
1

and [Gramm, Guo, Hüffner, Niedermeier; Theory Comput. Syst. 38:373–392, 2005.
doi.org/10.1007/s00224-004-1178-y]

Based on: [Parameterized Algorithms: §1, 2.1]

Exact Algorithms
Sommer Term 2020

Alexander Wolff Lehrstuhl für Informatik I

Lecture 10 Kernelization

(slides by J. Spoerhase, Th. van Dijk, S. Chaplick, and A. Wolff)

2

Complexity Theory

2

Complexity Theory

Natural problems tend to be either:

• in P
• NP-hard

2

Complexity Theory

Natural problems tend to be either:

• in P
• NP-hard

← Easy
← Nasty

2

Complexity Theory

Natural problems tend to be either:

• in P
• NP-hard

← Easy
← Nasty

How to solve nasty problems?

• Solve only small instances (e.g., integer programming)
• Don’t solve the problem in full generality:

2

Complexity Theory

Natural problems tend to be either:

• in P
• NP-hard

← Easy
← Nasty

How to solve nasty problems?

• Solve only small instances (e.g., integer programming)
• Don’t solve the problem in full generality:

• . . . approximate
• . . . exploit properties of “reasonable” instances

2

Complexity Theory

Natural problems tend to be either:

• in P
• NP-hard

← Easy
← Nasty

How to solve nasty problems?

• Solve only small instances (e.g., integer programming)
• Don’t solve the problem in full generality:

• . . . approximate
• . . . exploit properties of “reasonable” instances

Fixed-Parameter Tractability:

• In many applications, some aspect of a problem assumed
small.

• Runtime of algorithm polynomial except for this small
aspect.

3

Vertex Cover

Minimum-size vertex set such that every edge is covered.

3

Vertex Cover

Minimum-size vertex set such that every edge is covered.

3

Vertex Cover

Problem:

Minimum-size vertex set such that every edge is covered.

3

Vertex Cover

Given:

Question:
Parameter:

Problem: k-Vertex Cover (k-VC)

Does G contain a size ≤ k vertex cover?

Minimum-size vertex set such that every edge is covered.

number k
graph G

3

Vertex Cover

Given:

Question:
Parameter:

Problem: k-Vertex Cover (k-VC)

Does G contain a size ≤ k vertex cover?

Minimum-size vertex set such that every edge is covered.

number k

Last time:
FPT :)graph G

4

Coloring

Question: Does G have a coloring with ≤ k colors?

Given: graph G , number k

4

Coloring

Question: Does G have a coloring with ≤ k colors?

Given: graph G , number k

For any k ≥ 3, not in polynomial time
assuming P 6= NP

4

Coloring

Question: Does G have a coloring with ≤ k colors?

Given: graph G , number k

For any k ≥ 3, not in polynomial time
assuming P 6= NP

k-Coloring

Given: graph G
Parameter: number k
Question: Does G have a coloring with ≤ k colors?

4

Coloring

Question: Does G have a coloring with ≤ k colors?

Given: graph G , number k

For any k ≥ 3, not in polynomial time
assuming P 6= NP

k-Coloring

Given: graph G
Parameter: number k
Question: Does G have a coloring with ≤ k colors?

For any k ≥ 3, not in polynomial time
assuming P 6= NP

4

Coloring

Question: Does G have a coloring with ≤ k colors?

Given: graph G , number k

For any k ≥ 3, not in polynomial time
assuming P 6= NP

k-Coloring

Given: graph G
Parameter: number k
Question: Does G have a coloring with ≤ k colors?

For any k ≥ 3, not in polynomial time
assuming P 6= NP

⇒ Not in FPT !!!!

5

k-Independent Set

Given: graph G
Parameter: number k
Question: Does G have a size ≥ k independent set?

5

k-Independent Set

Given: graph G
Parameter: number k
Question: Does G have a size ≥ k independent set?

How to find a 2-Independent Set?

5

k-Independent Set

Given: graph G
Parameter: number k
Question: Does G have a size ≥ k independent set?

How to find a 2-Independent Set? 3-Independent Set?

