UNIVERSITÄT WÜRZBURG

Lehrstuhl für

INFORMATIK I
Algorithmen \& Komplexität

Exact Algorithms

Sommer Term 2020
Lecture 10 Kernelization
Based on: [Parameterized Algorithms: §1, 2.1]
and [Gramm, Guo, Hüffner, Niedermeier; Theory Comput. Syst. 38:373-392, 2005.
doi.org/10.1007/s00224-004-1178-y]
(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

Complexity Theory

Complexity Theory

Natural problems tend to be either:

- in \mathbf{P}
- NP-hard

Complexity Theory

Natural problems tend to be either:

- in \mathbf{P}
\leftarrow Easy
- NP-hard

Complexity Theory

Natural problems tend to be either:

- in \mathbf{P}
- NP-hard
\leftarrow Easy
\leftarrow Nasty

How to solve nasty problems?

- Solve only small instances (e.g., integer programming)
- Don't solve the problem in full generality:

Complexity Theory

Natural problems tend to be either:

- in \mathbf{P}
- NP-hard
\leftarrow Easy
\leftarrow Nasty

How to solve nasty problems?

- Solve only small instances (e.g., integer programming)
- Don't solve the problem in full generality:
-approximate
- ...exploit properties of "reasonable" instances

Complexity Theory

Natural problems tend to be either:

- in \mathbf{P}
- NP-hard
\leftarrow Easy
\leftarrow Nasty

How to solve nasty problems?

- Solve only small instances (e.g., integer programming)
- Don't solve the problem in full generality:
-approximate
- ...exploit properties of "reasonable" instances

Fixed-Parameter Tractability:

- In many applications, some aspect of a problem assumed small.
- Runtime of algorithm polynomial except for this small aspect.

Vertex Cover

Minimum-size vertex set such that every edge is covered.

Vertex Cover

Minimum-size vertex set such that every edge is covered.

Vertex Cover

Minimum-size vertex set such that every edge is covered.

Problem:

Vertex Cover

Minimum-size vertex set such that every edge is covered.

Problem: k-Vertex Cover (k-VC)
Given: graph G
Parameter: number k
Question: Does G contain a size $\leq k$ vertex cover?

Vertex Cover

Minimum-size vertex set such that every edge is covered.

Problem: k-Vertex Cover ($k-V C$)
Given: graph G
Parameter: number k
Question: Does G contain a size $\leq k$ vertex cover?

Coloring

Given: graph G, number k
Question: \quad Does G have a coloring with $\leq k$ colors?

Coloring

Given: graph G, number k
Question: Does G have a coloring with $\leq k$ colors?
For any $k \geq 3$, not in polynomial time assuming $P \neq N P$

Coloring

Given: graph G, number k
Question: Does G have a coloring with $\leq k$ colors?

For any $k \geq 3$, not in polynomial time assuming $P \neq N P$

k-Coloring

Given: graph G
Parameter: number k
Question: Does G have a coloring with $\leq k$ colors?

Coloring

Given: graph G, number k
Question: Does G have a coloring with $\leq k$ colors?

For any $k \geq 3$, not in polynomial time assuming $P \neq N P$

k-Coloring

Given: graph G
Parameter: number k
Question: Does G have a coloring with $\leq k$ colors?

For any $k \geq 3$, not in polynomial time assuming $P \neq N P$

Coloring

Given: graph G, number k
Question: Does G have a coloring with $\leq k$ colors?

For any $k \geq 3$, not in polynomial time assuming $P \neq N P$

k-Coloring

Given: graph G
Parameter: number k
Question: Does G have a coloring with $\leq k$ colors?

For any $k \geq 3$, not in polynomial time assuming $P \neq N P$

$$
\Rightarrow \text { Not in FPT !!!! }
$$

k-Independent Set

Given: \quad graph G Parameter: number k Question:

Does G have a size $\geq k$ independent set?

k-Independent Set

$\begin{array}{ll}\text { Given: } & \text { graph } G \\ \text { Parameter: } & \text { number } k \\ \text { Question: } & \text { Does } G \text { have a size } \geq k \text { independent set? }\end{array}$
How to find a 2-Independent Set?

k-Independent Set

$\begin{array}{ll}\text { Given: } & \text { graph } G \\ \text { Parameter: } & \text { number } k \\ \text { Question: } & \text { Does } G \text { have a size } \geq k \text { independent set? }\end{array}$
How to find a 2-Independent Set? 3-Independent Set?

