER FPT k-INDEPENDENT SET *W*[1]-comp. *W*[2]-comp. k-Dominating Set **NP-comp.** $k \ge 3$ *k*-Coloring INDEPENDENT SET (TREEWIDTH) **FPT** LIST COLORING (TREEWIDTH) W|1|-comp. CHANNEL ASSIGNMENT (TREEWIDTH) **NP-comp.** $k \geq 3$

Computing Treewidth

TREEWIDTH Given: Graph G = (V, E), number k Question: $tw(G) \le k$?

Computing Treewidth

TREEWIDTH Given: Graph G = (V, E), number kQuestion: tw $(G) \le k$?

Thm. TREEWIDTH is NP-complete.

TREEWIDTH Given: Graph G = (V, E), number k Question: $tw(G) \le k$?

Thm. TREEWIDTH is NP-complete.

k-TREEWIDTHGiven:graph G = (V, E)Parameter:number kQuestion: $tw(G) \le k$?

TREEWIDTH Given: Graph G = (V, E), number kQuestion: $tw(G) \le k$?

Thm. TREEWIDTH is NP-complete.

k-TREEWIDTHGiven:graph G = (V, E)Parameter:number kQuestion:tw $(G) \leq k$?

Thm. k-TREEWIDTH is FPT.

TREEWIDTH Given: Graph G = (V, E), number k Question: $tw(G) \le k$?

Thm. TREEWIDTH is NP-complete.

k-TREEWIDTHGiven:graph G = (V, E)Parameter:number kQuestion:tw $(G) \leq k$?

Thm. *k*-TREEWIDTH is FPT.

- Actually fixed-parameter linear: runtime $O(f(k) \cdot n)$

TREEWIDTH Given: Graph G = (V, E), number k Question: $tw(G) \le k$?

Thm. TREEWIDTH is NP-complete.

k-TREEWIDTHGiven:graph G = (V, E)Parameter:number kQuestion:tw $(G) \leq k$?

Thm. *k*-TREEWIDTH is FPT.

- Actually fixed-parameter linear: runtime $O(f(k) \cdot n)$
- Algorithm is constructive (provides an optimal tree decomp.)

TREEWIDTH Given: Graph G = (V, E), number k Question: $tw(G) \le k$?

Thm. TREEWIDTH is NP-complete.

k-TREEWIDTHGiven:graph G = (V, E)Parameter:number kQuestion:tw $(G) \leq k$?

Thm. k-TREEWIDTH is FPT.

- Actually fixed-parameter linear: runtime $O(f(k) \cdot n)$
- Algorithm is constructive (provides an optimal tree decomp.)
- How can we make "fixed-treewidth-tractable" algorithms?

In a *nice* tree decomp., one bag is marked as the root and there are only 4 types of bags:

In a *nice* tree decomp., one bag is marked as the root and there are only 4 types of bags:

• Leaf: the bag is a leaf and contains only one vertex

In a *nice* tree decomp., one bag is marked as the root and there are only 4 types of bags:

• Leaf: the bag is a leaf and contains only one vertex

• Introduce:

The bag has exactly one child and contains the child's vertices and exactly one new vertex.

In a *nice* tree decomp., one bag is marked as the root and there are only 4 types of bags:

• Leaf: the bag is a leaf and contains only one vertex

• Introduce:

The bag has exactly one child and contains the child's vertices and exactly one new vertex.

• Forget:

The bag has exactly one child and contains one vertex fewer than the child.

In a *nice* tree decomp., one bag is marked as the root and there are only 4 types of bags:

• Leaf: the bag is a leaf and contains only one vertex

• Introduce:

The bag has exactly one child and contains the child's vertices and exactly one new vertex.

• Forget:

The bag has exactly one child and contains one vertex fewer than the child.

• Join:

The bag has exactly two children and these three nodes have exactly the same vertices

B

R

B

Thm. For each tree decomposition, there is a nice tree decomposition of the same width and polynomially many more bags. The nice decomposition can be constructed in polynomial time.