5

k-Independent Set

Given: graph G
Parameter: number k
Question: Does G have a size ≥ k independent set?

How to find a 2-Independent Set? 3-Independent Set?

Easily in O(nk) time, i.e., polynomial for any k

5

k-Independent Set

Given: graph G
Parameter: number k
Question: Does G have a size ≥ k independent set?

How to find a 2-Independent Set? 3-Independent Set?

Easily in O(nk) time, i.e., polynomial for any k

Requires Ω(nf (k)) time...
assuming FPT 6= W[1]

6

Fixed-Parameter Complexity Theory

Fixed-Parameter Tractable
Solvable in O(f (k)nc) time – computable function f , const. c
Complexity Class: FPT

6

Fixed-Parameter Complexity Theory

Fixed-Parameter Tractable
Solvable in O(f (k)nc) time – computable function f , const. c
Complexity Class: FPT

Slice-Wise Polynomial
Solvable in O(f (k)ng(k))) time – computable functions f , g
Complexity Class: XP

6

Fixed-Parameter Complexity Theory

Fixed-Parameter Tractable
Solvable in O(f (k)nc) time – computable function f , const. c
Complexity Class: FPT

Slice-Wise Polynomial
Solvable in O(f (k)ng(k))) time – computable functions f , g
Complexity Class: XP

Evidence against Fixed-Parameter Tractability
Complexity classes FPT ⊆ W[1] ⊆ W[2] . . .
e.g. FPT = W[1] ⇒ NP ⊆ DTIME(2o(n)), contradicting ETH

6

Fixed-Parameter Complexity Theory

Fixed-Parameter Tractable
Solvable in O(f (k)nc) time – computable function f , const. c
Complexity Class: FPT

Slice-Wise Polynomial
Solvable in O(f (k)ng(k))) time – computable functions f , g
Complexity Class: XP

Evidence against Fixed-Parameter Tractability
Complexity classes FPT ⊆ W[1] ⊆ W[2] . . .
e.g. FPT = W[1] ⇒ NP ⊆ DTIME(2o(n)), contradicting ETH

see Parameterized Algorithms §14.4

7

Fixed-Parameter Problems

• k-Coloring
NP-complete for each k ≥ 3.
Seems to require more than polynomial time.

7

Fixed-Parameter Problems

• k-Coloring
NP-complete for each k ≥ 3.
Seems to require more than polynomial time.

• k-Independent Set
In XP, but W[1]-complete...
Seems to require Ω(nf (k)) time.

7

Fixed-Parameter Problems

• k-Coloring
NP-complete for each k ≥ 3.
Seems to require more than polynomial time.

• k-Independent Set
In XP, but W[1]-complete...
Seems to require Ω(nf (k)) time.

• k-Vertex Cover
Solvable in O(2k(n + m)) time.

7

Fixed-Parameter Problems

• k-Coloring
NP-complete for each k ≥ 3.
Seems to require more than polynomial time.

• k-Independent Set
In XP, but W[1]-complete...
Seems to require Ω(nf (k)) time.

• k-Vertex Cover
Solvable in O(2k(n + m)) time.

Obs: If there are no edges, solution size 0.
Obs: For each edge uv , either u or v in the cover.

Branching Rule:
Pick an edge uv , branch on (G − u, k − 1) and (G − v , k − 1).

7

Fixed-Parameter Problems

• k-Coloring
NP-complete for each k ≥ 3.
Seems to require more than polynomial time.

• k-Independent Set
In XP, but W[1]-complete...
Seems to require Ω(nf (k)) time.

• k-Vertex Cover
Solvable in O(2k(n + m)) time.

Obs: If there are no edges, solution size 0.
Obs: For each edge uv , either u or v in the cover.

Branching Rule:
Pick an edge uv , branch on (G − u, k − 1) and (G − v , k − 1).

branching
factor 2

k

8

Kernelisation

Preprocessing with quality guarantees

9

Kernelisation Algorithms

Parameterized Problem: input graph G , parameter k.

9

Kernelisation Algorithms

Parameterized Problem: input graph G , parameter k.