k-Independent Set

Given: graph G Parameter: number k
Question: Does G have a size $\geq k$ independent set?
How to find a 2-Independent Set? 3-Independent Set?
Easily in $O\left(n^{k}\right)$ time, i.e., polynomial for any k

k-Independent Set

Given: graph G Parameter: number k
Question: Does G have a size $\geq k$ independent set?
How to find a 2-Independent Set? 3-Independent Set?
Easily in $O\left(n^{k}\right)$ time, i.e., polynomial for any k

$$
\underset{\text { assuming FPT }}{\text { Requires }} \Omega\left(n^{f(k)}\right) \text { time } \ldots
$$

Fixed-Parameter Complexity Theory

Fixed-Parameter Tractable
Solvable in $O\left(f(k) n^{c}\right)$ time - computable function f, const. c Complexity Class: FPT

Fixed-Parameter Complexity Theory

Fixed-Parameter Tractable
Solvable in $O\left(f(k) n^{c}\right)$ time - computable function f, const. c Complexity Class: FPT

Slice-Wise Polynomial
Solvable in $\left.O\left(f(k) n^{g(k)}\right)\right)$ time - computable functions f, g Complexity Class: XP

Fixed-Parameter Complexity Theory

Fixed-Parameter Tractable
Solvable in $O\left(f(k) n^{c}\right)$ time - computable function f, const. c Complexity Class: FPT

Slice-Wise Polynomial
Solvable in $\left.O\left(f(k) n^{g(k)}\right)\right)$ time - computable functions f, g
Complexity Class: XP

Evidence against Fixed-Parameter Tractability
Complexity classes $\mathrm{FPT} \subseteq \mathrm{W}[1] \subseteq \mathrm{W}[2] \ldots$
e.g. $\mathrm{FPT}=\mathrm{W}[1] \Rightarrow \mathrm{NP} \subseteq \mathrm{DTIME}\left(2^{o(n)}\right)$, contradicting ETH

Fixed-Parameter Complexity Theory

Fixed-Parameter Tractable
Solvable in $O\left(f(k) n^{c}\right)$ time - computable function f, const. c Complexity Class: FPT

Slice-Wise Polynomial
Solvable in $O\left(f(k) n^{g(k)}\right)$) time - computable functions f, g
Complexity Class: XP

Evidence against Fixed-Parameter Tractability
Complexity classes $\mathrm{FPT} \subseteq \mathrm{W}[1] \subseteq \mathrm{W}[2] \ldots$
e.g. $\mathrm{FPT}=\mathrm{W}[1] \Rightarrow \mathrm{NP} \subseteq \mathrm{DTIME}\left(2^{o(n)}\right)$, contradicting ETH
\longrightarrow see Parameterized Algorithms §14.4

Fixed-Parameter Problems

- k-Coloring

NP-complete for each $k \geq 3$.
Seems to require more than polynomial time.

Fixed-Parameter Problems

- k-Coloring

NP-complete for each $k \geq 3$.
Seems to require more than polynomial time.

- k-Independent Set

In XP, but W[1]-complete...
Seems to require $\Omega\left(n^{f(k)}\right)$ time.

Fixed-Parameter Problems

- k-Coloring

NP-complete for each $k \geq 3$.
Seems to require more than polynomial time.

- k-Independent Set

In XP, but W[1]-complete...
Seems to require $\Omega\left(n^{f(k)}\right)$ time.

- k-Vertex Cover

Solvable in $O\left(2^{k}(n+m)\right)$ time.

Fixed-Parameter Problems

- k-Coloring

NP-complete for each $k \geq 3$.
Seems to require more than polynomial time.

- k-Independent Set

In XP, but W[1]-complete...
Seems to require $\Omega\left(n^{f(k)}\right)$ time.

- k-Vertex Cover

Solvable in $O\left(2^{k}(n+m)\right)$ time.
Obs: If there are no edges, solution size 0 .
Obs: For each edge $u v$, either u or v in the cover.
Branching Rule:
Pick an edge $u v$, branch on ($G-u, k-1$) and ($G-v, k-1$).

Fixed-Parameter Problems

- k-Coloring

NP-complete for each $k \geq 3$.
Seems to require more than polynomial time.

- k-Independent Set

In XP, but W[1]-complete...
Seems to require $\Omega\left(n^{f(k)}\right)$ time.