15

Thm. k-TREEWIDTH is FPT

Thm. k-TREEWIDTH is FPT

Thm. Tree decompositions can be made *nice* in poly-time.

Thm. k-TREEWIDTH is FPT

Thm. Tree decompositions can be made *nice* in poly-time.

Corollary. For FPT-Algorithms it suffices to consider nice tree decompositions.

Thm. k-TREEWIDTH is FPT

Thm. Tree decompositions can be made *nice* in poly-time.

Corollary. For FPT-Algorithms it suffices to consider nice tree decompositions.

Strategy: Build a recurrence for each type of bag, and use dynamic programming.

Let G(i) := graph induced by the vertices in the subtree at i.

Let G(i) := graph induced by the vertices in the subtree at i.

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let:

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

Sei
$$X_i = \{v\}$$

 $R(i, \{v\}) =$

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

Sei
$$X_i = \{v\}$$
.
 $R(i, \{v\}) = \omega(v)$

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

Sei
$$X_i = \{v\}$$
.
 $R(i, \{v\}) = \omega(v)$
 $R(i, \emptyset) =$

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

Sei
$$X_i = \{v\}$$
.
 $R(i, \{v\}) = \omega(v)$
 $R(i, \emptyset) = 0$

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$. If i is a **Join** ... with children j_1 and j_2 R(i,S) =

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subset X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$. If i is a **Join** ... with children j_1 and j_2 $R(i, S) = R(j_1, S) + R(j_2, S)$ X_{j_2} X_{j_1}

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i, S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$. If i is a **Join** ... with children j_1 and j_2 $R(i,S) = R(j_1,S) + R(j_2,S) - \sum \omega(v)$ $v \in S$ X_i X_{j_1} X_{j_2}

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

If i is an **Introduce** ... with child j and $X_i = X_j \cup \{v\}$

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

If *i* is an **Introduce** ...

with child j and $X_i = X_j \cup \{v\}$

For each $S \subseteq X_j$: R(i, S) = R(j, S).

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

If *i* is an **Introduce** ...

with child
$$j$$
 and $X_i = X_j \cup \{v\}$

For each $S \subseteq X_j$: R(i, S) = R(j, S).

Otherwise if v has neighbors in S, $R(i,S) = -\infty$

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

If *i* is an **Introduce** ...

with child
$$j$$
 and $X_i = X_j \cup \{v\}$

For each $S \subseteq X_j$: R(i, S) = R(j, S).

Otherwise if v has neighbors in S, $R(i, S) = -\infty$ if v has no neighbors in S,

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

If *i* is an **Introduce** ...

with child
$$j$$
 and $X_i = X_j \cup \{v\}$

For each $S \subseteq X_j$: R(i, S) = R(j, S).

Otherwise if v has neighbors in S, $R(i, S) = -\infty$ if v has no neighbors in S, $R(i, S) = R(j, S \setminus \{v\}) + \omega(v)$

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

If *i* is a **Forget** ...

with child j and $X_i = X_j \setminus \{v\}$

R(i,S) =

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

If i is a **Forget** ...

with child j and $X_i = X_j \setminus \{v\}$

 $R(i,S) = \max\{$

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

If *i* is a **Forget** ...

with child j and $X_i = X_j \setminus \{v\}$

 $R(i,S) = \max\{ R(j,S) \}$

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

If *i* is a **Forget** ...

with child j and $X_i = X_j \setminus \{v\}$

 $R(i,S) = \max\{ R(j,S), R(j,S \cup \{v\}) \}$

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

Algorithm: Compute R(i, S) for all i and corresponding S.

Let G(i) := graph induced by the vertices in the subtree at i. For bag i and $S \subseteq X_i$, let: R(i,S) := maximum weight of an independent set I in G(i)with $I \cap X_i = S$.

Algorithm: Compute R(i, S) for all i and corresponding S.

Runtime: ?