Polynomial-time algorithm:
Input: Graph G , parameter k
Output: Graph G ′, parameter k ′ ≤ k such that

• (G ′, k ′) is YES ⇔ (G , k) is YES.
• G ′ has O(f (k)) vertices.

9

Kernelisation Algorithms

Parameterized Problem: input graph G , parameter k.

Polynomial-time algorithm:
Input: Graph G , parameter k
Output: Graph G ′, parameter k ′ ≤ k such that

• (G ′, k ′) is YES ⇔ (G , k) is YES.
• G ′ has O(f (k)) vertices.

eg, recall: Buss’ algorithm for k-VC

I) Reduce to the kernel of the instance

C = {v ∈ V | deg(v) > k}; if |C | > k then return (“NO”, ∅)

II) solve the reduced problem exactly

G ′ = (V ′, E ′) := G [V \ (C ∪ L)], k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

(L = isolated vertices)

9

Kernelisation Algorithms

Parameterized Problem: input graph G , parameter k.

Polynomial-time algorithm:
Input: Graph G , parameter k
Output: Graph G ′, parameter k ′ ≤ k such that

• (G ′, k ′) is YES ⇔ (G , k) is YES.
• G ′ has O(f (k)) vertices.

eg, recall: Buss’ algorithm for k-VC

I) Reduce to the kernel of the instance

C = {v ∈ V | deg(v) > k}; if |C | > k then return (“NO”, ∅)

II) solve the reduced problem exactly

G ′ = (V ′, E ′) := G [V \ (C ∪ L)], k ′ = k − |C |
if |E ′| > k2 then return (“NO”, ∅)

size-O(k2) kernel

(L = isolated vertices)

10

Kernel ⇔ FPT

Kernelisation ⇒ FPT

10

Kernel ⇔ FPT

Kernelisation ⇒ FPT

• run kernelisation algorithm
• solve kernel by any exact algorithm

10

Kernel ⇔ FPT

Kernelisation ⇒ FPT

• run kernelisation algorithm
• solve kernel by any exact algorithm

FPT ⇒ Kernelisation

10

Kernel ⇔ FPT

Kernelisation ⇒ FPT

• run kernelisation algorithm
• solve kernel by any exact algorithm

FPT ⇒ Kernelisation

Suppose we have an f (k)|I |c -time algorithm for an instance I .

10

Kernel ⇔ FPT

Kernelisation ⇒ FPT

• run kernelisation algorithm
• solve kernel by any exact algorithm

FPT ⇒ Kernelisation

Suppose we have an f (k)|I |c -time algorithm for an instance I .

Run the algorithm for |I |c+1 steps.

10

Kernel ⇔ FPT

Kernelisation ⇒ FPT

• run kernelisation algorithm
• solve kernel by any exact algorithm

FPT ⇒ Kernelisation

Suppose we have an f (k)|I |c -time algorithm for an instance I .

Run the algorithm for |I |c+1 steps.

If the decision is reached, output it.

10

Kernel ⇔ FPT

Kernelisation ⇒ FPT

• run kernelisation algorithm
• solve kernel by any exact algorithm

FPT ⇒ Kernelisation

Suppose we have an f (k)|I |c -time algorithm for an instance I .

Run the algorithm for |I |c+1 steps.

If the decision is reached, output it.

Otherwise, f (k) ≥ |I |.

10

Kernel ⇔ FPT

Kernelisation ⇒ FPT

• run kernelisation algorithm
• solve kernel by any exact algorithm

FPT ⇒ Kernelisation

Suppose we have an f (k)|I |c -time algorithm for an instance I .

Run the algorithm for |I |c+1 steps.

If the decision is reached, output it.

Otherwise, f (k) ≥ |I |.

So, we have an f (k)-size kernel. �

11

Typical Form of Kernelisation

Repeat some rules, until no rule is possible

• Rules can do some necessary modification and decrease k.

• Rules can remove some part of the graph.

• Rules can output YES or NO.