- k-Vertex Cover
branching factor 2
Solvable in $O\left(2^{k}(n+m)\right)$ time.
Obs: If there are no edges, solution size 0 .
Obs: For each edge $u v$, either u or v in the cover.
Branching Rule:
Pick an edge $u v$, branch on ($G-u, k-1$) and ($G-v, k-1$).

Kernelisation

Preprocessing with quality guarantees

Kernelisation Algorithms

Parameterized Problem: input graph G, parameter k.

Kernelisation Algorithms

Parameterized Problem: input graph G, parameter k.
Polynomial-time algorithm:
Input: Graph G, parameter k
Output: Graph G^{\prime}, parameter $k^{\prime} \leq k$ such that

- $\left(G^{\prime}, k^{\prime}\right)$ is YES $\Leftrightarrow(G, k)$ is YES.
- G^{\prime} has $O(f(k))$ vertices.

Kernelisation Algorithms

Parameterized Problem: input graph G, parameter k.
Polynomial-time algorithm:
Input: Graph G, parameter k
Output: Graph G^{\prime}, parameter $k^{\prime} \leq k$ such that

- $\left(G^{\prime}, k^{\prime}\right)$ is YES $\Leftrightarrow(G, k)$ is YES.
- G^{\prime} has $O(f(k))$ vertices.
eg, recall: Buss' algorithm for k - VC
I) Reduce to the kernel of the instance

$$
\begin{aligned}
& C=\{v \in V \mid \operatorname{deg}(v)>k\} ; \text { if }|C|>k \text { then return }(\text { "NO", } \emptyset) \\
& G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)], k^{\prime}=k-|C| \quad(L=\text { isolated vertices }) \\
& \text { if } \left.\left|E^{\prime}\right|>k^{2} \text { then return ("NO", } \emptyset\right)
\end{aligned}
$$

II) solve the reduced problem exactly

Kernelisation Algorithms

Parameterized Problem: input graph G, parameter k.
Polynomial-time algorithm:
Input: Graph G, parameter k
Output: Graph G^{\prime}, parameter $k^{\prime} \leq k$ such that

- $\left(G^{\prime}, k^{\prime}\right)$ is YES $\Leftrightarrow(G, k)$ is YES.
- G^{\prime} has $O(f(k))$ vertices.
eg, recall: Buss' algorithm for k - VC

$C=\{v \in V \mid \operatorname{deg}(v)>k\}$; if $|C|>k$ then return ("NO", \emptyset)
$G^{\prime}=\left(V^{\prime}, E^{\prime}\right):=G[V \backslash(C \cup L)], k^{\prime}=k-|C| \quad(L=$ isolated vertices $)$
if $\left|E^{\prime}\right|>k^{2}$ then return ("NO", \emptyset)
II) solve the reduced problem exactly

Kernel \Leftrightarrow FPT
Kernelisation \Rightarrow FPT

Kernel \Leftrightarrow FPT
Kernelisation \Rightarrow FPT

- run kernelisation algorithm
- solve kernel by any exact algorithm

Kernel \Leftrightarrow FPT
Kernelisation \Rightarrow FPT

- run kernelisation algorithm
- solve kernel by any exact algorithm

FPT \Rightarrow Kernelisation

Kernel \Leftrightarrow FPT

Kernelisation \Rightarrow FPT

- run kernelisation algorithm
- solve kernel by any exact algorithm

FPT \Rightarrow Kernelisation
Suppose we have an $f(k)|/|^{\text {c }}$-time algorithm for an instance I.

Kernel \Leftrightarrow FPT

Kernelisation \Rightarrow FPT

- run kernelisation algorithm
- solve kernel by any exact algorithm

FPT \Rightarrow Kernelisation
Suppose we have an $f(k) \mid \|^{c}$-time algorithm for an instance I. Run the algorithm for $|I|^{c+1}$ steps.

Kernel \Leftrightarrow FPT

Kernelisation \Rightarrow FPT

- run kernelisation algorithm
- solve kernel by any exact algorithm

FPT \Rightarrow Kernelisation
Suppose we have an $f(k) \mid \|^{c}$-time algorithm for an instance I.
Run the algorithm for $|I|^{c+1}$ steps.
If the decision is reached, output it.

Kernel \Leftrightarrow FPT

Kernelisation \Rightarrow FPT

- run kernelisation algorithm
- solve kernel by any exact algorithm

FPT \Rightarrow Kernelisation
Suppose we have an $f(k) \mid \|^{c}$-time algorithm for an instance I.
Run the algorithm for $|I|^{c+1}$ steps.
If the decision is reached, output it.
Otherwise, $f(k) \geq|I|$.