• Sometimes add ‘annotations’ to the graph

12

Cluster Editing

Given: graph G = (V , E)
Parameter: number k
Question: Can we make ≤ k modifications to G so that

each connected component is a clique?
Accepted modifications: adding / deleting edges

12

Cluster Editing

Given: graph G = (V , E)
Parameter: number k
Question: Can we make ≤ k modifications to G so that

each connected component is a clique?
Accepted modifications: adding / deleting edges

Known kernelizations:

12

Cluster Editing

Given: graph G = (V , E)
Parameter: number k
Question: Can we make ≤ k modifications to G so that

each connected component is a clique?
Accepted modifications: adding / deleting edges

Known kernelizations:

O(k2) vertices [Gramm, Guo, Hüffner, Niedermeier; TCSyst’05]

12

Cluster Editing

Given: graph G = (V , E)
Parameter: number k
Question: Can we make ≤ k modifications to G so that

each connected component is a clique?
Accepted modifications: adding / deleting edges

Known kernelizations:

O(k2) vertices [Gramm, Guo, Hüffner, Niedermeier; TCSyst’05]

O(k) vertices [Fellows, Langston, Rosamund, Shaw; FCT’07]

12

Cluster Editing

Given: graph G = (V , E)
Parameter: number k
Question: Can we make ≤ k modifications to G so that

each connected component is a clique?
Accepted modifications: adding / deleting edges

Known kernelizations:

O(k2) vertices [Gramm, Guo, Hüffner, Niedermeier; TCSyst’05]

O(k) vertices

2k vertices [Chen, Meng; JCSS’12]

[Fellows, Langston, Rosamund, Shaw; FCT’07]

12

Cluster Editing

Given: graph G = (V , E)
Parameter: number k
Question: Can we make ≤ k modifications to G so that

each connected component is a clique?
Accepted modifications: adding / deleting edges

Known kernelizations:

O(k2) vertices [Gramm, Guo, Hüffner, Niedermeier; TCSyst’05]

O(k) vertices

Let’s prove this!

2k vertices [Chen, Meng; JCSS’12]

[Fellows, Langston, Rosamund, Shaw; FCT’07]

13

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique,
remove this connected component:

G ′ ← G − C ; k ′ ← k

13

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique,
remove this connected component:

G ′ ← G − C ; k ′ ← k

Rule 2: If we have more than k connected components
and Rule 1 does not apply:

13

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique,
remove this connected component:

G ′ ← G − C ; k ′ ← k

Rule 2: If we have more than k connected components
and Rule 1 does not apply: Answer NO.

13

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique,
remove this connected component:

G ′ ← G − C ; k ′ ← k

Rule 2: If we have more than k connected components
and Rule 1 does not apply:

Obs. After applying Rules 1 and 2,
at most k connected components remain.

Answer NO.

13

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique,
remove this connected component:

G ′ ← G − C ; k ′ ← k

Rule 2: If we have more than k connected components
and Rule 1 does not apply:

Obs. After applying Rules 1 and 2,
at most k connected components remain.

Plan: Find rules that make connected component small!

Answer NO.

13

Trivial Rules and Plan

Rule 1: If a connected component C of G is a clique,
remove this connected component:

G ′ ← G − C ; k ′ ← k

Rule 2: If we have more than k connected components
and Rule 1 does not apply:

Obs. After applying Rules 1 and 2,
at most k connected components remain.

Plan: Find rules that make connected component small!

Annotate the graph:
some pairs of vertices are permanent and others are forbidden.

Answer NO.

14

Rule 3: Common Neighbors

Obs. If two vertices have k + 1 neighbors in common,
they must belong to the same clique in any solution.

v

w

14

Rule 3: Common Neighbors

Obs. If two vertices have k + 1 neighbors in common,
they must belong to the same clique in any solution.

Rule 3: Let v , w be vertices with k + 1 common neighbors.
If vw is not present, add it and decrease k by 1.
Set the edge vw to be permanent.

G ′ ← G ∪ {vw} P ← P ∪ {vw}

k ′ =

{
k if vw present,

k − 1 otherwise.

v

w

14

Rule 3: Common Neighbors

Obs. If two vertices have k + 1 neighbors in common,
they must belong to the same clique in any solution.

Rule 3: Let v , w be vertices with k + 1 common neighbors.
If vw is not present, add it and decrease k by 1.
Set the edge vw to be permanent.

G ′ ← G ∪ {vw} P ← P ∪ {vw}

k ′ =

{
k if vw present,

k − 1 otherwise.

v

w

15

Rule 4: Private Neighbors

Obs. If vtc. v and w have k + 1
“uncommon” neighbors,
then vw cannot be an edge
in the solution.

v

w

15

Rule 4: Private Neighbors

Obs. If vtc. v and w have k + 1
“uncommon” neighbors,
then vw cannot be an edge
in the solution.

Rule 4: Let v , w be vtc. with k + 1 uncommon neighbors.
If vw is present, remove it and decrease k by 1.
Set the edge vw to be forbidden.

G ′ ← G − vw ; F ← F ∪ {vw}

k ′ ←

{
k if vw not present,

k − 1 otherwise.

v

w

15

Rule 4: Private Neighbors

Obs. If vtc. v and w have k + 1
“uncommon” neighbors,
then vw cannot be an edge
in the solution.

Rule 4: Let v , w be vtc. with k + 1 uncommon neighbors.
If vw is present, remove it and decrease k by 1.
Set the edge vw to be forbidden.

G ′ ← G − vw ; F ← F ∪ {vw}

k ′ ←

{
k if vw not present,

k − 1 otherwise.

Rule 5: If some edge is both permanent and forbidden,
then there is no solution.

v

w

15

Rule 4: Private Neighbors

Obs. If vtc. v and w have k + 1
“uncommon” neighbors,
then vw cannot be an edge
in the solution.

Rule 4: Let v , w be vtc. with k + 1 uncommon neighbors.
If vw is present, remove it and decrease k by 1.
Set the edge vw to be forbidden.

G ′ ← G − vw ; F ← F ∪ {vw}

k ′ ←

{
k if vw not present,

k − 1 otherwise.

Rule 5: If some edge is both permanent and forbidden,
then there is no solution.

v

w

Answer NO.

16

Rules 6 and 7: Transitivity (Triangles)

Rule 6: If vw and wx are permanent
then set vx to be permanent.
If vx is not present,
then add it and decrease k by 1.

v

w

x

16

Rules 6 and 7: Transitivity (Triangles)

Rule 6: If vw and wx are permanent
then set vx to be permanent.
If vx is not present,
then add it and decrease k by 1.

Rule 7: If vw is permanent
and wx is forbidden,

then set vx to be forbidden.
If vx is present,
then remove it and decrease k by 1. v

w

x

w

x

17

Runtime

The rules can be computed in polynomial time.

17

Runtime

The rules can be computed in polynomial time.

With carefully chosen data structures, they can be exhaustively
applied in O(n3) time.

17

Runtime

The rules can be computed in polynomial time.

With carefully chosen data structures, they can be exhaustively
applied in O(n3) time.

Challenge

• Already know: at most k connected components

17

Runtime

The rules can be computed in polynomial time.

With carefully chosen data structures, they can be exhaustively
applied in O(n3) time.

Challenge

• Already know: at most k connected components

• Aim for a quadratic kernel: O(k2) vertices

17

Runtime

The rules can be computed in polynomial time.

With carefully chosen data structures, they can be exhaustively
applied in O(n3) time.

Challenge

• Already know: at most k connected components

• Aim for a quadratic kernel: O(k2) vertices

So, “small” components are fine –
but what if we have a “big” component?

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒ G is not a clique.

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒ G is not a clique. edge modifications

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒ G is not a clique. edge modifications solution G ′ = (V , E ′)

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k.