Kernel \Leftrightarrow FPT

Kernelisation \Rightarrow FPT

- run kernelisation algorithm
- solve kernel by any exact algorithm

FPT \Rightarrow Kernelisation
Suppose we have an $f(k) \mid \|^{c}$-time algorithm for an instance I.
Run the algorithm for $|I|^{c+1}$ steps.
If the decision is reached, output it.
Otherwise, $f(k) \geq|I|$.
So, we have an $f(k)$-size kernel.

Typical Form of Kernelisation

Repeat some rules, until no rule is possible

- Rules can do some necessary modification and decrease k.
- Rules can remove some part of the graph.
- Rules can output YES or NO.
- Sometimes add 'annotations' to the graph

Cluster Editing

Given: \quad graph $G=(V, E)$
Parameter: number k
Question: \quad Can we make $\leq k$ modifications to G so that each connected component is a clique?
Accepted modifications: adding / deleting edges

Cluster Editing

$\begin{array}{ll}\text { Given: } & \text { graph } G=(V, E) \\ \text { Parameter: } & \text { number } k \\ \text { Question: } & \text { Can we make } \leq k \text { modifications to } G \text { so that } \\ & \text { each connected component is a clique? } \\ & \text { Accepted modifications: adding / deleting edges }\end{array}$

Known kernelizations:

Cluster Editing

Given: \quad graph $G=(V, E)$
Parameter: number k
Question: \quad Can we make $\leq k$ modifications to G so that each connected component is a clique?
Accepted modifications: adding / deleting edges

Known kernelizations:
$O\left(k^{2}\right)$ vertices [Gramm, Guo, Hüffner, Niedermeier; TCSyst'05]

Cluster Editing

Given: \quad graph $G=(V, E)$
Parameter: number k
Question: \quad Can we make $\leq k$ modifications to G so that each connected component is a clique?
Accepted modifications: adding / deleting edges

Known kernelizations:
$O\left(k^{2}\right)$ vertices [Gramm, Guo, Hüffner, Niedermeier; TCSyst'05]
$O(k)$ vertices
[Fellows, Langston, Rosamund, Shaw; FCT'07]

Cluster Editing

Given: \quad graph $G=(V, E)$
Parameter: number k
Question: \quad Can we make $\leq k$ modifications to G so that each connected component is a clique?
Accepted modifications: adding / deleting edges

Known kernelizations:
$O\left(k^{2}\right)$ vertices [Gramm, Guo, Hüffner, Niedermeier; TCSyst'05]
$O(k)$ vertices
[Fellows, Langston, Rosamund, Shaw; FCT'07]
$2 k$ vertices
[Chen, Meng; JCSS'12]

Cluster Editing

Given: \quad graph $G=(V, E)$
Parameter: number k
Question: \quad Can we make $\leq k$ modifications to G so that each connected component is a clique?
Accepted modifications: adding / deleting edges

Known kernelizations:
$O\left(k^{2}\right)$ vertices [Gramm, Guo, Hüffner, Niedermeier; TCSyst'05] L_Let's prove this!
$O(k)$ vertices
[Fellows, Langston, Rosamund, Shaw; FCT'07]
$2 k$ vertices
[Chen, Meng; JCSS'12]

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique, remove this connected component:

$$
G^{\prime} \leftarrow G-C ; \quad k^{\prime} \leftarrow k
$$

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique, remove this connected component:

$$
G^{\prime} \leftarrow G-C ; \quad k^{\prime} \leftarrow k
$$

Rule 2: If we have more than k connected components and Rule 1 does not apply:

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique, remove this connected component:

$$
G^{\prime} \leftarrow G-C ; \quad k^{\prime} \leftarrow k
$$

Rule 2: If we have more than k connected components and Rule 1 does not apply: Answer NO.

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique, remove this connected component:

$$
G^{\prime} \leftarrow G-C ; \quad k^{\prime} \leftarrow k
$$

Rule 2: If we have more than k connected components and Rule 1 does not apply: Answer NO.

Obs. After applying Rules 1 and 2, at most k connected components remain.

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique, remove this connected component:

$$
G^{\prime} \leftarrow G-C ; \quad k^{\prime} \leftarrow k
$$

Rule 2: If we have more than k connected components and Rule 1 does not apply: Answer NO.

Obs. After applying Rules 1 and 2, at most k connected components remain.

Plan: Find rules that make connected component small!