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d .a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.
a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

Case 1A:

|C | ≥
v is not adjacent to any u′ ∈ C \ {u}. Then

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

Case 1A:

|C | ≥ |V |/(d + 1) >

v is not adjacent to any u′ ∈ C \ {u}. Then

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

Case 1A:

|C | ≥ |V |/(d + 1) > (2k+1)·k
k+1 =

v is not adjacent to any u′ ∈ C \ {u}. Then

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

Case 1A:

|C | ≥ |V |/(d + 1) > (2k+1)·k
k+1 = (k+1)·k

k+1 + k2

k+1 ≥
v is not adjacent to any u′ ∈ C \ {u}. Then

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

Case 1A:

|C | ≥ |V |/(d + 1) > (2k+1)·k
k+1 = (k+1)·k

k+1 + k2

k+1 ≥ k + 1

v is not adjacent to any u′ ∈ C \ {u}. Then

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

Case 1A:

|C | ≥ |V |/(d + 1) > (2k+1)·k
k+1 = (k+1)·k

k+1 + k2

k+1 ≥ k + 1

(if k ≥ 2)
v is not adjacent to any u′ ∈ C \ {u}. Then

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

Case 1A:

|C | ≥ |V |/(d + 1) > (2k+1)·k
k+1 = (k+1)·k

k+1 + k2

k+1 ≥ k + 1

(if k ≥ 2)

⇒ |C | ≥

v is not adjacent to any u′ ∈ C \ {u}. Then

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

Case 1A:

|C | ≥ |V |/(d + 1) > (2k+1)·k
k+1 = (k+1)·k

k+1 + k2

k+1 ≥ k + 1

(if k ≥ 2)

⇒ |C | ≥ k + 2

v is not adjacent to any u′ ∈ C \ {u}. Then

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

Case 1A:

|C | ≥ |V |/(d + 1) > (2k+1)·k
k+1 = (k+1)·k

k+1 + k2

k+1 ≥ k + 1

(if k ≥ 2)

⇒ |C | ≥ k + 2

⇒ u and v have k + 1 uncommon neighbors

v is not adjacent to any u′ ∈ C \ {u}. Then

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

Case 1A:

|C | ≥ |V |/(d + 1) > (2k+1)·k
k+1 = (k+1)·k

k+1 + k2

k+1 ≥ k + 1

(if k ≥ 2)

⇒ |C | ≥ k + 2

⇒ u and v have k + 1 uncommon neighbors Rule 4

v is not adjacent to any u′ ∈ C \ {u}. Then

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

Case 1A:

|C | ≥ |V |/(d + 1) > (2k+1)·k
k+1 = (k+1)·k

k+1 + k2

k+1 ≥ k + 1

(if k ≥ 2)

⇒ |C | ≥ k + 2

⇒ u and v have k + 1 uncommon neighbors Rule 4
Exercise: Find a contradiction for the case k = 1!

v is not adjacent to any u′ ∈ C \ {u}. Then

a = 0

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

a = 0

Case 1B: v is adjacent to some u′ ∈ C \ {u}. Then

u′

|C | ≥

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

a = 0

Case 1B: v is adjacent to some u′ ∈ C \ {u}. Then

u′

|C | ≥ |V |/d >

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

a = 0

Case 1B: v is adjacent to some u′ ∈ C \ {u}. Then

u′

|C | ≥ |V |/d > 2k + 1

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

a = 0

Case 1B: v is adjacent to some u′ ∈ C \ {u}. Then

u′

|C | ≥ |V |/d > 2k + 1

v has at most k neighbors in C (otherwise G is a NO)

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

a = 0

Case 1B: v is adjacent to some u′ ∈ C \ {u}. Then

u′

|C | ≥ |V |/d > 2k + 1

v has at most k neighbors in C (otherwise G is a NO)

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

a = 0

Case 1B: v is adjacent to some u′ ∈ C \ {u}. Then

u′

|C | ≥ |V |/d > 2k + 1

⇒ u and v have k + 1 uncommon neighbors

v has at most k neighbors in C (otherwise G is a NO)

18

Analysis

Apply rules exhaustively; call resulting graph G = (V,E) reduced.

G is connected (otherwise treat each component separately).

Rule 1 ⇒
Let a = #additions, d = #deletions

G is not a clique. edge modifications solution G ′ = (V , E ′)
⇒ k = a + d .

Assume |V | > (2k + 1) · k. Two cases; show contradiction.

Case 1: ⇒ k = d . Let C⊂V be the largest clique in G ′.
Since a = 0, C is a clique in G , too.