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique, remove this connected component:

$$
G^{\prime} \leftarrow G-C ; \quad k^{\prime} \leftarrow k
$$

Rule 2: If we have more than k connected components and Rule 1 does not apply: Answer NO.

Obs. After applying Rules 1 and 2, at most k connected components remain.

Plan:
Find rules that make connected component small!
Annotate the graph:
some pairs of vertices are permanent and others are forbidden.

Rule 3: Common Neighbors

Obs.
If two vertices have $k+1$ neighbors in common, they must belong to the same clique in any solution

Rule 3: Common Neighbors

Obs. If two vertices have $k+1$ neighbors in common, they must belong to the same clique in any solution

Rule 3: Let v, w be vertices with $k+1$ common neighbors. If $v w$ is not present, add it and decrease k by 1 . Set the edge $v w$ to be permanent.

$$
\begin{gathered}
G^{\prime} \leftarrow G \cup\{v w\} \quad \quad P \leftarrow P \cup\{v w\} \\
k^{\prime}= \begin{cases}k & \text { if } v w \text { present }, \\
k-1 & \text { otherwise } .\end{cases}
\end{gathered}
$$

Rule 3: Common Neighbors

Obs. If two vertices have $k+1$ neighbors in common, they must belong to the same clique in any solution

Rule 3: Let v, w be vertices with $k+1$ common neighbors. If $v w$ is not present, add it and decrease k by 1 . Set the edge $v w$ to be permanent.

$$
\begin{gathered}
G^{\prime} \leftarrow G \cup\{v w\} \quad \quad P \leftarrow P \cup\{v w\} \\
k^{\prime}= \begin{cases}k & \text { if } v w \text { present }, \\
k-1 & \text { otherwise. }\end{cases}
\end{gathered}
$$

Rule 4: Private Neighbors
Obs.
If vtc. v and w have $k+1$ "uncommon" neighbors, then $v w$ cannot be an edge in the solution.

Rule 4: Private Neighbors

Obs.
If vtc. v and w have $k+1$ "uncommon" neighbors, then $v w$ cannot be an edge in the solution.

Rule 4: Let v, w be vtc. with $k+1$ uncommon neighbors. If $v w$ is present, remove it and decrease k by 1 . Set the edge $v w$ to be forbidden.

$$
\begin{aligned}
& G^{\prime} \leftarrow G-v w ; \quad F \leftarrow F \cup\{v w\} \\
& k^{\prime} \leftarrow \begin{cases}k & \text { if } v w \text { not present }, \\
k-1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Rule 4: Private Neighbors

Obs.
If vtc. v and w have $k+1$ "uncommon" neighbors, then $v w$ cannot be an edge in the solution.

Rule 4: Let v, w be vtc. with $k+1$ uncommon neighbors. If $v w$ is present, remove it and decrease k by 1 . Set the edge $v w$ to be forbidden.

$$
\begin{aligned}
& G^{\prime} \leftarrow G-v w ; \quad F \leftarrow F \cup\{v w\} \\
& k^{\prime} \leftarrow \begin{cases}k & \text { if } v w \text { not present }, \\
k-1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Rule 5: If some edge is both permanent and forbidden, then there is no solution.

Rule 4: Private Neighbors

Obs.
If vtc. v and w have $k+1$ "uncommon" neighbors, then $v w$ cannot be an edge in the solution.

Rule 4: Let v, w be vtc. with $k+1$ uncommon neighbors. If $v w$ is present, remove it and decrease k by 1 . Set the edge $v w$ to be forbidden.

$$
\begin{aligned}
& G^{\prime} \leftarrow G-v w ; \quad F \leftarrow F \cup\{v w\} \\
& k^{\prime} \leftarrow \begin{cases}k & \text { if } v w \text { not present }, \\
k-1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Rule 5: If some edge is both permanent and forbidden, then there is no solution. Answer NO.

Rules 6 and 7: Transitivity (Triangles)
Rule 6: If $v w$ and $w x$ are permanent then set $v x$ to be permanent. If $v x$ is not present, then add it and decrease k by 1 .

Rules 6 and 7: Transitivity (Triangles)
Rule 6: If $v w$ and $w x$ are permanent then set $v x$ to be permanent. If $v x$ is not present, then add it and decrease k by 1 .

Rule 7: If $v w$ is permanent and $w x$ is forbidden, then set $v x$ to be forbidden. If $v x$ is present, then remove it and decrease k by 1 .

Runtime

The rules can be computed in polynomial time.

Runtime

The rules can be computed in polynomial time.
With carefully chosen data structures, they can be exhaustively applied in $O\left(n^{3}\right)$ time.

Runtime

The rules can be computed in polynomial time.
With carefully chosen data structures, they can be exhaustively applied in $O\left(n^{3}\right)$ time.

Challenge

- Already know: at most k connected components

Runtime

The rules can be computed in polynomial time.
With carefully chosen data structures, they can be exhaustively applied in $O\left(n^{3}\right)$ time.

Challenge

- Already know: at most k connected components
- Aim for a quadratic kernel: $O\left(k^{2}\right)$ vertices

Runtime

The rules can be computed in polynomial time.
With carefully chosen data structures, they can be exhaustively applied in $O\left(n^{3}\right)$ time.

Challenge

- Already know: at most k connected components
- Aim for a quadratic kernel: $O\left(k^{2}\right)$ vertices

So, "small" components are fine but what if we have a "big" component?

Analysis
Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced.

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately).

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique.

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. elge modifications

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modificatons }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=$ \#additions, $d=$ \#deletions

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$.

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. edge modifications solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$. Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction. Case 1: $a=0$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$. Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction. Case 1: $\quad a=0 \Rightarrow k=d$.

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=\#$ deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}.

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. edge modifications solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=\#$ deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too.

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. edge modifications solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=\#$ deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too.
G connected \Rightarrow

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$
Let $a=\#$ additions, $d=\#$ deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too. G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too. G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$
Case 1A: v is not adjacent to any $u^{\prime} \in C \backslash\{u\}$. Then

$$
|C| \geq
$$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too. G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$
Case 1A: v is not adjacent to any $u^{\prime} \in C \backslash\{u\}$. Then

$$
|C| \geq|V| /(d+1)>
$$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too. G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$
Case 1A: v is not adjacent to any $u^{\prime} \in C \backslash\{u\}$. Then

$$
|C| \geq|V| /(d+1)>\frac{(2 k+1) \cdot k}{k+1}=
$$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=\#$ deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too. G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Case 1A: v is not adjacent to any $u^{\prime} \in C \backslash\{u\}$. Then

$$
|C| \geq|V| /(d+1)>\frac{(2 k+1) \cdot k}{k+1}=\frac{(k+1) \cdot k}{k+1}+\frac{k^{2}}{k+1} \geq
$$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=\#$ deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too. G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Case 1A: v is not adjacent to any $u^{\prime} \in C \backslash\{u\}$. Then

$$
|C| \geq|V| /(d+1)>\frac{(2 k+1) \cdot k}{k+1}=\frac{(k+1) \cdot k}{k+1}+\frac{k^{2}}{k+1} \geq k+1
$$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too. G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Case 1A: v is not adjacent to any $u^{\prime} \in C \backslash\{u\}$. Then

$$
|C| \geq|V| /(d+1)>\frac{(2 k+1) \cdot k}{k+1}=\frac{(k+1) \cdot k}{k+1}+\frac{k^{2}}{k+1} \geq k+1
$$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too. G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Case 1A: v is not adjacent to any $u^{\prime} \in C \backslash\{u\}$. Then
(if $k \geq 2$)

$$
\begin{aligned}
& |C| \geq|V| /(d+1)>\frac{(2 k+1) \cdot k}{k+1}=\frac{(k+1) \cdot k}{k+1}+\frac{k^{2}}{k+1} \geq k+1 \\
& \Rightarrow|C| \geq
\end{aligned}
$$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=\#$ deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too. G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Case 1A: v is not adjacent to any $u^{\prime} \in C \backslash\{u\}$. Then

$$
\begin{aligned}
& |C| \geq|V| /(d+1)>\frac{(2 k+1) \cdot k}{k+1}=\frac{(k+1) \cdot k}{k+1}+\frac{k^{2}}{k+1} \geq k+1 \\
& \Rightarrow|C| \geq k+2
\end{aligned}
$$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately).
Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$
Let $a=\#$ additions, $d=\#$ deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too. G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Case 1A: v is not adjacent to any $u^{\prime} \in C \backslash\{u\}$. Then
(if $k \geq 2$)

$$
\begin{aligned}
& |C| \geq|V| /(d+1)>\frac{(2 k+1) \cdot k}{k+1}=\frac{(k+1) \cdot k}{k+1}+\frac{k^{2}}{k+1} \geq k+1 \\
& \Rightarrow|C| \geq k+2 \\
& \Rightarrow u \text { and } v \text { have } k+1 \text { uncommon neighbors }
\end{aligned}
$$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately).
Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$
Let $a=\#$ additions, $d=\#$ deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too. G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Case 1A: v is not adjacent to any $u^{\prime} \in C \backslash\{u\}$. Then
(f $k \geq 2$)