G connected ⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

v u
C

a = 0

Case 1B: v is adjacent to some u′ ∈ C \ {u}. Then

u′

|C | ≥ |V |/d > 2k + 1

⇒ u and v have k + 1 uncommon neighbors Rule 4

v has at most k neighbors in C (otherwise G is a NO)

19

Analysis – Case 2

Case 2: a > 0

19

Analysis – Case 2

Case 2: ⇒ k > d .a > 0

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ |V |/k >

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k

Case 2B: a < k

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V =

Case 2B: a < k

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Case 2B: a < k

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

Case 2B: a < k

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E . Recall that |V | > (2k + 1) · k .

Case 2B: a < k

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Case 2B: a < k

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

Recall that |C | >

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

Recall that |C | > 2k + 1.

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

Recall that |C | > 2k + 1.

Note: u has ≥ 2k + 1− a− 1 neighbors in C .
??

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

Recall that |C | > 2k + 1.

Note: u has ≥ 2k + 1− a− 1 neighbors in C .

v has ≤ d − 1 neighbors in C \ {u}.

??

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

Recall that |C | > 2k + 1.

Note: u has ≥ 2k + 1− a− 1 neighbors in C .

v has ≤ d − 1 neighbors in C \ {u}.
Let x = # uncommon neighbors of u and v .

??

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

Recall that |C | > 2k + 1.

Note: u has ≥ 2k + 1− a− 1 neighbors in C .

v has ≤ d − 1 neighbors in C \ {u}.
Let x = # uncommon neighbors of u and v .

⇒ x ≥

??

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

Recall that |C | > 2k + 1.

Note: u has ≥ 2k + 1− a− 1 neighbors in C .

v has ≤ d − 1 neighbors in C \ {u}.
Let x = # uncommon neighbors of u and v .

⇒ x ≥ 2k + 1− a− d =

??

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

Recall that |C | > 2k + 1.

Note: u has ≥ 2k + 1− a− 1 neighbors in C .

v has ≤ d − 1 neighbors in C \ {u}.
Let x = # uncommon neighbors of u and v .

⇒ x ≥ 2k + 1− a− d = k + 1

??

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

Recall that |C | > 2k + 1.

Note: u has ≥ 2k + 1− a− 1 neighbors in C .

v has ≤ d − 1 neighbors in C \ {u}.
Let x = # uncommon neighbors of u and v .

Rule 4⇒ x ≥ 2k + 1− a− d = k + 1

??

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

Recall that |C | > 2k + 1.

Note: u has ≥ 2k + 1− a− 1 neighbors in C .

v has ≤ d − 1 neighbors in C \ {u}.
Let x = # uncommon neighbors of u and v .

Rule 4⇒ x ≥ 2k + 1− a− d = k + 1

Exercise:

??

19

Analysis – Case 2

Case 2: ⇒ k > d . Let C⊂V be the largest clique in G ′.a > 0

|C | ≥ |V |/(d + 1) ≥ 2k + 1|V |/k >

Case 2A: a = k ⇒ V = C , and G ′ consists of one clique.

Since a ≥ 1, ∃uv 6∈ E .

⇒ u and v have ≥ k + 1 common neighbors.

Recall that |V | > (2k + 1) · k .

Rule 3

Case 2B: a < k v u
C

⇒ ∃uv ∈ E : u ∈ C , v ∈ V \C

Recall that |C | > 2k + 1.

Note: u has ≥ 2k + 1− a− 1 neighbors in C .

v has ≤ d − 1 neighbors in C \ {u}.
Let x = # uncommon neighbors of u and v .

Rule 4⇒ x ≥ 2k + 1− a− d = k + 1

Exercise: Find a simple branching rule for Cluster Editing!

??

	Titel
	Complexity Theory
	Vertex Cover
	Coloring
	k-Independent Set
	Fixed-Parameter Complexity Theory
	Fixed-Parameter Problems
	Kernelisation Algorithms
	Kernel \Leftrightarrow FPT
	Typical Form of Kernelisation
	Cluster Editing
	Trivial Rules and Plan
	Rule 3: Common Neighbors
	Rule 4: Private Neighbors
	Rules 6 and 7: Transitivity (Triangles)
	Runtime
	Analysis
	Analysis -- Case 2