$$
\begin{aligned}
& |C| \geq|V| /(d+1)>\frac{(2 k+1) \cdot k}{k+1}=\frac{(k+1) \cdot k}{k+1}+\frac{k^{2}}{k+1} \geq k+1 \\
& \Rightarrow|C| \geq k+2 \\
& \Rightarrow u \text { and } v \text { have } k+1 \text { uncommon neighbors \& Rule } 4
\end{aligned}
$$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately).
Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$
Let $a=\#$ additions, $d=\#$ deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too. G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Case $1 \mathrm{~A}: v$ is not adjacent to any $u^{\prime} \in C \backslash\{u\}$. Then
(ff $k \geq 2$)

$$
\begin{aligned}
& |C| \geq|V| /(d+1)>\frac{(2 k+1) \cdot k}{k+1}=\frac{(k+1) \cdot k}{k+1}+\frac{k^{2}}{k+1} \geq k+1 \\
& \Rightarrow|C| \geq k+2 \\
& \Rightarrow u \text { and } v \text { have } k+1 \text { uncommon neighbors \& Rule } 4
\end{aligned}
$$

Exercise: Find a contradiction for the case $k=1$!

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too.
G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Case 1B: v is adjacent to some $u^{\prime} \in C \backslash\{u\}$. Then
$|C| \geq$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too.
G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Case 1B: v is adjacent to some $u^{\prime} \in C \backslash\{u\}$. Then

$$
|C| \geq|V| / d>
$$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately). Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$ Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too.
G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Case 1B: v is adjacent to some $u^{\prime} \in C \backslash\{u\}$. Then

$$
|C| \geq|V| / d>2 k+1
$$

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately).
Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$
Let $a=\#$ additions, $d=\#$ deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too.
G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$
Case 1B: v is adjacent to some $u^{\prime} \in C \backslash\{u\}$. Then

$$
|C| \geq|V| / d>2 k+1
$$

v has at most k neighbors in C (otherwise \square

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately).
Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$
Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}. Since $a=0, C$ is a clique in G, too.
G connected $\Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Case 1B: v is adjacent to some $u^{\prime} \in C \backslash\{u\}$. Then

$$
|C| \geq|V| / d>2 k+1
$$

v has at most k neighbors in C (otherwise G is a NO)

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately).
Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$
Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}.

Case 1B: v is adjacent to some $u^{\prime} \in C \backslash\{u\}$. Then
$|C| \geq|V| / d>2 k+1$
v has at most k neighbors in C (otherwise G is a NO)
$\Rightarrow u$ and v have $k+1$ uncommon neighbors

Analysis

Apply rules exhaustively; call resulting graph $G=(V, E)$ reduced. G is connected (otherwise treat each component separately).
Rule $1 \Rightarrow G$ is not a clique. $\underset{\text { edge modifications }}{ }$ solution $G^{\prime}=\left(V, E^{\prime}\right)$
Let $a=\#$ additions, $d=$ \#deletions $\Rightarrow k=a+d$.
Assume $|V|>(2 k+1) \cdot k$. Two cases; show contradiction.
Case 1: $\quad a=0 \Rightarrow k=d$. Let $C \subset V$ be the largest clique in G^{\prime}.

Case 1B: v is adjacent to some $u^{\prime} \in C \backslash\{u\}$. Then
$|C| \geq|V| / d>2 k+1$
v has at most k neighbors in C (otherwise G is a NO)
$\Rightarrow u$ and v have $k+1$ uncommon neighbors Rule 4

Analysis - Case 2
Case 2: $\quad a>0$

Analysis - Case 2
Case 2: $a>0 \Rightarrow k>d$.

Analysis - Case 2
Case 2: $a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}.

Analysis - Case 2
Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq$

Analysis - Case 2
Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}.

$$
|C| \geq|V| /(d+1) \geq
$$

Analysis - Case 2
Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}.

$$
|C| \geq|V| /(d+1) \geq|V| / k>
$$

Analysis - Case 2
Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}.

$$
|C| \geq|V| /(d+1) \geq|V| / k>2 k+1
$$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}.

$$
|C| \geq|V| /(d+1) \geq|V| / k>2 k+1
$$

Case 2A: $a=k$

Case 2B: $a<k$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}.

$$
|C| \geq|V| /(d+1) \geq|V| / k>2 k+1
$$

Case 2A: $a=k \Rightarrow V=$

Case 2B: $a<k$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}.

$$
|C| \geq|V| /(d+1) \geq|V| / k>2 k+1
$$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique.

Case 2B: $a<k$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$.

Case 2B: $a<k$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$.

Case 2B: $a<k$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors.

Case 2B: $a<k$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. \& Rule 3

Case 2B: $a<k$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. I Rule 3

Case 2B: $a<k \Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. A Rule 3

Case 2B: $a<k \Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$ Recall that $|C|>$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. A Rule 3

Case 2B: $a<k \Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$ Recall that $|C|>2 k+1$.

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. A Rule 3

Case 2B: $a<k \Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$ Recall that $|C|>2 k+1$.

Note: u has $\geq 2 k+1-a-1$ neighbors in C.

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. T Rule 3

Case 2B: $a<k \Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$ Recall that $|C|>2 k+1$.

Note: u has $\geq 2 k+1-a-\frac{?}{} 1$ neighbors in C. v has $\leq d-1$ neighbors in $C \backslash\{u\}$.

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. A Rule 3

Case 2B: $a<k \Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$ Recall that $|C|>2 k+1$.

Note: u has $\geq 2 k+1-a-?^{?} 1$ neighbors in C. v has $\leq d-1$ neighbors in $C \backslash\{u\}$.
Let $x=\#$ uncommon neighbors of u and v.

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. A Rule 3

Case 2B: $a<k \Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$ Recall that $|C|>2 k+1$.

Note: u has $\geq 2 k+1-a-?^{?} 1$ neighbors in C. v has $\leq d-1$ neighbors in $C \backslash\{u\}$.
Let $x=\#$ uncommon neighbors of u and v.
$\Rightarrow x \geq$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. I Rule 3

Case 2B: $a<k \Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$ Recall that $|C|>2 k+1$.

Note: u has $\geq 2 k+1-a-?^{?} 1$ neighbors in C. v has $\leq d-1$ neighbors in $C \backslash\{u\}$.
Let $x=\#$ uncommon neighbors of u and v.
$\Rightarrow x \geq 2 k+1-a-d=$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. A Rule 3

Case 2B: $a<k \Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$ Recall that $|C|>2 k+1$.

Note: u has $\geq 2 k+1-a-?^{?} 1$ neighbors in C. v has $\leq d-1$ neighbors in $C \backslash\{u\}$.
Let $x=\#$ uncommon neighbors of u and v.
$\Rightarrow x \geq 2 k+1-a-d=k+1$

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. I Rule 3

Case 2B: $a<k \Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$ Recall that $|C|>2 k+1$.

Note: u has $\geq 2 k+1-a-?^{?} 1$ neighbors in C. v has $\leq d-1$ neighbors in $C \backslash\{u\}$.
Let $x=\#$ uncommon neighbors of u and v.
$\Rightarrow x \geq 2 k+1-a-d=k+1$ \& Rule 4

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. A Rule 3

Case 2B: $a<k \Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$ Recall that $|C|>2 k+1$.

Note: u has $\geq 2 k+1-a-?^{?}$ neighbors in C. v has $\leq d-1$ neighbors in $C \backslash\{u\}$.
Let $x=\#$ uncommon neighbors of u and v.
$\Rightarrow x \geq 2 k+1-a-d=k+1$ Rule 4

Exercise:

Analysis - Case 2

Case 2: $\quad a>0 \Rightarrow k>d$. Let $C \subset V$ be the largest clique in G^{\prime}. $|C| \geq|V| /(d+1) \geq|V| / k>2 k+1$

Case 2A: $a=k \Rightarrow V=C$, and G^{\prime} consists of one clique. Since $a \geq 1, \exists u v \notin E$. Recall that $|V|>(2 k+1) \cdot k$. $\Rightarrow u$ and v have $\geq k+1$ common neighbors. I Rule 3

Case 2B: $a<k \Rightarrow \exists u v \in E: u \in C, v \in V \backslash C$ Recall that $|C|>2 k+1$.

Note: u has $\geq 2 k+1-a-1$ neighbors in C. v has $\leq d-1$ neighbors in $C \backslash\{u\}$.
Let $x=\#$ uncommon neighbors of u and v. $\Rightarrow x \geq 2 k+1-a-d=k+1$ Rule 4
Exercise: Find a simple branching rule for Cluster Editing!

